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We propose a technique for synthesizing bidirectional programs from the corresponding unidirectional code
plus a few input/output examples. The core ideas are: (1) constructing a sketch using the given unidirectional
program as a specification, and (2) filling the sketch in a modular fashion by exploiting the properties of
bidirectional programs. These ideas are enabled by our choice of programming language, HOBiT, which is
specifically designed to maintain the unidirectional program structure in bidirectional programming, and
keep the parts that control bidirectional behavior modular. To evaluate our approach, we implemented it in a
tool called Synbit and used it to generate bidirectional programs for intricate microbenchmarks, as well as for
a few larger, more realistic problems. We also compared Synbit to a state-of-the-art unidirectional synthesis
tool on the task of synthesizing backward computations.
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1 INTRODUCTION

Transforming data from one format to another is a common task of programming: compilers trans-
form program text into syntax trees, manipulate the trees and then generate low-level code; database
queries transform base relations into views; model-driving software engineering transforms one
model into another. Very often, such transformations will benefit from being bidirectional, allowing
changes to the targets to be mapped back to the sources too (for example the view-update problem in
databases (Bancilhon and Spyratos 1981, Hegner 1990), bidirectional model transformation (Stevens
2008), and so on.).
As a response to this need, programming-language researchers started to design specialized

programming languages for writing bidirectional transformations. In particular as pioneered by
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Pierce’s group at Pennsylvania, a bidirectional transformation (BX), also known as a lens (Foster
et al. 2007), is modeled as a pair of functions between source and view data objects, one in each
direction. The forward function get :: 𝑆 → 𝑉 maps a source onto a view, and the corresponding
backward function put :: 𝑆 × 𝑉 → 𝑆 reflects any changes in the view back to the source. Note
that get is not necessarily injective. Accordingly put, in addition to the updated view, also takes
the original source as an argument. This makes it possible to recover some of the source data that
is not present in the view. Of course, not all pairing of get/put forms are valid BX; they must be
related by specific properties known as round-tripping.

get 𝑠 = 𝑣 implies put (𝑠, 𝑣) = 𝑠 (Acceptability)
put (𝑠, 𝑣) = 𝑠 ′ implies get 𝑠 ′ = 𝑣 (Consistency)

for all 𝑠, 𝑠 ′ ∈ 𝑆 and 𝑣 ∈ 𝑉 . Here, Acceptability states that no changes to the source happen if there
is no change to the view, and Consistency states that all changes to the view must be captured in
the updated source.

A BX language allows the transformations in both directions to be programmed together and is
expected to guarantee round-tripping by construction.

This is a challenging problem for language design, and consequently compromises had to be made
(in particular to usability) in favor of guaranteeing round-tripping. In the original lens design (Foster
et al. 2007), lenses can only be composed by stylized lens combinators, which is inconvenient to
program with. A lot of research has gone into this area since, for example Bohannon et al. (2008),
Matsuda et al. (2007), Matsuda and Wang (2018b), Pacheco et al. (2014), Voigtländer (2009), and the
state of the art has progressed a long way since. This includes a language HOBiT (Matsuda andWang
2018b), which follows a line of research (Matsuda et al. 2007, Matsuda andWang 2015a,b, Voigtländer
2009) that aims to produce BX code that is close in structure to how one will program the get
function alone in a conventional unidirectional language. Despite the progresses in language design,
BX programming is still considerably more difficult than conventional programming, especially
when sophisticated backward behaviors are required. This complexity is largely inherent as one
is asked to do more in less: defining behaviors in both directions in a single definition. Even in a
language like HOBiT, where programmers are allowed (and indeed encouraged) to approach BX
programming from the convenience of conventional unidirectional programming, there are still
(necessary) additional code components that need to be added to the basic program structure to
specify non-trivial backward behaviors.

Unidirectional program as sketch. In this paper we introduce Synbit, a program synthesis system
that makes BX programming more approachable to mainstream programmers. In particular, we
propose using unidirectional code (i.e., a definition of get in a Haskell-like language) as a sketch of
the bidirectional program (which embodies both get and put). Consequently, programmers familiar
with unidirectional programming can obtain bidirectional programs from unidirectional ones and
input/output examples. In the neighboring field of software verification, expressing specifications
(in our case sketches) as normal code has the effect of boosting the adoption of formal tools in
industry (Chong et al. 2020), something that bidirectional programming research as a whole may
benefit from.
It is not hard to see that this program sketch idea fits well with the language HOBiT. Unlike

most BX languages, HOBiT is designed to keep bidirectional code as similar in structure as possible
to how one may program the unidirectional get. Consequently, it is able to benefit from such a
sketch and allow the synthesis process to mostly focus on parts of the code that specially handle
intricate bidirectional behaviors. This is an attractive solution. On one hand, the specifications are
intuitive: users simply write normal unidirectional programs (together with a few input/output
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examples). On the other hand, the specifications as sketches are useful in the synthesis process
because they reduce the search space. Moreover, this design supports gradual “bidirectionalization”
done by incrementally converting existing unidirectional programs into bidirectional ones. As it
will be shown in a comprehensive evaluation in Section 4, our system is highly effective and able
to produce high-quality bidirectional programs in a wide range of scenarios.

Off-the-shelf synthesis is a non-solution. Before diving into the details of our proposed solution,
we would like to take a step back and answer a question that may already be in some readers’ minds:
will program synthesis completely replace the need for bidirectional languages? That is, how about
using generic synthesizers to derive a put from an existing get in a standard unidirectional language?
After all, there already exist bidirectionalization techniques (Matsuda et al. 2007, Voigtländer 2009)
that are able to derive a put from a get though in restricted situations.

When applied naively, this approach does not work. As an experiment, we tried using the state-of-
the-art program synthesizer Smyth (Lubin et al. 2020) to generate the put from concrete examples
and appropriate sketches. To simplify the problem, we ignored the round-tripping property between
get and put, and tried to generate any put (even one that violates the laws). However, even in this
simplified scenario, the synthesizer failed to find a put for simple examples (see Section 4.3 for
more details).
This is not surprising because, while powerful, program synthesis is very hard due to the vast

search space. The most common ways in which existing synthesis techniques circumvent this are
by picking a reduced domain specific language to generate programs in (Gulwani 2011) and by
seeding the program search with a sketch representing the program structure (Solar-Lezama 2009).
In this paper, we are interested in synthesizing general purpose programs and therefore we do not
adopt the first strategy.

Contributions:
• We present an application of program synthesis to the area of bidirectional programming. In
particular, we provide an automated technique for generating bidirectional transformations
in the language HOBiT (Section 3). The inputs to our procedure are the corresponding
unidirectional code and a few concrete examples describing the backward transformation
(Section 3.2).

• We exploit bidirectional programming properties, domain-specific knowledge of HOBiT and
type information to efficiently prune the search space. In particular, we generate specialized
program sketches from the unidirectional code (Section 3.3), which are then filled in a modular
manner by separating the solving of dependent synthesis tasks (Sections 3.4 and 3.5).

• We present a classification of bidirectional programming benchmarks based on the amount
of information from the source that is being lost through the forward transformation (Sec-
tion 4.1). We believe that such a classification is valuable for evaluating the capabilities of
our bidirectional synthesis technique.

• We implemented our bidirectional synthesis technique in a tool called Synbit, and used it to
generate bidirectional programs for the set of benchmarks discussed above (Section 4). The
prototype implementation of Synbit is available in the artifact 1 or the repository2.

2 BACKGROUND: THE HOBiT LANGUAGE

HOBiT (Matsuda and Wang 2018b) is a state-of-the-art higher-order bidirectional programming
language. A distinct feature of HOBiT is its support of a programming style that is close to the

1https://doi.org/10.5281/zenodo.5494504
2https://github.com/masaomi-yamaguchi/synbit
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conventional unidirectional programming. The design of the language largely separates the core
structure of programs (which can be shared with the unidirectional definition of get) from the
specification of backward behaviors that are specific to bidirectional programming. In this section,
we will introduce the core features of HOBiT with a focus on demonstrating its suitability as a target
of sketch-based program synthesis. Curious readers who are interested in the full expressiveness
power of HOBiT and the formal systems are encouraged to read the original paper (Matsuda and
Wang 2018b).

2.1 A Simple Example

Before getting into HOBiT programs, we start with a familiar definition in Haskell below.

append :: [𝑎] → [𝑎] → [𝑎]
append xs ys = case xs of [ ] → ys

𝑎 : 𝑥 → 𝑎 : append 𝑥 ys

In the definition, we use explicit case branching (instead of syntax sugar in Haskell) to highlight
the structure of the code.
Now, for a forward function (get) defined as append, let us investigate what will be suitable

behaviors of its put. We denote the put by a HOBiT function appendB :: B[𝑎] → B[𝑎] → B[𝑎].
The B-annotated types (highlighted in blue) are bidirectional types in HOBiT, representing data that
are subject to bidirectional computation. B-typed values are manipulated only by operations that
satisfy the round-tripping laws, which is enough to ensure the round-tripping property of a whole
program (Matsuda and Wang 2018b). As we will see in the sequel, bidirectional types can be mixed
with normal unidirectional types to support flexible programming and greater expressiveness.

Bidirectional functions of type B𝜎 → B𝜏 can be executed as bidirectional transformations
between 𝜎 and 𝜏 in HOBiT’s interactive environment (or, read-eval-print loop) via :get and :put.
For example, one can run appendB forwards

> :get (uncurryB appendB) ( [1, 2], [3, 4])
[1, 2, 3, 4]

and backwards.

> :put (uncurryB appendB) ( [1, 2], [3, 4]) [5, 6, 7, 8]
( [5, 6], [7, 8])

Note that we have uncurried appendB before execution by uncurryB :: (B𝑎 → B𝑏 → B𝑐) →
B(𝑎, 𝑏) → B𝑐 so that it fits the pattern of B𝜎 → B𝜏 for bidirectional execution. Specifically
(uncurryB appendB) has type B( [𝑎], [𝑎]) → B[𝑎], and its put has type ( [𝑎], [𝑎]) → [𝑎] →
([𝑎], [𝑎]).
Now we are ready to explore bidirectional behaviors.

2.1.1 Simple backward behavior. The simplest behavior of put, as adopted in Voigtländer (2009), is
to only allow in-place update of views. In the case of appendB, it means that the changes to the
length of the view list will result in an error.

> :put (uncurryB appendB) ( [1, 2], [3, 4]) [5, 6, 7, 8]
( [5, 6], [7, 8])
> :put (uncurryB appendB) ( [1, 2], [3, 4]) [1, 2, 3]
Error: ...
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To achieve this behavior, a definition in HOBiT reads the following.

appendB :: B[𝑎] → B[𝑎] → B[𝑎]
appendB xs ys = case xs of [ ] → ys

𝑎 : 𝑥 → 𝑎 : appendB 𝑥 ys

As one can see, this definition is almost identical to that of append with only the language constructs
such as case and data constructors being replaced by their bidirectional counterparts (underlined
and highlighted in blue) that handle values of bidirectional types.
This simplicity comes from the design of HOBiT, as well as the modesty of the scenario. Given

that the function is parametric in the list elements, in-place updates mean that the backward
execution may simply trace back exactly the same control flow of the original forward execution.
This can be achieved by recursing according to the original source (the first argument of put)
and only using the updated view (the second argument of put) as a supplier of element values.
Therefore, no additional specification is required in the code.

2.1.2 Branch switching. HOBiT is not limited to such simple behaviors. Its bidirectional language
constructs seen above set us up for more sophisticated cases. Let’s say that we now want to handle
structural updates in the view, allowing the list length to vary.

> :get (uncurryB appendB) ( [1, 2], [3, 4])
[1, 2, 3, 4]
> :put (uncurryB appendB) ( [1, 2], [3, 4]) [5, 6, 7, 8]
( [5, 6], [7, 8])
> :put (uncurryB appendB) ( [1, 2], [3, 4]) [5, 6, 7, 8, 9]
( [5, 6], [7, 8, 9])
> :put (uncurryB appendB) ( [1, 2], [3, 4]) [5]
( [5], [ ])

When the length of the view list changes, we try to change the second list of the source to
accommodate that. If the length becomes shorter than that of the first source list, the second source
list will be empty and the first source list will also change accordingly.
As one can see, this behavior can no longer be achieved by simply tracing back the original

control flow of the forward execution. The backward execution will have to recurse a different
number of times from the original, and how this is done will need to be additionally specified in
the code. Here enters a definition in HOBiT that does exactly this.

appendB :: B[𝑎] → B[𝑎] → B[𝑎]
appendB xs ys = case xs of [ ] → ys with const True by 𝜆 .𝜆 . [ ]

𝑎 : 𝑥 → 𝑎 : appendB 𝑥 ys with not ◦ null by 𝜆𝑠.𝜆 . 𝑠

The code is longer than the last version, as expected, but the program structure remains the same:
the additional specification for more sophisticated backward behavior is modularly grouped at the
end of each case branch. Recall that we plan to use the unidirectional code as sketches to synthesize
bidirectional code; this resemblance to the unidirectional code means that the synthesizing effort
may now concentrate on the part specifying bidirectional behaviors, increasing its effectiveness.
In the above code, we used two distinctive HOBiT features known as exit conditions (marked

by the with keyword) and reconciliation functions (marked by the by keyword). Both are for the
purpose of controlling the backward behavior, especially when it no longer follows the original
control flow (a behavior we call branch switching).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 105. Publication date: October 2021.
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Exit conditions. An exit condition is an over-approximation of the forward-execution result of
the branch, which always evaluates to True if the branch is taken (dynamically checked in HOBiT).
Hence, an exit condition in a case expression has type 𝜏 → Bool if the whole case expression has
type B𝜏 . The exit conditions are then used as branching conditions in the backward execution. For
example, in the above case of appendB, an empty list as view will choose the first branch, as the
view does not match the condition not ◦ null of the second branch. Exit conditions often overlap;
when multiple branches match, the original branch used in the forward execution is preferred. If
impossible (as the exit condition of that branch does not hold), the topmost branch will be taken.
Like the case of the in-place update we saw previously, if the view-list length is not changed, then
in the backward execution of appendB, the exit conditions of the original branches (now used as
branching conditions) are always satisfied, and therefore the original branches are always taken.

The situation becomes more interesting when the view update does change the length of the list,
for example by making it shorter. In this case, the view list will be exhausted before the original
number of recursions are completed. As a result, the backward execution will now see [ ] as its view
input and a non-empty list as its source input. This means that the original branch at this point is
the second branch, but the exit condition of that does not hold, which forces the first branch to be
taken—a branch switch.

Reconciliation functions. We have seen that exit conditions may force branches to switch,
which is crucial for handling interesting changes to the view. However, it only solves half of the
problem; naive branch switching typically results in run-time failure. The reason is simple: when
branch switching happens, the two arguments of put are in an inconsistent state for the branch;
e.g., for append, having an non-empty source list (and an empty view list) is inconsistent for the
branch [] → ys. Reconciliation functions are used to fix this inconsistency. Basically, they are
functions that take the inconsistent sources and views and produce new sources that are consistent
with the branch taken. For example, in the definition above, the first branch will have [ ] as the new
source, because a switch to this branch means an empty view and the branch expects the source to
be the empty list for further put execution of the branch body. In general, a reconciliation function
in a case expression is a function of type 𝜎 → 𝜏 → 𝜎 , provided that the whole case expression has
type B𝜏 , with its scrutinee of type B𝜎 .

An interesting observation of this particular example of append is that the reconciliation function
of the cons branch (i.e., 𝜆𝑠.𝜆 .𝑠 above) is actually never used. Recall that branch switching only
happens when the backward execution tries to follow the original branch but the exit condition
of the branch is not satisfied by the updates to the view. This will never happen in the nil branch
above with the exit condition const True, which is always satisfied. In other words, regardless of the
view update there will not be branch switching to the cons branch and therefore its reconciliation
function is never executed. This behavior matches the behavior of append which recurses on the
first source list: when the view list is updated to be shorter than the first source list, the recursion
will need to be cut short (thus branch switching to the nil branch); but when the view list is updated
to be longer, the additional elements will simply be added to the second source list, which does not
affect the recursion (and thus no need of branch switching).

In summary, with reconciliation functions, the backward executionmay recover from inconsistent
states and resume with a new source. This is key to successful branch switching and the handling
of structural updates to the view.

Round-tripping. It is also worth noting that branch switching in HOBiT does not threaten
the round-tripping properties. Intuitively, the key principle of round-tripping is that a branch
taken in a forward/backward execution should also be taken in a subsequent backward/forward
execution (Foster et al. 2007, Hu and Ko 2016, Ko et al. 2016, Lutz 1986, Matsuda and Wang 2018b,
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Yokoyama et al. 2011). When a brach switches in the backward execution, the new branch will
produce a source value that matches the pattern of the new branch, ensuring that a subsequent
forward execution will take the same branch. Since the exit conditions are checked as valid post
conditions, this correspondence of forward/backward branchings is established, and consequently
it guarantees round-tripping. An inappropriate reconciliation function will make the backward
execution fail but not break round-tripping. More details can be found in the original paper (Matsuda
and Wang 2018b). In this paper, we not only rely on the fact that HOBiT programs always satisfy
round-tripping, but we also leverage the principle for effective synthesis (Section 3.5.2).

One can also observe that the exit conditions and reconciliation functions in appendB are quite
simple themselves. However, their interaction with the rest of the code is intricate. Programmers
who write them are therefore required to have a good understanding of how backward execution
works and how it can be influenced, which may not come naturally. This combination of simplicity
in form and complication in behavior makes it a fertile ground for program synthesis, which we
set out to explore in this paper.

2.1.3 Mixing bidirectional and unidirectional programming. We end this section with another
example of variants of append’s backward behavior and its implementation in HOBiT. The example
also demonstrates a feature of HOBiT that supports a mixture of unidirectional and bidirectional
programming for greater expressiveness. Let us consider the following definition.

appendBc :: B[𝑎] → [𝑎] → B[𝑎]
appendBc xs ys = case xs of

[ ] → !ys with 𝜆𝑣. length 𝑣 length ys by 𝜆 .𝜆 . [ ]
𝑎 : 𝑥 → 𝑎 : appendBc 𝑥 ys with 𝜆𝑣. length 𝑣 ̸ length ys by 𝜆 .𝜆(𝑣 : ). [𝑣]

Noticeably, the type of the function is a mixture of bidirectional and unidirectional types, with the
second argument as a normal list. Recall that bidirectional types represent data that are updatable;
this type means that the second list is fixed with respect to backward execution. We will look at a
few sample runs before going into the details of the definition. Note that since the second argument
is constant in backward execution, there is no longer the need to uncurry the function; one can
simply partially apply it as shown below.

> :get (𝜆xs. appendBc xs ";") "apple"
"apple;"
> :put (𝜆xs. appendBc xs ";") "apple" "pineapple;"
"pineapple"
> :put (𝜆xs. appendBc xs ";") "apple" "plum;"
"plum"

In this case, the second list is ";" and changes in the view can only affect the first list. Any attempt
to change the last part of the view will (rightly) fail.

> :put (𝜆xs. appendBc xs ";") "apple" "apple."
Error: ...

Now let us go back to the definition. The fact that the second argument ys is now of a normal
(non-bidirectional) type means that it can be used in the exit conditions and reconciliation functions
(which only involve unidirectional terms). During backward execution, the exit conditions dictate
that the recursion will terminate (the first branch taken) when the view list is the same length as
the original ys. In addition, since ys has a normal type, it will need to be lifted (as a constant) to the
bidirectional world by ! so that the case expression becomes well typed. We again refer interested
readers to Matsuda and Wang (2018b) for lifting in more general forms.
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The mixture of unidirectional and bidirectional programming is a challenge to program synthesis
as the search space has become much larger. Still, the fundamental has not changed: a definition of
get remains a good sketch for HOBiT programs.

3 SYNTHESIS OF HOBIT PROGRAMS USING UNIDIRECTIONAL PROGRAMS AS

SKETCHES

In this section, we describe our technique for synthesizing bidirectional programs in HOBiT.
Throughout the section, we will use the familiar case of append as the running example.

3.1 Overview

Before presenting the technical details, we start with an informal overview of the synthesis process.
Synbit takes in a unidirectional program (written in a subset of Haskell) and a small number of
input/output examples of the required backward behavior, and produces a HOBiT program that
behaves exactly as the input unidirectional program in the forward direction and is guaranteed to
satisfy the round-tripping laws and conform to the given examples in the backward direction.

As an example, in the case of append, we provide the following specification to Synbit.

append :: [Int] → [Int] → [Int]
append = 𝜆xs. 𝜆ys. case xs of {[ ] → ys; (𝑎 : 𝑥) → 𝑎 : append 𝑥 ys}
:put (uncurryB appendB) ( [1, 2, 3], [4, 5]) [6, 2] = ( [6, 2], [ ])

The definition of append above is completely standard. The user-provided input/output example
specifies that the view list may be updated to a smaller length. As we have seen in Section 2, append
needs to be uncurried before bidirectional execution, which is also reflected in the input/output
example abovewhere the source is a pair of lists. One interesting observation is that this bidirectional
execution provides a call context of the function to be synthesized, which speeds up the synthesis
process by narrowing down the choices of appendB’s type.

For the given specification, Synbit produces the following result.

appendB :: B[Int] → B[Int] → B[Int]
appendB = 𝜆xs. 𝜆ys. case xs of {[ ] → ys

with 𝜆𝑣 . case 𝑣 of {𝑥 → True; → False}
by 𝜆𝑠.𝜆𝑣 . case 𝑣 of {𝑥 → [ ]};

(𝑎 : 𝑥) → 𝑎 : append 𝑥 ys
with 𝜆𝑣 . case 𝑣 of {𝑧 : zs → True; → False}
by 𝜆𝑠.𝜆𝑣 . case 𝑣 of {𝑧 : zs → 𝑠}}

As one can see, this program is equivalent to the hand-written definition in Section 2; the only
difference is that the synthesized version does not use library functions such as const and null.3
Roughly speaking, the synthesis process that produces the above result involves two major

components: the generation of a suitable sketch with holes and the filling of the holes. We will
look at the main steps below.

Generation of sketches. The sketch is expected to be largely similar in structure to the uni-
directional definition (thanks to the design of HOBiT), but there are a few details to be ironed
out. First of all, one needs to decide the type of the target function. Recall that HOBiT is a pow-
erful language that supports the mixing of unidirectional and bidirectional programming. Thus,
for a type such as append’s, there are several possibilities such as B[Int] → B[Int] → B[Int],
B[Int] → [Int] → B[Int], [BInt] → B[Int] → B[Int], and so on. It is therefore crucial to narrow
3Obvious cosmetic simplification could be made to part of the code for readability. But that is an orthogonal concern.
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the choices down to control the search space. The call context in the input/output example(s) in
the specification is useful for this step, as it can effectively restrict its type. We will discuss more
details on this in Section 3.3. For now, it is sufficient to know that for the specification given in this
example, the only viable type is appendB :: B[Int] → B[Int] → B[Int].

The next step is to build a sketch based on the unidirectional definition given in the specification.
The typewe have from above straightforwardly implies that the case construct in append’s definition
is to be replaced by the bidirectional case, which expects exit conditions and reconciliation functions
to be added (as holes (□) in the sketch).

𝑎𝑝𝑝𝑒𝑛𝑑𝐵 = 𝜆xs. 𝜆ys. case xs of {[ ] → ys with □ by □;
(𝑎 : 𝑥) → 𝑎 : appendB 𝑥 ys with □ by □}

Both the exit conditions and reconciliation functions are simply unidirectional functions. Thus in
theory, one can try to use a generic synthesizer to generate them. However, this naive method
will miss out on a lot of information that we know about these functions. Recall that, given a case
branch p → e, its corresponding exit condition must return true for all possible evaluations of e;
similarly, the results of its reconciliation function must match p and the second argument of the
reconciliation function must be an evaluation result of e. We therefore capture such knowledge
with specialized sketches, which make use of two types of specialized holes that are parameterized
with additional information: exit-condition hole (□e (e)), and reconciliation-function hole (□r (𝑝, 𝑒)).
This results in the following sketch for this example.

𝑎𝑝𝑝𝑒𝑛𝑑𝐵 = 𝜆xs. 𝜆ys. case xs of {[ ] → ys with □e (ys) by □r ( [ ], ys);
(𝑎 : 𝑥) → 𝑎 : append 𝑥 ys

with □e (𝑎 : append 𝑥 ys)
by □r ((𝑎 : 𝑥), 𝑎 : append 𝑥 ys)}

In the spirit of component-based synthesis (Feng et al. 2017, Jha et al. 2010), we generate code by
composing components from a library that includes case and case expressions, Bool constructors
and operators, as well as list and tuple constructors. As we will explain in Section 3.2, this library
can be augmented with auxiliary components provided by the user.

In this example, the sketch generation is quite deterministic. In general, especially when multiple
functions must be synthesized together and auxiliary components are provided, there could be
multiple candidate sketches. In such a case, we use a lazy approach that nondeterministically tries
exploring one candidate and generating any other.

Sketch completion step I: shape-restricted holes. With the sketch ready, we can proceed
to fill the holes. As a first step in the sketch completion process, we make use of the information
captured by the specialized holes to generate some parts of the code for exit conditions and
reconciliation functions. This step does not involve any search.

appendB = 𝜆xs. 𝜆ys. case xs of {[ ] → ys with 𝜆𝑣. case 𝑣 of {𝑥 → □; → False}
by 𝜆𝑠.𝜆𝑣 . case 𝑣 of {𝑥 → □( [ ])};

(𝑎 : 𝑥) → 𝑎 : append 𝑥 ys
with 𝜆𝑣 . case 𝑣 of {𝑧 : zs → □; → False}
by 𝜆𝑠.𝜆𝑣 . case 𝑣 of {𝑧 : zs → □(𝑎 : 𝑥)}}

The specialized holes are replaced with 𝜆-abstractions with case structures. The result involves
a different type of holes we call shape-restricted holes (□(𝑝)); such holes can only be filled with
expressions that may match the pattern 𝑝 . For example, for □(𝑎 : 𝑥), the empty list is not a valid
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candidate. A generic hole (□) is a special case where the pattern is a wildcard that matches every
term.

For exit conditions, the translation used the information encoded by exit condition holes to figure
out when False should be returned—recall that, for a case branch p → e, exit conditions should
return False for any results that cannot be produced by e. In the case of appendB, this means that
for the second branch in the sketch, the exit condition must return False for any empty list. (Here,
z and zs are fresh variables.) For the first branch, this information does not help us eliminate any
candidates. (Again, x is a fresh variable.) The case construct generation uses all the information
encoded by the exit condition holes. Consequently, the holes left in the sketch are generic ones.

For reconciliation functions, the newly generated shape-restricted holes capture the fact that for
a case branch p → e, the result of the reconciliation function must match 𝑝 . Thus, the first branch
of appendB has □( [ ]) while the second one □(𝑎 : 𝑥). We further know that the second argument
of the reconciliation function must be a result of e, which allows us to generate the case structure
shown in the sketch.

Sketch completion step II: search and filtering. The last step is to fill the remaining shape-
restricted holes. At this point, we leave off using the information in the unidirectional input program,
and turn our attention to the input/output example(s). To fill the holes, we generate 𝛽-normal forms
where functions are 𝜂-expanded, and filter the candidates by checking against the examples(s).
A problem with using the example(s) to filter out incorrect candidates is that it is for the whole
program, which includes several holes. A naive use of the example(s) means that filtering has to be
delayed until late in the synthesis process when all the holes are filled. This is inefficient.
Conversely, our ideal goal is to have a modular filtering process, where we can simultaneously

check candidate exit conditions and reconciliation functions independently of each other. For this
purpose, our solution is to leverage domain-specific knowledge of HOBiT. Specifically, we make
use of the fact that put (𝑠, 𝑣) and get (put (𝑠, 𝑣)) must follow the same execution trace in terms of
taken branches, as explained in the discussion on round-tripping in HOBiT (see the corresponding
paragraph in Section 2). This enables us to fix the control flow of the put behavior for the given
input/output example(s) without referring to exit conditions, so that we can separate the search
for exit conditions from reconciliation functions. We will discuss this in more detail later in the
overview, as well as in Section 3.5.

Moreover, the use of the trace information also enables us to address the issue of non-terminating
put executions. In a naive generate-and-test synthesis approach, some of the generated candidates
may be non-terminating, which poses issues for the testing phase. As we assume that the put
execution must always follow the finite branching trace of get, we never generate such programs.
Here, we assumed that the input/output unidirectional program is terminating for the original and
updated sources of the input/output examples. More details on this will be presented in Section 3.5.2.

Filtering of exit conditions based on branch traces. We continue with the partially filled sketch for
appendB above (reproduced below), with the holes numbered for easy reference.

appendB = 𝜆xs. 𝜆ys. case xs of {[ ] → ys with 𝜆𝑣. case 𝑣 of {𝑥 → □1; → False}
by 𝜆𝑠.𝜆𝑣 . case 𝑣 of {𝑥 → □( [ ])3};

(𝑎 : 𝑥) → 𝑎 : append 𝑥 ys
with 𝜆𝑣 . case 𝑣 of {𝑧 : zs → □2; → False}
by 𝜆𝑠.𝜆𝑣 . case 𝑣 of {𝑧 : zs → □(𝑎 : 𝑥)4}}

What are the constraints on the holes that we can derive from the input/output example below?

:put (uncurryB appendB) ( [1, 2, 3], [4, 5]) [6, 2] = ( [6, 2], [])
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As mentioned above, :put (𝑢𝑛𝑐𝑢𝑟𝑟𝑦𝐵 𝑎𝑝𝑝𝑒𝑛𝑑𝐵) ( [1, 2, 3], [4, 5]) [6, 2] must choose the branches
chosen by :get (uncurryB appendB) ( [6, 2], []). We shall call a history of chosen branches a branch
trace. For :get (uncurryB appendB) ( [6, 2], []), the branch trace is:

(i) the cons branch (where xs is [6, 2]),
(ii) the cons branch (where xs is [2]),
(iii) the nil branch (where xs is []).

We now follow the same trace for :put ((𝑢𝑛𝑐𝑢𝑟𝑟𝑦𝐵 𝑎𝑝𝑝𝑒𝑛𝑑𝐵) ( [1, 2, 3], [4, 5]) [6, 2]) and each step
will give rise to a constraint on the exit condition of the branch.

(i) 𝑎 : append 𝑥 ys (and therefore the 𝑣) has the value of the update view [6, 2], and □2 must
evaluate to True in this context. Therefore, □2 [6/𝑧, [2]/zs, [6, 2]/𝑣] ≡ True.

(ii) 𝑎 : append 𝑥 ys (and therefore the 𝑣) has the value of the update view [2], and □2 must
evaluate to True in this context. Therefore, □2 [2/𝑧, [ ]/zs, [2]/𝑣] ≡ True.

(iii) ys (and therefore the 𝑣) has the value of [ ], and □1 must evaluate to True in this context.
Therefore, □1 [[ ]/𝑥, [ ]/𝑣] ≡ True.

These constraints are useful in generating the exit conditions independently. As a matter of fact, in
the case of appendB both □1 and □2 are simply filled by the expression True which satisfies all the
constraints.
There are no trace constraints generated for holes 3 and 4 though. So they will be generated

according to the shape restrictions only. Hole 3 must be [ ] while Hole 4 can be filled by a non-empty
list. Recall that in this example, the reconciliation functions of the cons branch are never used. And
therefore, arbitrary default terms will fill Hole 4 just fine, which produces the output we saw at the
beginning of this subsection.

Filtering of reconciliation functions based on branch traces. The branch traces are also used to filter
reconciliation functions. (This is not needed in this example as the nil branch was already fixed in
the filling of shape-restricted holes and the cons branch can be arbitrary.) The important insight
here is that reconciliation functions can be filtered independently from the exit conditions, resulting
in significant efficiency gain. The reason is that the branch traces carry all the information that
is needed to test reconciliation functions (recall that the exit conditions are only for determining
branching in backward execution; and since the branching is known in the branch traces there is
no need for exit conditions.). We will see examples of this in Section 3.5.2.

In the rest of this section, we will go through each step of the synthesis process in detail.

3.2 Input to Our Method

Remember from the overview that our technique takes as input some typed unidirectional code and
a set of input/output examples illustrating the backward transformation. Formally, this translates
to the following 4-tuple 𝐼 = (𝑃, Γ, 𝑓1, E):

• 𝑃 = {𝑓𝑖 = 𝑒𝑖 }𝑖 is a program in the unidirectional fragment of HOBiT (a subset of (strict)
Haskell), where 𝑓𝑖 = 𝑒𝑖 stands for a function/value definition of 𝑓𝑖 by the value of 𝑒𝑖 .

• Γ = {𝑓𝑖 : 𝐴𝑖 }𝑖 is a typing environment for 𝑃 ; i.e., each 𝑒𝑖 has type 𝐴𝑖 under Γ.
• 𝑓1 is the entry point function, whose type is expected to have the form 𝜎1 → 𝜏1;4 this is used
to prune the search space as explained in Section 3.3.

• E = {(𝑠𝑘 , 𝑣𝑘 , 𝑠 ′𝑘 )}𝑘 is a (finite) set of well-typed input/output examples for a bidirectional
version of the entry point 𝑓1.

4We use metavariables 𝐴, 𝐵, . . . for types in general and 𝜎, 𝜏, . . . for those that can be sources or views. In Matsuda and
Wang (2018b), the latter kind of types do not contain B and →, but their implementation does not distinguish the two
(which in fact is safe). Thus, we do not strictly respect the restriction on 𝜎-types in our technical development.
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The input program 𝑃 may contain functions that are not reachable from the entry point but
can be used during program generation. We call such functions auxiliary functions and add them
to our library of default synthesis components. As mentioned earlier in Section 3.1, the default
library includes case and case expressions, Bool constructors and operators, as well as list and
tuple constructors.

Example 3.1 (append). For the appendB example, the input is formally expressed as:

𝑃app = {appendB = 𝜆xs. 𝜆ys. case xs of {[ ] → ys; (𝑎 : 𝑥) → 𝑎 : appendB 𝑥 ys, uncurryB = . . . }}
Γapp = {appendB : [Int] → [Int] → [Int], uncurryB : . . . }
𝑓1app = uncurryB appendB

Eapp = {(([1, 2, 3], [4, 5]), [6, 2], ( [6, 2], []))}.
Here, we omit the definition and the type of uncurryB but state it is a part of the input program. □

3.3 Generation of Sketches

As shown in the overview, we start by generating bidirectional sketches from the unidirectional code.
The basic idea of the sketch generation is to replace unidirectional constructs with bidirectional ones
nondeterministically: when case is replaced with case, exit conditions and reconciliation functions
are left as holes. Interestingly, replacing all unidirectional constructs (if they have corresponding bidi-
rectional ones) may not be the best solution; as demonstrated in appendBc :: B[𝑎] → [𝑎] → B[𝑎]
in Section 2, we sometimes need to leave some parts unidirectional to achieve given bidirectional
behavior.
The starting point of sketch generation is deciding the type of the target function. We expect

the unidirectional code to contain an entry point function 𝑓1 : 𝜎1 → 𝜏1 (e.g., uncurry append in the
Example 3.1). This helps us reduce the number of generated type signatures as we know that the
target entry point function to be synthesized must have type B𝜎1 → B𝜏1. Also, we further prune
the search space by eliminating type signatures that do not obey the call context in the input/output
examples.

Type signature generation. We first define the relation 𝐴 { 𝐴′ as: 𝐴′ is the type obtained from 𝐴

by replacing an arbitrary number of sub-components 𝜎 in𝐴 by B𝜎 nondeterministically, as long as 𝜎
does not contain function types. We do not replace 𝜎 containing function types to avoid generating
apparently non-useful types such as B(Int → Int) and B[Int → Int]. Next, we provide the typing
environment generation relation Γ { Γ′, where Γ′ is the typing environment corresponding to the
bidirectional program.

Definition 3.2 (Generation of Typing Environment). For Γ = {𝑓1 : 𝜎1 → 𝜏1} ∪ {𝑓𝑖 : 𝐴𝑖 }𝑖>0, the
typing environment generation relation Γ { Γ′ is defined if Γ′ = {𝑓1 : B𝜎1 → B𝜏1} ∪ {𝑓𝑖 : 𝐴′

𝑖 }𝑖>0,
where 𝐴𝑖 { 𝐴′

𝑖 for each 𝑖 > 0. □

Type-directed sketch generation. Once we have (a candidate) typing environment Γ′, the next step
is to generate corresponding sketches in a type-directed manner. Very briefly, the type system in
HOBiT (Matsuda and Wang 2018b) uses a dual context system (Davies and Pfenning 2001). The
typing relation can be written as Γ;Δ ⊢ 𝑒 : 𝐴, where Γ and Δ respectively are called unidirec-
tional and bidirectional typing environments, and hold variables introduced by unidirectional and
bidirectional contexts respectively.
The sketch generation is done by using a relation Γ′;Δ′;𝐴′ ⊲ Γ ⊢ 𝑒 : 𝐴 { 𝑒 ′, which reads that,

from a term-in-context Γ; ∅ ⊢ 𝑒 : 𝐴, sketch 𝑒 ′ is generated according to the given target typing
environments Γ′ and Δ′, and target type 𝐴′ so that Γ′;Δ′ ⊢ 𝑒 ′ : 𝐴′ holds after the sketch has been
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completed (i.e., no unfilled holes) in a type-preserving way. Notice that Γ′, Δ′ and 𝐴′ are also a part
of the input in Γ′;Δ′;𝐴′ ⊲Γ ⊢ 𝑒 : 𝐴 { 𝑒 ′; i.e., its outcome is only 𝑒 ′. We omit the concrete generation
rules due to the space limitation, and put them in the extended version of this paper (Yamaguchi
et al. 2021).
We note that the rules are overlapping (i.e., several may be applicable at a given step), which

makes sketch generation nondeterministic. The sketch generation is defined formally as below.

Definition 3.3 (Type-Directed Sketch Generation). Suppose that Γ { Γ′. Then, for 𝑃 = {𝑓𝑖 : 𝑒𝑖 }𝑖 ,
the sketch generation relation 𝑃 { 𝑃 ′ is defined if 𝑃 ′ = {𝑓𝑖 : 𝑒 ′𝑖 }𝑖 , where Γ′; ∅; Γ′(𝑓𝑖 ) ⊲ Γ ⊢ 𝑒𝑖 :
Γ(𝑓𝑖 ) { 𝑒 ′𝑖 . □

3.4 Sketch Completion Step I: Shape-Restricted Holes

In general, there will be several possible sketches for a given unidirectional program. As mentioned
in Section 3.1, in such a case, we use a lazy approach that nondeterministically tries exploring one
candidate and generating any other. In this section we describe the sketch exploration process. In
particular, we start by using the information captured by the specialized holes to generate parts of
the code for exit conditions and reconciliation functions.

3.4.1 Handling exit condition holes. Remember that an exit condition matching a hole □e (e) should
return False for any results that cannot be produced by e. Then, our idea here is to generate code that
returns False for values that are obviously not the result of 𝑒 . For example, for □e (𝑎 : append x ys),
we generate code returning False for the empty list.

Let us write P(𝑒) for a pattern that represents an obvious shape of 𝑒 , defined as follows (where
C is a constructor):

P(𝑒) =
{
C P(𝑒1) . . . P(𝑒𝑛) if 𝑒 = C 𝑒1 . . . 𝑒𝑛

𝑥 otherwise (𝑥 : fresh)

For example, we have P(𝑎 : append x ys) = P(𝑎) : P(𝑎𝑝𝑝𝑒𝑛𝑑 𝑥 𝑦𝑠) = 𝑧 : zs, where 𝑧 and zs are
fresh, conforming to the second case above. It is quite apparent that any result of 𝑒 matches with
P(𝑒); in other words, values that do not match with P(𝑒) cannot be a result of 𝑒 . Using P(𝑒), we
concretize exit-condition holes as below.

Definition 3.4 (Partial completion of exit condition holes). Let 𝑝𝑒 be a pattern P(𝑒). Then, the
exit-condition-hole partial completion relation □e (𝑒) { 𝑒 ′, which reads hole □e (𝑒) is filled by 𝑒 ′,
is defined by the rule

□e (𝑒) { 𝜆𝑠. case 𝑠 of {𝑝𝑒 → □; → False} □

Note that the resulting sketch will contain a generic hole □, whose shape is no longer constrained.
For example, □e (𝑎 : append x ys) is converted as follows

□e (𝑎 : append x ys) { 𝜆𝑠. case 𝑠 of {z : zs → □; → False}

3.4.2 Handling reconciliation function holes. Remember that the role of a reconciliation function
associated with a branch is to reconcile the original source with the branch by producing a new
“original source” matching the branch (Section 2). Thus, when the branch has the form 𝑝 → 𝑒 , the
reconciliation function must return a value of the form 𝑝 [𝑣/𝑥] where {𝑥} = fv(𝑝). Hence, a natural
approach is to generate reconciliation functions of the form 𝜆𝑠.𝜆P(𝑒).𝑝 [𝑒/𝑥].

However, only considering expressions of the aforementioned form limits the use of user-specified
auxiliary functions in reconciliation functions. Instead, we generate reconciliation functions of the
form 𝜆𝑠.𝜆P(𝑒).□(𝑝). Recall that the shape-restricted hole □(𝑝) will be filled by expressions shaped
𝑝 . This idea is formally written as below.
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Definition 3.5 (Partial completion of reconciliation function holes). Let 𝑝𝑒 be a pattern P(𝑒). Then,
the partial completion relation for the reconciliation function hole, □r (𝑝, 𝑒) { 𝑒 ′, which reads hole
□r (𝑝, 𝑒) is filled by 𝑒 ′, is defined by the rule

□r (𝑝, 𝑒) { 𝜆𝑠.𝜆𝑣 . case 𝑣 of {𝑝𝑒 → □(𝑝)} □

3.5 Sketch Completion Step II: Search and Filtering

The last step is to fill the remaining shape-restricted and generic holes. This process involves
type-directed generation of candidates and filtering based on user-provided input/output examples.
For simplicity of presentation, we do not explicitly capture the type of the code to be generated in
the shape-restricted holes; instead, we recover it from the sketch and typing environment Γ.

3.5.1 Generating candidates for shape restricted holes. In this section, we describe the process of
filling in shape restricted holes □(𝑝). To achieve this, we generate terms of shape p in 𝛽-normal
forms where functions are 𝜂-expanded. Specifically, we produce expressions 𝑈 𝑝 in the following
grammar, which restricts their shape to p:

𝑈 𝑝 ::= 𝑉 𝑝 | case 𝑥 𝑉1 . . . 𝑉𝑛 of {𝑝𝑖 → 𝑈
𝑝

𝑖
}𝑖

𝑉 𝑝 ::= 𝜆𝑥.𝑈 (𝑝 = 𝑥)
| 𝑥 𝑉1 . . . 𝑉𝑛
| C 𝑉

𝑝1
1 . . . 𝑉

𝑝𝑛
𝑛 (𝑝 = C 𝑝1 . . . 𝑝𝑛 or 𝑝, 𝑝1, . . . , 𝑝𝑛 are all variables)

To simplify the presentation, we omit 𝑝 and write 𝑉 or 𝑈 if 𝑝 is a variable. In this grammar,
the purpose of 𝑈 is to have cases in the outermost positions (but inside 𝜆); a case in a context
𝐾 [case 𝑒 of {𝑝𝑖 → 𝑒𝑖 }𝑖 ] can be hoisted as case 𝑒 of {𝑝𝑖 → 𝐾 [𝑒𝑖 ]}𝑖 , which is a transformation
known as commuting conversion. If 𝑝 is not a variable, we can only generate constructors as
specified by 𝑝 (𝑝 = C 𝑝1 . . . 𝑝𝑛 or (𝑝, 𝑝1, . . . , 𝑝𝑛) are all variables). Otherwise, if 𝑝 is a variable,
the only knowledge we assume about it is its type. Thus, any of the productions for 𝑉 𝑝 would
be considered. Note that 𝑥/𝐶 are drawn from the current context; i.e., they may be components
provided by users.
Types are used for two purposes in this type-directed generation. The rather obvious purpose

is to limit the search space for 𝑥 and C; notice that, since we know their types, we also know the
types of their arguments allowing us to perform type-directed synthesis for them as well. The
other purpose is to reduce redundancy with respect to 𝜂-equivalence by only generating 𝜆𝑥 .𝑈 for
function types and cases only for non-function types. A caveat is the generation of 𝑥 𝑉1 . . . 𝑉𝑛 at
the scrutinee position of case, which cannot be done in a type-directed way as its type is not given
a priori; instead, its type is synthesized by using the type of 𝑥 .

3.5.2 Filtering based on branch traces. As explained in the discussion on round-tripping in HOBiT
(see the corresponding paragraph in Section 2), we leverage the fact that put (𝑠, 𝑣) and get (put (𝑠, 𝑣))
must follow the same execution trace in terms of taken branches. This enables us to fix the control
flow of the put behavior for the given input/output example(s) without referring to exit conditions,
making it possible to separate dependent synthesis tasks.

While the example appendB in Section 3.1 only showed how filtering works for exit conditions,
we provide next one example illustrating filtering based on branch traces for both exit conditions
and reconciliation functions. We conclude with a discussion on pruning away programs that
would otherwise cause non-terminating put executions. See ?? for the formal descriptions of this
trace-based filtering process.
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Example of filtering exit conditions and reconciliation functions based on branch traces. Consider
the following program

𝑓 :: Either Int Int → Bool

𝑓 𝑥 = case 𝑥 of {Left 𝑥 → True; Right 𝑥 → False}
that comes with two input/output examples that negate the view and cause the sources to flip: E =

{(Left 42, False,Right 42), (Right 42, True, Left 42)}. Suppose that from the given unidirectional
code, we obtain the following candidate before any filtering is done.

𝑓 𝑥 = case 𝑥 of {Left 𝑥 → True with 𝜆𝑣.case 𝑣 of {True → □1; False → False}
by 𝜆𝑠.𝜆𝑣 .case 𝑣 of {True → □2};

Right 𝑥 → False with 𝜆𝑣.case 𝑣 of {False → □3; True → False}
by 𝜆𝑠.𝜆𝑣 .case 𝑣 of {False → □4}}

We first discuss filtering of exit conditions. For the first example, :get f (Right 42) takes the
second branch, meaning that we obtain the constraint □3 [False/𝑣] ≡ True. For the second example,
:get f (Left 42) takes the first branch, generating the constraint □1 [True/𝑣] ≡ True. A solution
for these constraints is □1 = True and □3 = True.
Now, let us focus on the reconciliation functions. If we consider the branch trace generated by

the get and evaluate the put for the given examples, we obtain the following constraints:
• For :put f (Left 42) False, we must switch branches to the second branch, meaning that the
reconciliation function corresponding to the second branch gets triggered, generating the
constraint: :put f (□4 [False/𝑣]) False = Right 42.

• For :put f (Right 42) True, we must switch branches to the first branch, meaning that the
reconciliation function corresponding to this branch gets triggered, generating the constraint:
:put f (□2 [True/𝑣]) True = Left 42.

From these constraints, one possible solution is □2 = Left 42 and □3 = Right 42. While this solution
obeys the given example, a better one would be □2 = case 𝑠 of {Left 𝑥 → 𝑠 ;Right 𝑦 → Left 𝑦} and
□3 = case 𝑠 of {Left 𝑥 → Right 𝑥 ;Right 𝑦 → 𝑠}; each 𝑠 in the branch bodies in □2 and □3 can be
arbitrary, as they will never be used. The suboptimal solution could be filtered out by our synthesis
engine if other examples such as :put f (Left 37, False) = Right 37 were provided by the user.

As a note, for both the previous example and the running example appendB in Section 3.1, we only
generate positive constraints (i.e., that evaluate to True) for the holes in exit conditions. However, in
certain cases, negative constraints (i.e., that evaluate to False) may also be generated. This happens
when branch switching implies that the original branch’s exit condition evaluates to False. We
encountered such situations for lengthTail and reverse in Section 4. In such a case, the choice of
reconciliation functions may affect the generated constraints as they specify new sources.

Discussion on pruning non-terminating programs based on branch traces. Using branch traces
also helps us prune away programs that would cause non-terminating put executions. It is known
that synthesis of recursive functions is a challenging problem (Albarghouthi et al. 2013), especially
for programming-by-examples, because a synthesized function may diverge for a given example.
Waiting for a timeout is inefficient and there is no clear way to set an appropriate time limit. In our
approach, assuming that the given get execution is terminating for the input/output examples, we
never generate such diverging candidate programs. The reason is that we only generate programs
whose put execution follows the finite branch trace of the get, and are thus terminating.

3.6 Heuristics

In this section, we discuss some heuristics we found effective when exploring the search space.
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Assigning costs to choices. Our generation is prioritized by assigning a positive cost to each
nondeterministic choice in the sketch generation. Programs with lower costs are generated earlier
than those with higher costs. An advantage of this approach is that it is easy to integrate with
lazy nondeterministic generation methods (Fischer et al. 2011), which is the core of our prototype
implementation. Another advantage is that smaller programs naturally have higher priority (i.e.,
lower costs), as the generation of large programs usually involves many choices, reflecting our
belief that smaller programs are typically preferable.
Canonical forms of Bool-typed expressions. Generation of Bool-typed expressions is a common

task, especially in our context as exit conditions always return Bool values. However, a naive
generation of Bool-typed expressions may lead to redundancies, for example, True && 𝑒 and 𝑒 may
be considered two distinct expressions during the search. So when filling holes of type Bool, we
generate expressions in disjunctive normal form, in which atomic propositions are expressions of
the form 𝑥 𝑉1 . . . 𝑉𝑛 with 𝑥 : 𝐴1 → · · · → 𝐴𝑛 → Bool ∈ Γ. While this eliminates redundancy due
to distributivity, associativity and zero and unit elements, it does not address commutativity and
idempotence. Provided that there is a strict total order ≺ on expressions, both sorts of redundancy
could be addressed easily by generating 𝑒2 after 𝑒1 so that 𝑒1 ≺ 𝑒2 holds. Currently we do not do
this in our implementation in order to avoid the additional overhead of checking 𝑒1 ≺ 𝑒2.
Other effective improvements. In addition to the heuristics mentioned above, we make use of

some simple but effective techniques. For example, for case with a single branch, we do not try to
synthesize exit conditions or reconciliation functions. An exit condition 𝜆 .True and a reconciliation
function 𝜆𝑠.𝜆𝑣 .𝑠 suffice for such a branch. We do not generate redundant case expressions such
as 𝜆𝑠.𝜆𝑣 .case 𝑣 of{𝑧 → · · · }. When the pattern 𝑝 of a branch does not contain any variables, we
deterministically choose 𝜆 .𝜆 .𝑝 as its reconciliation function. For a case whose patterns {P(𝑒𝑖 )}𝑖
do not overlap, we do not leave holes in exit conditions as replacing them with True is sufficient.

3.7 Soundness and Incompleteness

Our proposed method is sound for the given input/output examples in the sense that it synthesizes a
bidirectional transformation such that its put behavior is consistent with the input/output examples,
and its get behavior coincides with the given get program for the sources that appear in the examples.
This is obvious because we check the conditions in the last step (i.e., filtering) in our synthesis. It is
worth noting that the get behavior of a synthesized function may be less defined than a given get
program, because our method may synthesize exit conditions that are not postconditions; recall
that they are checked dynamically in HOBiT (Section 2). We heuristically try to avoid this by
prioritizing True over False in the synthesis of exit conditions, which works effectively for all the
cases discussed in Section 4 but is not a guarantee, especially with components. We could address
this by inferring postconditions and using them as exit conditions, which is left for future work.

In contrast, our proposed method is incomplete. This is due to the use of the sketches obtained
from the unidirectional code to prune the search space. While this makes our approach efficient,
it may remove potential solutions. Such situations are captured by the examples lines and lookup,
where the solutions do not follow the sketches, in the experimental evaluation in Section 4.1.

4 EXPERIMENTS

We implemented the proposed idea as a proof-of-concept system, Synbit, in Haskell5. Synbit is
given as an extension to the original HOBiT implementation (Matsuda and Wang 2018b).—-z———
———

5The implementation is available in the artifact https://doi.org/10.5281/zenodo.5494504 or in https://github.com/masaomi-
yamaguchi/synbit
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We measure the effectiveness of our proposed method in the following three experiments.

• Microbenchmarks, classified in terms of information loss (Section 4.1).
• More realistic problems including XML transformations and string parsing (Section 4.2).
• Comparisons with the other state-of-the-art synthesis methods (Section 4.3).

The experiments were conducted on a Windows Subsystem for Linux (WSL) 2 running on a
laptop PC with 2.30 GHz Intel(R) Core(TM) i7-4712HQ CPU and 16 GB memory, 13 GB out of
which were assigned to WSL 2. The host OS was Windows 10 (build NO. 19042.685), and the guest
OS was Ubuntu 20.04.1 LTS. We used GHC 8.6.5 to compile Synbit with the optimization flag
-O2. Execution times were measured by Criterion6, a popular library in Haskell for benchmarking,
which estimates the true execution time by the least-squares method. Any case running longer
than 10 minutes was reported as a timeout.

4.1 Microbenchmarks Classified by Information-Loss

To construct the microbenchmarks, we classify programming problems according to the level of
difficulty. Recall that the main challenge of BX is to incorporate the information that is in the source
but absent in the view in order to create an updated source. For structure rich data represented by
algebraic datatypes, this includes the structure of the source data, especially the part that the get
function recurs on. With that, we arrive at the following classes.

Class 1 All information of the recursion structure is present in the view (e.g., map).
Class 2 Some information of the recursion structure is present in the view (e.g., append).
Class 3 No information of the recursion structure is present in the view (e.g., lookup).

The rule of thumb is that the more information is present in the view, the easier is it to define a put
that handles structural changes to the view. Take map as an example, the function is bijective in
terms of the list structure. As a result, a put function can share the recursion structure of the get,
mapping whatever structural changes from the view back to the source. This becomes harder with
the loss of structure information in the view. Take append as an example. The boundary between
the first source list, which get recurs on, and the second source list is gone in the view. As a result,
if a put function is to share the recursive structure of the get, the backward execution will always
try to replenish the first source list first before leaving the remaining view elements as the second
source list7. This is what appendB does. Any divergence from this behavior will require a different
recursive structure for put, which drastically increases the search space as it loses the guidance of
the get-based sketch.
We thus expect that the performance of Synbit varies according to the difficulty classes. For

Class-1 problems, synthesis is likely to be successful for any given input/output examples (thus
handling any structural changes); for Class-2 problems, synthesis is likely to be successful for some
given input/output examples; and for Class-3 problems, synthesis is only possible for input/output
examples that are free from structural changes.

The benchmark programs and the synthesis results are summarized in Table 1, which should be
read together with Table 2 where the input/output examples used for the experiments are shown
(which can also be used as a reference for the forward execution behaviors of the input functions).
Also, we used the following auxiliary functions: equality over natural numbers for lengthTail,
reverse and appendBc, and length in addition for the latter two. The definitions of all the functions

6https://hackage.haskell.org/package/criterion
7unless we know that the second list is fixed as in appendBc

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 105. Publication date: October 2021.

https://hackage.haskell.org/package/criterion


105:18 Masaomi Yamaguchi, Kazutaka Matsuda, Cristina David, and Meng Wang

Table 1. The results of experiments for categorized examples

Problem Recursion on Class Result Time (s)
double Nat 1 Yes 0.050
uncurryReplicate Nat 1 Yes 0.050
mapNot List 1 Yes 0.052
mapReplicate Nat and List 1 Yes 0.13
snoc List 1 Yes 0.15
length List 1 Yes 0.040
lengthTail List (tail recursive) 1 Yes 0.22
reverse List (tail recursive) 1 Yes 1.3
mapFst List 1 Yes 0.016
add Nat 2 Yes 0.045
append List 2 Yes 0.034
appendBc List 2 Yes 5.6
professor List 2 Yes 0.023
lines List 2 Timeout -
lookup List 3 Timeout -

listed and the full synthesis results can be found in the artifact 8 or the repository9 together with
the implementation.

Class 1. As we can see, Synbit handles programs in this class with ease. An interesting case is
reverse. On the conceptual level, the function is embarrassingly bijective and should be straight-
forward to invert. However, in practice the story is much more complicated, especially for the
linear-time accumulative list reversal (the naive non-accumulative implementation has quadratic
complexity in a functional language). It is well known in the program inversion literature (Mat-
suda et al. 2012, Nishida and Vidal 2011) that tail recursive functions (which are often needed for
accumulation) are challenging to handle due to overlapping branch bodies. The reverse definition
we use in the benchmark includes a small fix: it takes an additional parameter that represents the
length of the list in the accumulation parameter. It is sufficient to guarantee the success of Synbit.

Class 2. As we can see, Synbit also performs well for this class. But as explained above, the
success is conditional on the input/output examples that the put is required to satisfy. Take append
as an example, if the following example is included, which demands the second list being filled
before the original first list is fully reconstructed, the synthesis will fail, as a solution must have a
different recursion structure from that of the sketch.

Original Source (Original View) Updated View Updated Source
( [1, 2, 3, 4], [5]) [1, 2, 3, 4, 5] [6, 2] ( [6], [2])

An interesting case is lines, which splits a string by ’\n’ to produce a list of strings. The synthesis
becomes a lot harder when the examples (as seen in Table 2) require the preservation of the existence
of the newline in the last position. This combined with structural changes to the view list cannot
be captured by the recursion structure of the sketch, which explains the failure.

Class 3. Functions such as lookup completely lose the source structures. Consequently, Synbit
will not be able to handle any example of structural changes. In the case of lookup, a structural
change means that the view value is changed to another value associated to a different key in the
source (as seen in Table 2). Just for demonstration, if only non-structural changes are considered,
8https://doi.org/10.5281/zenodo.5494504
9https://github.com/masaomi-yamaguchi/synbit
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Table 2. Input/output examples: for readability, we shall write 𝑛 for S
𝑛
Z (integer constants are also used in

snoc, reverse, mapFst and append), and st𝑛/pr𝑛/pr
′
𝑛 for Student "st𝑛"/Professor "pr𝑛"/Professor "pr𝑛’".

Program Original Source (Original View) Updated View Updated Source

double
1 2 6 3
5 10 4 2

uncurryReplicate
(’a’, 2) "aa" "bbb", (’b’, 3)
(True, 3) [True, True, True] [False,False] (False, 2)

mapNot [True, False] [False, True] [True, True, False] [False, False, True]

mapReplicate
[ (’b’, 2) ] ["bb"] ["aaa", "b", "cc"] [ (’a’, 3), (’b’, 1), (’c’, 2) ]
[ (’a’, 3), (’b’, 1), (’c’, 2) ] ["aaa", "b", "cc"] ["bb"] [ (’b’, 2) ]

snoc
( [1, 2, 3], 4) [1, 2, 3, 4] [1, 2, 3] ( [1, 2], 3)
( [1, 2, 3], 4) [1, 2, 3, 4] [1, 2, 3, 4, 5, 6] ( [1, 2, 3, 4, 5], 6)

length/lengthTail [1, 2] 2 4 [1, 2, 0, 0]
[2, 0] 2 1 [2]

reverse
[True, True] [True, True] [False, True, True] [True, True, False]
[1, 2, 3, 4] [4, 3, 2, 1] [6, 5] [5, 6]

mapFst
[ (1, ’a’), (2, ’b’), (3, ’c’) ] [1, 2, 3] [1, 3] [ (1, ’a’), (3, ’b’) ]
[ (2, ’b’), (3, ’c’) ] [2, 3] [0, 1, 2, 3] [ (0, ’b’), (1, ’c’),

(2, ’a’), (3, ’a’) ]

add
(2, 3) 5 7 (2, 5)
(2, 3) 5 1 (1, 0)

append
( [1, 2, 3, 4], [5]) [1, 2, 3, 4, 5] [6, 2] ( [6, 2], [])
( [1, 2, 3, 4], [5]) [1, 2, 3, 4, 5] [1, 2, 3, 4, 5, 6] ( [1, 2, 3, 4], [5, 6])

appendBc
"apple" "apple;;" "pineapple;;" "pineapple"
"apple" "apple;;" "plum;;" "plum"

professor
[st1, st2, pr1, st3, pr2 ] [pr1, pr2 ] [pr′1, pr′2, pr′3 ] [st1, st2, pr′1, st3, pr′2, pr′3 ]
[st1, st2, pr1, st3, pr2 ] [pr1, pr2 ] [pr′1 ] [st1, st2, pr′1, st3 ]

lines
"aa\nbb\ncc" [”aa”, ”bb”, ”cc”] ["aa", "bb"] "aa\nbb"
"aa" [”aa”] ["aa", "bb"] "aa\nbb"
"aa\n" [”aa”] ["aa", "bb"] "aa\nbb\n"

lookup
( [ (1, 10), (2, 200), (3, 33) ], 2) 200 10 ( [ (1, 10), (2, 200), (3, 33) ], 1)
( [ (1, 10), (2, 200), (3, 33) ], 2) 200 33 ( [ (1, 10), (2, 200), (3, 33) ], 3)

as in the following example where the changed view does not switch to a different key, Synbit will
be able to successfully generate a program.
Original Source (Original View) Updated View Updated Source
( [(1, 10), (2, 200), (3, 33)], 2) 200 10 ( [(1, 10), (2, 10), (3, 33)], 2)

However, this is not interesting as the strength of HOBiT lies in its ability to handle structural
changes through branch switching.

4.2 Larger and More Involved Example

Next, we evaluate Synbit on some larger examples, which are closer to realistic use cases. In
particular, we look at two types of transformations: XML queries and string parsing.

4.2.1 XML Transformations. We examined six queries from XML Query Use Cases10 (“TREE” Use
Case). Table 3 provides brief explanations for these queries and Figure 1 shows the skeleton of
the XML document used as the original source for them. Such XML documents are represented in
HOBiT by a rose-tree datatype. We ignored Document Type Definitions for simplicity—we could
handle such constraints by fusing a partial identity function checking them to a get function. We
also provided the constant “title” as an auxiliary component to our synthesis engine.
10https://www.w3.org/TR/xquery-use-cases
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<book><title>Data on the Web</title>
<author>Serge Abiteboul</author><author>Peter Buneman</author><author>Dan Suciu</author>
<section id="intro" difficulty="easy">
<title>Introduction</title><p>. . . </p>
<section><title>Audience</title><p>. . . </p></section>
<section>
<title>Web Data and the Two Cultures</title>
<p>. . . </p>
<figure height="400" width="400">
<title>Traditional client/server architecture</title><image source="csarch.gif"/>
</figure>
<p>. . . </p>
</section>
</section>
<section id="syntax" difficulty="medium">. . . </section>
</book>

Fig. 1. An XML document used as an original source for Queries Q1 to Q6.

Table 3. Explanations of the examined XML queries: the descriptions are quoted from XML Query Use Case,

where “Book1” refers the source XML.

Problem Description (quoted)
Q1 “Prepare a (nested) table of contents for Book1, listing all the sections and their titles. Preserve

the original attributes of each <section> element, if any.”
Q2 “Prepare a (flat) figure list for Book1, listing all the figures and their titles. Preserve the original

attributes of each <figure> element, if any.”
Q3 “How many sections are in Book1, and how many figures?”
Q4 “How many top-level sections are in Book1?”
Q5 “Make a flat list of the section elements in Book1. In place of its original attributes, each section

element should have two attributes, containing the title of the section and the number of figures
immediately contained in the section.”

Q6 “Make a nested list of the section elements in Book1, preserving their original attributes and
hierarchy. Inside each section element, include the title of the section and an element that
includes the number of figures immediately contained in the section.”

Table 4 contains the results of this experiment. Column “Updates” indicates the updates of the
source query triggered by the given input/output examples, whereas columns “LOCin” and “LOCsyn”
denote the number of lines of code in the original and the synthesized query, respectively. The
results show that Synbit can synthesize fairly large HOBiT programs. In particular, the number
of AST nodes synthesised ranges from 73 (for Q4) to 471 (for Q5), corresponding to 17 lines of
code for Q4 and 80 for Q5. (The programs are too large to be displayed in this document. We refer
interested readers to our extended report (Yamaguchi et al. 2021) for a full XML example.) The
reason Q6 takes significantly more time than the rest is that it assumes that each section has a title
element. Consequently, when handling insertion of sections, the generated reconciliation function
needs to construct a section with a title.

4.2.2 Lexer and Parser. We also examined a simple recursive decent (specifically, LL(1)) lexer and
parser. The lexer takes in strings (i.e., {(, ), S, Z, +}∗) and returns a sequence of tokens represented
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Table 4. The results of experiments for XML examples.

Problem LOCin ASTin Updates in I/O examples Time (s) LOCsyn ASTsyn

Q1 11 136
Add attribute(s)

0.35 42 319Remove section(s)
Change title(s) and attribute value(s)

Q2 23 199

Remove figure(s)

0.97 69 406Change title(s)
Change attribute value(s)
Add Attribute

Q3 20 191
Decrease figure count

0.43 63 339Increase section count
Decrease section count

Q4 9 97 Increase section count 0.14 26 170Decrease section count

Q5 35 342

Decrease figure count

1.2 115 813Increase figure count
Remove section(s)
Change title(s)

Q6 31 236

Increase figure count(s)

10 90 530Decrease figure count(s)
Add section(s) with title and figure count
Change title(s)

Table 5. Experimental results for the lexer and parser.

LOCin ASTin Updates Time (s) LOCsyn ASTsyn

Lexer 15 88 Change on natural numbers
remove/insert tokens 0.094 69 265

Parser 10 45 Replacement of whole AST and back 0.55 29 121

by the following datatype.

data Token = TNum Nat | LPar | RPar | Plus

Note that natural numbers such as S(S(Z)) are processed in this step. Then, the parser takes in
the output of the lexer, i.e., a sequence of the tokens above, and returns an abstract syntax tree,
according to the following grammar.

𝑠 ::= 𝑛 | (𝑠)+(𝑠)

The lexer and parser considered here are injective, which is uncommon in practice. Typically, a
lexer loses information about white spaces (layouting) and comments, and a parser may remove
syntactic sugars and redundant parentheses11. Sometimes, though, such lost information is attached
to the abstract syntax trees, making the parsing process injective (de Jonge and Visser 2011, Kort
and Lämmel 2003, Pombrio and Krishnamurthi 2014).
Table 5 summarizes the experimental results. In Figure 2, we provide the parser generated by

Synbit as it is the more intricate of the two. Notice that the LPAR case in go requires quite an
involved reconciliation function.
11A notable exception is the parser for GHC/Haskell, which keeps syntactic sugars and parentheses for better error
messaging.
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pExp :: B[Token] → BExp
pExp ts = let (𝑒, [ ]) = go ts in 𝑒

go :: B[Token] → B(Exp, [Token])
go ts = case ts of
TNum 𝑛 : 𝑟 → (ENum 𝑛 , 𝑟 )

with 𝜆𝑣. case 𝑣 of {(ENum , ) → True; → False}
by 𝜆𝑠.𝜆𝑣. case 𝑣 of {(ENum 𝑎, ) → TNum 𝑎 : 𝑠 }

LPAR : 𝑟1 → let (𝑒1,RPar : Plus : LPar : 𝑟2) = go r1 in
let (𝑒2,RPar : Plus : LPar : 𝑟3) = go r2 in

(EAdd 𝑒1 𝑒2 , 𝑟3)
with 𝜆𝑣. case 𝑣 of {(EAdd , ) → True; → False}
by 𝜆𝑠.𝜆𝑣. case 𝑣 of {(EAdd , ) → LPar : TNum Z : RPar : Plus : LPar : TNum Z : RPar : 𝑠 }

Fig. 2. Synthesized Bidirectional Parser

Table 6. Results of comparative experiments with Smyth: “No” means that Smyth reported failure in 10 min.

Problem Class Synbit Smyth
double 1 Yes Yes
uncurryReplicate 1 Yes Yes
mapNot 1 Yes Yes
mapReplicate 1 Yes Yes
snoc 1 Yes No
length 1 Yes Yes
lengthTail 1 Yes Yes
reverse 1 Yes No

Problem Class Synbit Smyth
mapFst 1 Yes No
add 2 Yes No
append 2 Yes No
appendBc 2 Yes No
professor 2 Yes No
lines 2 Timeout Timeout
lookup 3 Timeout Yes

4.3 Comparison with Smyth

A fair comparison with other synthesis systems is not always easy due to the different set-ups. For
example, we cannot compare directly with Optician (Maina et al. 2018, Miltner et al. 2018, 2019), the
state of the art lens synthesizer, as its inputs and outputs are too different from ours (see Section 5
for a non-experimental comparison).
Instead, we pick Smyth (Lubin et al. 2020), a state-of-the-art synthesis tool that synthesizes

unidirectional programs from sketches and input/output examples—a set-up that is similar to ours.
We provide to Smyth hand-written sketches of put in the form of “base case sketches” (Lubin et al.
2020), which are incomplete programs for which the step case branches are left as holes while
the base case branches are pre-filled, and the same input/output examples as the experiments in
Table 2. We omit the round-tripping requirement for Smyth and only check whether the tool is
able to produce put functions that satisfy the input/output examples.

Table 6 shows the results of the comparison (withmore details in the artifact 12 or the repository13).
Synbit successfully synthesized 13 out of 15 cases, whereas Smyth succeeded only in 7 cases. We
believe that the main reason for the difference is the required put functions tend to be quite complex,
usually more so than their corresponding get. It is worth noting that Smyth succeeded for lookup,
where Synbit failed. For this particular case, a put program that conforms to the input/output
example is represented by the key-value-flipped version of get, which was ruled out in Synbit by a
sketch.

12https://doi.org/10.5281/zenodo.5494504
13https://github.com/masaomi-yamaguchi/synbit
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5 RELATEDWORK

Optician. Optician (Maina et al. 2018, Miltner et al. 2018, 2019) is the state-of-the-art framework
for synthesizing lenses (Bohannon et al. 2008, Foster et al. 2007, 2008, Hofmann et al. 2011). Both
their framework and ours implicitly guarantee the round-tripping properties by using bidirectional
programming languages (lenses/HOBiT) as targets. However, a direct comparison of performance
is difficult due to the very different set-ups. Their target lenses are specialized for string transfor-
mations, while HOBiT considers general datatypes. And correspondingly, the core of their input
specification is regular expressions describing data formats, while that of ours is standard functional
programs serving as sketches. Due to such differences in set-ups, even though we could translate a
specification for Optician (regular expressions and input/output examples) to one for Synbit (a
get program and input/output examples), such a translation would involve many arbitrary choices
(especially the choice of a get for Synbit) that affect synthesis, effectively ruling out a meaningful
comparison (see Appendix A.1 for an illustrative example on the difficulty).
Despite the very different approaches, it is interesting to observe a common design principle

shared by both: to leverage the strengths of the underlying bidirectional languages. Optician’s
regular-expression-based specification matches perfectly with the simplicity of the lens languages
and their close connection to advanced types, while Synbit takes full advantage of HOBiT’s
alignment to conventional functional programming. On a more technical note, Optician (Miltner
et al. 2019) is able to prioritize generated programs by quantitative information flow. It is not clear
how this may be used in Synbit as the computation of the quantitative information flow will be
difficult for a language with arbitrary recursion.

Other synthesis efforts for bidirectional programming. In a vision paper, Voigtländer (2012) suggests
some directions of synthesizing bidirectional programs from get programs by leveraging the
round-tripping properties. Specifically, he suggests using the round-tripping properties to generate
input/output examples for synthesis. Using Acceptability, if one can generate 𝑠 in some ways
(assuming the totality of get), then examples of backward behavior may arise from put (𝑠, get 𝑠) = 𝑠 .
But a naive application of this without considering Consistency may result in incorrect put
behavior such as put (𝑠, 𝑣) = 𝑠 . To remedy the situation, Voigtländer suggests restricting put to
use the second argument 𝑣 ; i.e., the argument must be relevant in the sense of relevant typing.
Voigtländer also suggests using Consistency to restrict the form of put to satisfy put (𝑠, 𝑣) ∈
get−1 (𝑣), which is indeed effective for simple gets such as get = head (in this case the right-hand
side must have the form of 𝑣 : ). However, synthesis in this direction does not guarantee correctness
with respect to round-tripping, and an additional verification process will then be needed.

The PINS framework (Srivastava et al. 2011) applies path-based synthesis to program inversion, a
program transformation that derives the inverse of an (injective) program. The path-based synthesis
was able to derive inverses for involved programs such as LZ77 and LZW compression which the
other existing inversion methods at the present time cannot handle. However, since it focuses only
on a finite number of paths, the system does not guarantee correctness: the resulting programs
may not always be inverses. PINS also uses sketches and component functions given by users.

Program inversion. Program inversion is a technique related to bidirectional programming; but
there are important differences. In program inversion, input programs are expected to be injective
and thus serve as complete specifications, which is not the case in bidirectional programming.
As a result, in Synbit input/output examples are used to further specify the required backward
behavior. Despite the differences, program inversion and bidirectional programming do share some
common techniques. For example, using postconditions (as exit conditions in HOBiT) to determine
control flows (especially branches) in inverses is a very common approach in the literature (Glück
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and Kawabe 2005, Gries 1981, Korf 1981, Lutz 1986, Matsuda et al. 2010, Yokoyama et al. 2008,
2011). A more interesting connection is the concept of partial inversion (Nishida et al. 2005), which
uses binding-time analysis before inversion so that the inverses can use static data as inputs as
well. Types in HOBiT can be seen as binding time where non-B-types are seen as static, and
our type-directed sketch generation (Section 3.3), with the lazy nondeterministic generation, can
be viewed as a type-based binding-time analysis (Gomard and Jones 1991). The idea of partial
inversion is further extended so that the return values of inverses are treated as “static inputs”
as well (Almendros-Jiménez and Vidal 2006), and the pin operator (Matsuda and Wang 2020) is
proposed to capture such a behavior in an invertible language. However, the utility of the operator
in bidirectional programming rather than invertible programming is still under exploration, and
thus our current synthesis method does not include it.

Bidirectionalization. Bidirectionalization is a program transformation that derives a bidirectional
transformation from a unidirectional transformation. In a sense, this can be seen as a simple type of
synthesis. Matsuda et al. (2007), based on the constant-complement view updating (Bancilhon and
Spyratos 1981), analyze injectivity (information-loss) of a program and then derive a complement
by gathering lost information to obtain a bidirectional version. This method requires a strong
restriction on input programs for effective analysis: they must be affine (no variables can be used
more than once) and treeless (Wadler 1990) (only variables can be arguments of functions) so that
the injectivity analysis becomes exact. Voigtländer (2009) makes use of parametricity (Reynolds 1983,
Wadler 1989) to interpret polymorphic functions as bidirectional transformations. The technique
is restricted to polymorphic functions. And probably more importantly, it can only handle non-
structural updates—the equivalent of HOBiT without the ability of branch switching. Several
extensions of the idea have been proposed (Matsuda and Wang 2015a, 2018a, Voigtländer et al.
2013). But in general, bidirectionalization is far less expressive than the state-of-the-art synthesis
frameworks such as Optician/lenses and Synbit/HOBiT.

General program synthesis. A popular direction in program synthesis that inspired our work
is program sketching, where programmers express their insights about a program by writing
sketches, i.e., partial programs encoding the structure of a solution while leaving its low-level
details unspecified in the form of holes (Solar-Lezama 2009). As opposed to our technique, Solar-
Lezama (2009) can only be applied to integer benchmarks and does not support other data types
such as lists or trees. Also, it mostly focuses on properties, rather than examples, by relying on
Counterexample Guided Inductive Synthesis (CEGIS) (Solar-Lezama et al. 2008), where a candidate
solution is iteratively refined based on counterexamples provided by a verification technique. There
is actually a large body of works based on the CEGIS architecture (Abate et al. 2018, Jha et al.
2010, Kneuss et al. 2013). Usually, such approaches expect formal specifications describing the
behavior of the target program, which are often unavailable, difficult to write, or expensive to
check against using automated verification techniques. Conversely, our specification consists of
the unidirectional program and input/output examples, which we believe is intuitive and easy to
use, without requiring prior understanding of logic.

The original work on program sketching has inspired a multitude of follow-up directions. Some
of the most related to our work are Feser et al. (2015), Katayama (2005), Lubin et al. (2020), Osera and
Zdancewic (2015), which, similarly to our technique, are type-directed and guided by input/output
examples. As opposed to these approaches, we exploit information about the unidirectional program
in order to prune the search space for the bidirectional correspondent. As shown in our experimental
evaluation, simply applying synthesis techniques designed for unidirectional code is not effective.

Another direction that inspired us is that of component-based synthesis (Feng et al. 2017, Jha et al.
2010), where the target program is generated by composing components from a library. Similarly
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to these approaches, we use a given library of components as the building blocks of our program
generation approach.

Equivalence reduction. Program synthesis techniques make use of equivalence reduction in order
to reduce the number of equivalent programs that get explored. For example, Albarghouthi et al.
(2013) prune the search space using observational equivalence with respect to a set of input/output
examples, i.e., two programs are considered to be in the same equivalence class if, for all given
inputs in the set of input/output examples, they produce the same outputs. Alternatively, Smith
and Albarghouthi (2019) generate only programs in a specific normal form, where term rewriting
is used to transform a program into its normal form. In (Koukoutos et al. 2016), Koukoutos et al.
make use of attribute grammars to only produce certain types of expressions in their normal form,
thus skipping other expressions that are syntactically different, yet semantically equivalent. In our
work, we found that the lightweight heuristics described in Section 3.6 worked well. However, we
do plan on exploring some of the equivalence reduction techniques discussed here as future work.

6 CONCLUSION

We proposed a synthesis method for bidirectional transformations, whose novelty lies in the use
of get programs as sketches. We described the idea in detail and implemented it in a prototype
system Synbit, where lazy nondeterministic generation has played an important role. Through the
experiments, we demonstrated the effectiveness of the proposed method and clarified its limitations.

A future direction is to make use of program analysis and verification techniques in the synthesis
of exit conditions. This would enable us to guarantee stronger soundness as discussed in Section 3.7.
Another future direction is to extend the target language (HOBiT) based on our experience in order
to synthesize more bidirectional transformations.
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A APPENDIX

A.1 More Discussion on the Difficulty of Side-by-Side Comparison with Optician

Due to the very different set-ups, a side-by-side comparison of Synbit and Optician is problematic.
The arbitrary choices required to bridge the gap make a fair comparison out of reach. We illustrate
this problem with an example (extr-fname.boom in Fig. 3) taken from the artifact associated with
the Optician papers (Miltner et al. 2018, 2019).

The specification describes the task of separating a path into a file and a directory path. As one can
see, most of the code is devoted to specifying the input and output formats (NONEMPTYDIRECTORY
and FILEANDFOLDER). The input/output examples are specified by the using clause: createrex
provides an example of how a source is related to a view. Note that this specification targets the
synthesis of bijective transformations; so the backward behavior does not require the original
source.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 105. Publication date: October 2021.



105:26 Masaomi Yamaguchi, Kazutaka Matsuda, Cristina David, and Meng Wang

let LOWERCASE : regexp = "a" | "b" | . . . (* omitted *) · · · | "z"
let UPPERCASE : regexp = "A" | "B" | . . . (* omitted *) · · · | "Z"
let LOCALFOLDER : regexp =

(LOWERCASE | UPPERCASE | "_" | "." | "-")
. (LOWERCASE | UPPERCASE | "_" | "." | "-")∗

let DIRECTORY : regexp = ("/" | "") . (LOCALFOLDER . "/")∗
let NONEMPTYDIRECTORY : regexp =

("/" | "") . LOCALFOLDER . ("/" . LOCALFOLDER)∗
let FILEANDFOLDER : regexp =

"file: " . LOCALFOLDER . "\nfolder: " . DIRECTORY
let extract_file : (lens in NONEMPTYDIRECTORY ⇔ FILEANDFOLDER) =

synth NONEMPTYDIRECTORY ⇔ FILEANDFOLDER
using {

createrex("/Users/amiltner/lens/tests/flashfill/extract-filename.txt",
"file: extract-filename.txt\nfolder: /Users/amiltner/lens/tests/flashfill/"),

createrex("tests/flashfill/extract-filename.txt",
"file: extract-filename.txt\nfolder: tests/flashfill/")

}

Fig. 3. extr-fname.boom for bijective-lens synthesis (excerpt)

Let us consider how we can encode this specification to be used by Synbit. As a first step, we
need to decide the types for inputs and outputs. One candidate is using strings (lists of characters
in HOBiT). In such a case, it is natural to divide the task into three subtasks: (1) parsing (of type
String → 𝑆), (2) core transformation (of type 𝑆 → 𝑇 ), and (3) printing (of type 𝑇 → String),
such that the interesting computation is done in the middle. For the comparison to Optician, it
makes sense to only consider the core transformation; parsing and printing are coupled with lens
combinators used in Optician and are not synthesized separately from the core transformation.
We then need to decide the domain (𝑆) and range (𝑇 ) of the core transformation. One option is

to use 𝑆 = (NonEmpty String,Bool) and 𝑇 = (String,Bool, [String]), where:
type NonEmpty 𝑎 = (𝑎, [𝑎]) -- head-biased non-empty lists

Another option is to use datatypes that mirror the structure of regular expressions, such as:

data LC = LA | LB | · · · | LZ
data UC = UA | UB | · · · | UZ
data C = Lower LC | Upper UC | UnderScore | Dot | Hyphen
type LocalFolder = (C, [C])
type Directory = (Bool, [LocalFolder])
type NonEmptyDirectory = (Bool, LocalFolder, [LocalFolder])
type FileAndFolder = (LocalFolder,Directory)

In this particular case, the choice between the two does not affect the core transformation part
much; in both cases, it essentially performs a transformation from head-biased nonempty lists to
last-biased ones, with some arrangement of products. So, one can think that the essential part of
this transformation is a function of type headBiased2LastBiased :: (𝐴, [𝐴]) → ([𝐴], 𝐴) for some
concrete type 𝐴. Note that abstracting the concrete type 𝐴 by a type variable 𝑎 here gives us the
information that the components of the lists are not touched by the transformation.

The above set-up may sound reasonable but actually omits important internal details. Optician
internally tries to expand 𝑎∗ into either 𝑎𝑎∗|𝜀 or 𝑎∗𝑎 |𝜀 nondeterministically (Miltner et al. 2019),
which eventually transforms 𝑎𝑎∗ (head-biased non-empty lists) into 𝑎(𝑎∗𝑎 |𝜀) = 𝑎𝑎∗𝑎 |𝑎 (one-step
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expansions of last-biased nonempty lists). The core transformation involves no structural trans-
formations after this expansion. However, this expansion of Kleene star conflicts with Synbit
where the input and output types have to be fixed beforehand. Optician dynamically searches for a
suitable-for-synthesis regular expression among equivalent ones mainly by converting them to
“sum-of-product” forms and then by applying the expansion above (Miltner et al. 2019).

Trying to give a concrete definition of the transformation is even more problematic, with
semantically equivalent definitions having very different effects on synthesis. For example, if we
define headBiased2LastBiased :: (𝐴, [𝐴]) → ([𝐴], 𝐴) as the following:

headBiased2LastBiased (𝑎, as) = initlast 𝑎 as
initlast 𝑎 [ ] = ( [ ], 𝑎)
initlast 𝑎 (𝑏 : bs) = let (𝑖, 𝑙) = initlast 𝑏 bs in (𝑎 : 𝑖, 𝑙)

Synbit has no problem in synthesizing a bidirectional version of it. On the other hand, the following
equivalent definition does not work well.

headBiased2LastBiased (𝑎, as) = (init 𝑎 as, last 𝑎 as)
init 𝑎 [ ] = [ ]
init 𝑎 (𝑏 : bs) = 𝑎 : init 𝑏 bs
last 𝑎 [ ] = 𝑎

last 𝑎 (𝑏 : bs) = last 𝑏 bs

The reason for this is that the bijective transformation is separated into non-injective components
init and last. Non-injectivity is usually not a problem as Synbit is designed to handle them with 𝑝𝑢𝑡 .
But in this case, the information that the non-injective functions are combined to form a bijection is
lost in the separation, which restricts the updates that the backward function may handle. Synbit
will (correctly) insists that the input data discarded by init/last cannot be changed in the backward
execution (otherwise, the round-tripping properties will be (locally) violated), which in this case
results in a useless bidirectional program that rejects all changes (and of course the synthesis fails
at this point as the input/output examples cannot be satisfied).
In a similar manner, the opposite direction of encoding Synbit examples in Optician is also

problematic. A lot of cases will simply fail to translate and for the rest particular ways of encoding
is required for Optician to work well. Due to this, a side-by-side comparison of the two systems
will be forced and unlikely to produce meaningful results.

It is apparent that Optician and Synbit occupy very different parts of the synthesis design space.
This difference is driven by the differences in the underlying languages they target: lenses vs
HOBiT. Lenses are tricky to program with but the language itself is very simple; it therefore makes
sense to have a separate specification system that is removed from the target implementation. In
contrast, HOBiT focuses more on programmability and the specification system may naturally take
advantage of the fact. In a sense, lenses may be considered to benefit more from synthesis, as it
relieves the need to program directly in them. On the other hand, Synbit demonstrates the impact
of the language design: it not only improves programability, but also enables effective synthesis
methods.
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