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There has been a recent explosion of research on Large Language Models (LLMs) for software engineering
tasks, in particular code generation. However, results from LLMs can be highly unstable; nondeterministi-
cally returning very different code for the same prompt. Such non-determinism affects the correctness and
consistency of the generated code, undermines developers’ trust in LLMs, and yields low reproducibility in
LLM-based papers. Nevertheless, there is no work investigating how serious this non-determinism threat is.

To fill this gap, this paper conducts an empirical study on the non-determinism of ChatGPT in code
generation. We chose to study ChatGPT because it is already highly prevalent in the code generation research
literature. We report results from a study of 829 code generation problems across three code generation
benchmarks (i.e., CodeContests, APPS, and HumanEval) with three aspects of code similarities: semantic
similarity, syntactic similarity, and structural similarity. Our results reveal that ChatGPT exhibits a high degree
of non-determinism under the default setting: the ratio of coding tasks with zero equal test output across
different requests is 75.76%, 51.00%, and 47.56% for three different code generation datasets (i.e., CodeContests,
APPS, and HumanEval), respectively. In addition, we find that setting the temperature to 0 does not guarantee
determinism in code generation, although it indeed brings less non-determinism than the default configuration
(temperature=1). In order to put LLM-based research on firmer scientific foundations, researchers need to take
into account non-determinism in drawing their conclusions.

1 INTRODUCTION
Large Language Models (LLMs) are nondeterministic by nature [34]. This is because LLMs predict
the probability of a word or token given the context, represented by a sample of words. The
randomness in LLMs typically comes from the sampling methods used during text generation, such
as top-k sampling or nucleus sampling [31, 50]. As a result, identical instructions or prompts can
yield completely different responses to separate requests.
This non-determinism (i.e., the inconsistency in the code candidates generated in different

requests with identical prompts)1 is an essential consideration when using LLM in practice [59].
Unreliable and inconsistent code snippets can have significant negative effects on the process of
software development, particularly in safety-critical applications where consistency and reliability
are paramount [11, 30]. It may also undermine developers’ trust in LLMs when completely different
suggestions are given at different times [64].
Moreover, non-determinism affects the reliability and reproducibility of empirical software

engineering [54]. Indeed, compared to other tasks of ChatGPT, such as question answering and text
summarization, the non-determinism threat in code-related tasks is much more serious, because the
inconsistency (especially semantic inconsistency) often indicates errors in the generated code [28].
It is therefore of vital importance to understand how serious the non-determinism is for LLM-based
software engineering tasks and call for actionable solutions to alleviate this issue.

1There are other terms in the literature that also refer to non-determinism, such as inconsistency, variance, randomness,
and instability.
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This paper presents the first systematic empirical study on the threat of non-determinism of
ChatGPT in code generation tasks. We choose the code generation tasks because code generation
with Large Language Models (LLMs), such as ChatGPT, has recently attracted significant attention
due to its impressive and cutting-edge performance [10, 15, 37]. Indeed, many publications have
emerged from both the software engineering community and the machine learning community on
evaluating the capability of ChatGPT in code generation [6, 10, 16, 41, 69].
This paper focuses on ChatGPT (including GPT-3.5 and GPT-4), rather than other LLMs, for

the following two reasons: 1) ChatGPT is the most widely adopted LLM in code generation in the
literature [15, 16, 23, 42, 44, 65, 72]; 2) ChatGPT has the best performance in code generation and
represents the state-of-the-art so far [4, 15]. Thus, as the first work on the non-determinism of
LLMs in software engineering tasks, we focus on ChatGPT in this paper but encourage other work
to continue to investigate the non-determinism issue in other LLMs.
We conduct a series of experiments using the ChatGPT models on three widely-studied code

generation benchmarks (i.e. CodeContests, APPS, and HumanEval) with 829 coding problems. For
each code generation task, we let ChatGPT make five predictions. We then compare the similarity
of the five code candidates from three aspects, namely semantic similarity, syntactic similarity, and
structural similarity. We also explore the influence of temperature (i.e., a parameter that controls the
randomness of the response generated by ChatGPT) on non-determinism, as well as the correlation
between non-determinism and coding task features such as the length of coding instruction and
the difficulty of the task. We show the non-determinism with different models of ChatGPT, namely,
GPT-3.5 and GPT-4. Finally, we compare the non-determinism of code generation with different
prompt engineering strategies.

Our results reveal that the threat of non-determinism in ChatGPT for code generation is serious,
especially under default setting: In particular, 1) the ratio of problems with not a single equal test
output among the top-five code candidates is above 50% for all the benchmarks we study; 2) the
maximumdifference of the test pass rate reaches 1.00 for all three datasets, and accounts for 39.63% of
the problems in HumanEval, the most widely used code generation benchmark; In addition, contrary
to the widely held belief (and practice followed to minimize nondeterminism) [7, 13, 39], setting
the temperature to zero does not guarantee determinism in code generation. Also interestingly,
our result analysis suggests that the length of coding instructions has a negative correlation with
almost all our similarity measurements, meaning that longer description length tends to yield code
candidates with less similarity and more buggy code. Different prompt engineering strategies also
yield different degrees of non-determinism in code generation.

To understand how the literature handles the non-determinism threat, we collect 76 LLM-based
code generation papers that appeared in the last 2 years. Our manual analysis results highlight that
only 21.1% of these papers consider the non-determinism threat in their experiments. These results
highlight that there is currently a significant threat to the validity of scientific conclusions. We call
for researchers to take into account the non-determinism threat in drawing their conclusions.

To summarize, this paper makes the following contributions:

• We present the first study of the non-determinism threat in code generation tasks on ChatGPT,
with three widely-studied datasets (CodeContest, APPS, HumanEval) and three types of similarity
measurements. Our results reveal that the non-determinism threat is serious and deserves
attention from both academia and industry.

• We study the influence of temperature on the non-determinism of ChatGPT and find that setting
temperature to zero does not guarantee determinism in code generation, which is contrary to
many people’s beliefs.
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• We study the correlation between coding task features and the degree of non-determinism. The
results reveal that the length of coding instruction has a negative correlation with syntactic and
structural similarity, as well as the average correctness of the generated code.

• We study the influence of different prompt engineering techniques on code generation non-
determinism. We find that prompts with a Chain-of-Thought strategy leads to more non-
determinism when temperature=0, while code candidates generated from prompts requesting
simple and concise code are more stable.
We release our data, code, and results at our homepage [3]. The rest of the paper is organized as

follows. Section 2 introduces the main procedure of our study. Section 3 describes the design of the
experiments, including research questions, benchmarks, selected models, and measurement tools.
Section 4 presents the results and discusses some interesting findings based on the experimental
results we obtained. Section 5 discusses the threats to validity in two aspects, as well as the
limitations of this study. Section 6 introduces the related work of our study. Section 7 discusses the
implications for software developers and researchers and future work. Section 8 concludes.

2 METHOD
Fig 1 shows an overview of our experimental procedure. For each code generation task, our study
first produces a prompt with a coding instruction, then feeds this prompt to ChatGPT API [2] to
generate code (zero-shot). We call the API five times to let ChatGPT make five predictions with the
same prompt. We then extract code from each of the five responses, to get five code candidates. Our
non-determinism analysis compares the five code candidates in terms of their semantic similarity,
syntactic similarity, and structural similarity.
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Fig. 1. Overview of the experimental procedure.

Prompt synthesis: The first step in our study is prompt preparation. There are many ways to
conduct prompt engineering for code generation. In this paper, we follow the common practice
in LLM-based code generation assessment [5, 15]. In particular, 1) we ask ChatGPT to generate
Python code for each code generation task with zero-shot prompting; 2) we use the basic prompt
design directly followed by programming task descriptions. To guarantee that ChatGPT produces
code rather than pure natural languages in its response, we augment the original coding problem
description with an instruction to request for Python code.
One challenge in extracting the code from the API response is that there is no clear signal to

distinguish code with plain text in the response, which is different from ChatGPT’s web chat
window (i.e. in the chat window, codes are returned with Markdown code blocks). To address
this problem, we specify the format of the generated code into ‘Markdown’. Thus, for each code
generation task, our prompt is shown as follows:
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Generate Python3 code (Markdown):

# this is the original coding problem description.

Code Extraction: After receiving the response from ChatGPT, we apply code extraction to retrieve
the code from the generated text. We compile the code directly without making any modifications.
Our experiments are mainly run on Google Deep Learning VM instances, with the Linux environ-
ment pre-installed from open images2. All of the necessary libraries are pre-installed. In this way,
it can ensure to the greatest extent that the generated code will not cause import errors caused by
the library not being installed during running.
Test Case Execution: To evaluate the semantics of ChatGPT’s generated code, we use the test
suite that is suited to each benchmark. We not only record whether each test passes or not but also
record every specific test output, which enables us to compare the similarity of test outputs even if
they both fail. For CodeContests and HumanEval datasets, every problem has a certain timeout
value of 3 seconds. The APPS dataset does not provide a default timeout value, and we set the value
to be 3 seconds as well. We use single-threaded scripts to run the tests to ensure that the test cases
are executed sequentially to avoid race conditions that may arise from concurrent executions.
Similarity Checking: To measure the similarity between code candidates, we introduce similarity
measurement tools that evaluated the semantic, syntactic, and structural similarity between the
generated code solutions. The semantic similarity is measured by comparing test execution outputs.
The syntactic similarity is measured by comparing the text similarity between codes. The structural
similarity is evaluated by comparing the code candidates’ abstract syntax trees (ASTs). More details
about our similarity measurement methods are mentioned in Section 3.4.

3 EXPERIMENTAL DESIGN
3.1 ResearchQuestions
This study answers the following questions:
RQ1: To what extent is ChatGPT susceptible to non-determinism in code generation under
the default setting? This RQ investigates the non-determinism of ChatGPT in terms of the
semantic, syntactic, and structural similarity among the code candidates generated with identical
instructions under the default setting. There are three sub-RQs:
• Sub-RQ1.1: To what extent is ChatGPT susceptible to non-determinism in terms of semantic
similarity?

• Sub-RQ1.2: To what extent is ChatGPT susceptible to non-determinism in terms of syntactic
similarity?

• Sub-RQ1.3: To what extent is ChatGPT susceptible to non-determinism in terms of structural
similarity?

RQ2: How does temperature affect the degree of non-determinism? Temperature is a hyperpa-
rameter of LLMs for controlling the randomness of the predictions. This RQ checks and compares
the non-determinism of ChatGPT in code generation with different choices of temperature.
RQ3: How does the non-determinism compare to the similarity of the top code candidates
generated within the same prediction? ChatGPT can be configured to generate multiple candi-
dates for one prediction, which are ranked by their predictive probability. This RQ compares the
similarity of the code candidates obtained in different predictions with those obtained within the
same prediction.
RQ4: What types of coding tasks have a higher degree of non-determinism? To understand
what affects non-determinism, this RQ studies the correlation between the features of coding tasks
2https://cloud.google.com/compute/docs/images
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(e.g., the length of code generation instructions, the code problem difficulty, and labels) and the
similarity metrics used in our study. We also conduct qualitative analysis on specific cases for deep
analysis.
RQ5: How is GPT-4’s non-determinism compared with GPT-3.5? This RQ compares GPT-3.5
and GPT-4 in their degree of non-determinism in generating code.
RQ6:Howdo different prompt engineering strategies influence the degree of non-determinism?
This RQ compares the degree of non-determinism for different prompt engineering strategies (i.e.,
Chain-Of-Thought and requesting generated code as concise as possible) when using ChatGPT to
generate code.

3.2 Code Generation Benchmarks
Our experiments use the three most widely studied code generation benchmarks: CodeContest
[37], APPS [26], and HumanEval [12]. Table 1 shows their details. Each of these datasets has unique
characteristics, which are introduced below. The distribution of difficulty and problem tags of these
datasets are available on our homepage [3].

Table 1. Code generation benchmarks

Name Mean Length No. of Mean No. of Mean No. of Provided
of description Problems Test Cases Correct Solutions

CodeContests 1989.19 165 203.84 49.99
APPS 1663.94 500 80.43 20.92
HumanEval 450.60 164 9.24 1.00

CodeContests: CodeContests is used when training AlphaCode, which comprises coding problems
from various sources such as Aizu3, AtCoder4, CodeChef5, CodeforcesCodeChef6, and HackerEarth-
CodeChef7. In our experiment, following the assessment practice of AlphaCode, we use the test set
of CodeContests to benchmark the code generation tasks of ChatGPT.
APPS: APPS includes 10,000 coding problems (both the training set and testing set). This dataset
is exclusively designed for Python program synthesis evaluation. The original test set contains
5,000 code-generation problems, and we randomly sample 500 problems, among which there are
60.20% interview problems, 19.60% introductory problems, and 20.20% competition problems. APPS
evaluates models not only on their ability to code syntactically correct programs but also on their
ability to understand task descriptions and devise algorithms to solve these tasks [27].
HumanEval: The HumanEval dataset is an evaluation set first proposed in [12], which contains
164 hand-written coding problems. Each problem includes a function signature, docstring, body,
and several unit tests, with an average of 9.24 test cases per problem. We use the whole dataset to
benchmark our experiments.
As mentioned in Section 2, we especially focus on the code generated with Python3 language,

since it is one of the most widely studied programming languages in code generation [5, 12, 17, 37,
61, 63, 66].

3https://judge.u-aizu.ac.jp
4https://atcoder.jp
5https://www.codechef.com
6https://codeforces.com
7https://www.hackerearth.com
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3.3 Configuration of ChatGPT
ChatGPT has gained widespread popularity and recognition in multiple tasks including question-
answering, language translation, sentiment analysis, and text summarising, among which code
generation is one of the most impressive tasks [10, 37]. There are several reasons why we have
chosen ChatGPT as our research target among all large language models. Firstly, ChatGPT has the
ability to generate highly coherent and contextually appropriate responses to a wide variety of
textual prompts [25]. This makes it an ideal tool for conducting research in areas of code generation
by designing specific prompts. Secondly, the GPT-3.5 series is a particularly attractive option due
to its impressive performance and large-scale training data, which allows for more accurate and
nuanced language processing capabilities [43]. Thirdly, the model API ‘gpt-3.5-turbo’ and ‘gpt-4’
released with ChatGPT have not been extensively studied in academia, and their capabilities in
terms of code generation are thus still unknown. Therefore, we choose them as our experiment
target models. Written in ChatGPT’s official website8, using ChatGPT’s model API requires various
parameters. We use the default values for most of the parameters in addition to the following ones:
• model: ID of the model to use. This parameter is strictly required, and in our case, we set this
parameter to ‘gpt-3.5-turbo-0125’ or ‘gpt-4-0613’.

• message: A list of messages describing the conversation so far, where two key values ‘role’
and ‘content’ should be filled. This parameter is also strictly required. In our experiments, the
message’s ‘role’ is ‘user’ and the ‘content’ contains the prompt we used for requesting for all of
the RQs.

• temperature: What sampling temperature to use, between 0 and 2 (Default value is 1). Higher
values will make the output more random, while lower values will make it more focused and
deterministic. In our study, we study the influence of temperature in RQ2 with three temperature
values: 0, 1, and 1.5. For RQ1, we use temperature=1 only, and for the rest of the RQs, we present
results with both temperature=1 and temperature=0.

• top_p: An alternative to sampling with temperature, called nucleus sampling, where the model
considers the results of the tokens with top_p probability mass. In our experiment, we do not
take it into consideration and set this value to remain at its default setting (i.e., top_p=1).

• n: How many code candidates (the so-called “chat completion choices” according to the ChatGPT
API website [2]) to generate for each input message (with 1 being the default value). The default
value of n is 1. In RQ3, we set n=5 to investigate how the non-determinism of code candidates
from the same request compares with those from different requests. We choose n=5, since 5 is a
widely used figure in the papers studying variance [51]. n=5 is only used in RQ3.

3.4 Non-determinism Measurement
In order to answer our research questions, we introduce the following tools for measuring the
degree of non-determinism.

3.4.1 Semantic similarity. We measure the semantic similarity of different code candidates by
checking their similarity in test execution results, including test pass rate and output equivalence
rate. The test pass rate calculates the ratio of the passed test case number against the total test case
number for code candidates. It is one of the most widely used measurement metrics for assessing
code generation capabilities9 [5, 12, 26, 37, 73]. Each code generation problem has five test pass
rates, one for each code candidate. We use the variance and maximum difference of the five values
to indicate semantic similarity. We also calculate the mean of the five values for the purpose of
8https://platform.openai.com/docs/api-reference/chat/create
9Although the benchmarks are very widely studied, their test suites can be inadequate. This paper is less affected by the
inadequate test suite issue as we focus on the similarity of test pass rate, rather than the absolute value of test pass rate.
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understanding correctness as well as the correlation between correctness and non-determinism
(RQ4).

The output equivalence rate records the ratio of identical test outputs (across different code
candidates for the same code generation instruction) against the total test outputs. Each instruction
has one output equivalence rate. For tests that produce specific outputs (without exceptions or
errors), we check whether the output values of different code candidates are equal to each other. In
the following parts of this paper, we use OER to represent output equivalence rate and use OER
(no ex.) to represent output equivalence rate (without exceptions or errors) for short. Each code
generation problem has only one OER and OER (no ex.). Additionally, we measure the OER and
OER (no ex.) in pairs and report the mean output equivalence rate of the combinations of every
two code candidates for a coding problem. For tests that yield exceptions or timeout errors, we
consider the test outputs to be the same if the exception or error messages are the same.
Some papers use the pass@k metric [12, 32] (i.e., the ratio of coding tasks with 100% test pass

rate) to indicate the high-level code generation correctness of a code generation approach. We do
not use this metric in our main body of experiments because we focus on the non-determinism
threat, while pass@k ignores the correctness of each single coding task and concentrates only on
the ratio of correct code candidates in all the tasks, which can cover the non-determinism across
different requests. In addition, pass@k does not reflect the practical application scenario of LLMs
in code generation, because developers are less likely to try the model for k times until they finally
get one correct solution.

3.4.2 Syntactic similarity. The syntactic similarity in this study treats different code candidates
as texts and checks their textual similarity. We choose the Longest Common Subsequence and
Levenshtein Edit Distance as evaluation tools [35, 36, 47, 68]. In the following content, we use
LCS and LED to represent the Longest Common Subsequence and Levenshtein Edit Distance for
short respectively. LCS measures the similarity via the normalized length of the longest common
subsequence between two sequences. LED measures the minimum number of single-token edits
(insertions, deletions, or substitutions) required to change one code into the other. LCS and LED
both regard the token as the smallest unit, and the token is divided by the .split() method, that
is, any whitespace is used as the separator to divide the code into tokens. We measure the syntactic
similarity with LCS/LED by comparing the first code candidate with each of the remaining four
code candidates. Thus, each code-generation problem has four values of each metric. We use the
mean, mean worst value (i.e., mean highest value for LED and mean lowest value for LCS), and pair
mean (by comparing all the combinations of two code candidates in pairs) to indicate the syntactic
similarity measured by each metric.

Below are the formulas for the LCS and LED:

𝐿𝐶𝑆 =
𝑙𝑒𝑛(𝑙𝑐𝑠 (𝑠, 𝑡))

𝑙𝑒𝑛(𝑠)
where 𝑠 is reference string, 𝑡 is the string to be compared, 𝑙𝑐𝑠 (𝑠, 𝑡) is the longest common subsequence
between 𝑠 and 𝑡 .

LED𝑠,𝑡 (𝑖, 𝑗) =


max(𝑖, 𝑗 ) if min(𝑖, 𝑗 ) = 0

min


led𝑠,𝑡 (𝑖 − 1, 𝑗 ) + 1
led𝑠,𝑡 (𝑖, 𝑗 − 1) + 1
led𝑠,𝑡 (𝑖 − 1, 𝑗 − 1) + 1(𝑠𝑖≠𝑡 𝑗 )

otherwise

where LED𝑠,𝑡 (𝑖, 𝑗) is the LED between the first 𝑖 characters of 𝑠 and the first 𝑗 characters of 𝑡 , and
diff (𝑠𝑖 , 𝑡 𝑗 ) is 0 if the 𝑖-th character of 𝑠 is the same as the 𝑗-th character of 𝑡 , and 1 otherwise.
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3.4.3 Structural similarity. We design structural similarity to measure the code similarity in terms
of the Abstract Syntax Tree (AST). AST is a tree-like representation of the source code in which each
node in the tree represents a construct in the code, such as variable, function, or control structure,
and the edges between nodes represent the relationships between these constructs. We use a
Python library called pycode_similar10 [38, 67] to calculate the similarity. The pycode_similar
normalizes Python code into AST representation and uses Python library difflib to get the
modification from referenced code to target code. There are two different measurement settings, i.e.
Unified_Diff and Tree_Diff. Unified_Diff measures the difference of normalized function AST
string lines, while Tree_Diff measures the difference in tree edit distance between two given ASTs.
Similar to syntactic similarity, for each code generation problem, we report the mean, smallest
similarity values, and pair mean among the five candidates.

3.4.4 Statistical Analysis. We conduct statistical analysis to demonstrate the significance of the
differences among the outputs. We choose Kruskal-Wallis test [48] which does not require as-
sumptions of normal distribution. The Kruskal-Wallis test stands as a non-parametric method
for analyzing data, serving as an extension of the Mann-Whitney U test [49] to more than two
independent groups. The essence of the Kruskal-Wallis test lies in comparing the median ranks
among groups, rather than the means, which makes it robust against outliers and non-normal
distribution of data.

4 RESULTS AND FINDINGS
This section introduces the experimental results as well as the analysis and discussion for each RQ.

4.1 RQ1: Non-determinism of ChatGPT with Three Types of Similarities under default
setting

4.1.1 RQ1.1: Semantic Similarity. Semantic similarity is measured by the following metrics: test
pass rate and OER (output equivalence rate), and OER excluding exceptions. As mentioned in
Section 3.4, each coding problem has five test pass rates, we use the variance and maximum
difference of these five values to indicate ChatGPT’s non-determinism in generating code for the
task. We also report the mean value, which represents the average correctness of the generated
code. For OER or OER (no ex.), we compare the equivalence across all the five code candidates
as well as between every two candidates. For each dataset, we report the distribution of different
measurements in Figure 2 and Figure 3. The mean measurement values for all the coding problems
(the mean value inside each bar in each bar chart) in a dataset are shown in Table 2. The max diff
refers to the maximum value of the max diff among all the coding problems. In addition, Table 2
also shows the “Ratio of worst cases”, which is the ratio of problems with maximum diff of test
pass rate being 1 or OER being 0.
From Figure 2, Figure 3, and Table 2, we observe that ChatGPT is very unstable in generating

semantically consistent code candidates. In particular, the ratios of tasks with zero equal test output
(i.e., OER=0) among the five code candidates are 75.76%, 51.00%, and 47.56% for the three datasets,
respectively. This indicates that for the majority of the cases, ChatGPT generates code candidates
with completely different semantics from identical instructions.

The mean variance of the test pass rate is relatively small from Table 2, ranging between 0.03
and 0.09, this is because the test pass rate of different code candidates is often equally worse, as
can be observed from Figure 2.(a). However, the max diff of the test pass rate reaches 1.00 for all
three datasets and accounts for 39.63% of the problems in HumanEval, the most widely used code
generation benchmark. This indicates the correctness of code candidates generated from the same
10https://github.com/fyrestone/pycode_similar
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Fig. 2. RQ1.1: Distribution of semantic similarity in terms of test pass rate.
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(b) OER (no ex.)

Fig. 3. RQ1.1: Distribution of semantic similarity in terms of test output equivalence rate (OER and OER (no
ex.)).

Table 2. RQ1.1: Results of semantic similarity. OER and OER (no ex.) are the output equivalence rate and the
equivalence rate excluding exceptions.

Semantic similarity Metric CodeContests APPS HumanEval

Test pass rate

Mean value 0.16 0.42 0.63
Mean variance 0.03 0.04 0.09
Mean max diff 0.24 0.35 0.53
Max diff 1.00 1.00 1.00
Ratio of worst cases 3.64% 10.40% 39.63%

OER
Mean value 0.09 0.27 0.39
Pair mean value 0.27 0.47 0.67
Worst value 0.00 0.00 0.00
Ratio of worst cases 75.76% 51.00% 47.56%

OER (no ex.)
Mean value 0.06 0.25 0.35
Pair mean value 0.19 0.42 0.61
Worst value 0.00 0.00 0.00
Ratio of worst cases 81.21% 53.40% 51.22%

instruction can vary significantly. The large difference in different datasets also sheds light on the
importance of using multiple datasets when assessing the code generation performance for large
language models.
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Our statistical analysis with Kruskal-Wallis test shows that, in 92.1% of CodeContests, 39.4% of
APPS, and 40% of HumanEval, the outputs of the code are indeed significantly different, where the
p-value under the Kruskal-Wallis test is less than 0.05.

Answer to RQ1.1: The semantic difference among the code generated by ChatGPT in
different requests is significant. In particular, the ratio of coding tasks with not a single equal
test output among the five different requests is 75.76%, 51.00%, and 47.56% for CodeContests,
APPS, and HumanEval, respectively. In addition, the maximum difference of the test pass
rate reaches 1.00 for all three datasets and accounts for 39.63% of the problems in HumanEval,
the most widely used code generation benchmark.

4.1.2 RQ1.2: Syntactic Similarity. Syntactic similarity measures the text similarity among code
candidates. In our experiment, the syntactic similarity is evaluated by the following metrics: LCS
and LED (more details in Section 3.4). For the five code candidates for each coding problem, we use
the first code candidate as a reference and calculate the LCS and LED between the reference and
the remaining four candidates. In addition, we calculate LCS and LED with code candidates in pairs,
for each pair combination. Thus, each problem has four LCS values and LED values, and 20 LCS
and LED values in pairs, each value indicating a syntactic similarity. We use the mean of these four
values as well as the worst of them (i.e., the smallest value for LCS and the largest value for LED),
and the mean of these 20 values calculated in pairs to represent each problem’s syntactic similarity.
Figure 4 shows the distribution of LCS and LED for all the problems in each dataset. Table 3 shows
the mean, mean worst, and pair mean LCS and LED values for all the coding problems (the mean
value inside each bar in the figures) in a dataset.

Table 3. RQ1.2: Syntactic similarity. Lower LCS and higher LED indicate lower syntactic similarity.

Syntactic Similarity Metric CodeContests APPS HumanEval

LCS Mean value 0.22 0.23 0.42
Mean worst value 0.16 0.16 0.25
Pair mean value 0.23 0.24 0.41

LED Mean value 58.80 47.37 26.56
Mean worst value 77.46 61.55 43.91
Pair mean value 58.86 46.94 27.10

We observe that the code candidates generated from the same instruction also differ largely in
the syntactic measure. Specifically, the mean LCS is 0.22, 0.23, and 0.42 for CodeContests, APPS, and
HumanEval, respectively, indicating the mean ratio of the longest common subsequences among
the code candidates.
For the three datasets, we could see from Table 3 that the lowest LCS and largest LED values

both happen for the CodeContests dataset. By contrast, the largest LCS and smallest LED values
both happen for HumanEval. This indicates that ChatGPT is most unstable syntactically for the
code generation tasks in CodeContests, and most stable for HumanEval. We further explore the
correlation between different similarities and code task features in Section 4.4.

Answer to RQ1.2: Code candidates generated by ChatGPT in different requests also differ
significantly in syntax. The mean syntax similarity (LCS) is only 0.22, 0.23, and 0.42 for
CodeContests, APPS, and HumanEval, respectively.
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CodeContests

       
APPS       

HumanEval
0.00

0.25

0.50

0.75

1.00

(a) LCS mean

CodeContests

       
APPS       

HumanEval
0.00

0.25

0.50

0.75

1.00

(b) LCS Worst

CodeContests

       
APPS       

HumanEval
0.00

0.25

0.50

0.75

1.00

(c) Pair LCS

CodeContests

       
APPS       

HumanEval
0

200

400

600

(d) LED Mean

CodeContests

       
APPS       

HumanEval
0

200

400

600

(e) LED Worst

CodeContests

       
APPS       

HumanEval
0

100

200

300

(f) Pair LED

Fig. 4. RQ1.2: Distribution of syntactic similarity (LCS & LED). Lower LCS and higher LED indicate less
syntactic similarity.

4.1.3 RQ1.3: Structural Similarity. Structural similaritymeasures the codes’ similarity based on their
AST. In our experiment, the structural similarity is mainly measured by the tool pycode_similar
with two different settings, namely United_Diff and Tree_Diff (more details in Section 3.4). For the
five code candidates for each coding problem, we use the first code candidate as a reference and
calculate the structural similarity between the first candidate with the remaining four candidates
under United_Diff and Tree_Diff settings. We also calculate the structural similarity with code
candidates in pairs, with a total of 20 pair mean values. Thus, each problem has four mean values
and 20 pair mean values for United_Diff and Tree_Diff respectively, with each value indicating
a structural similarity measure. We use the mean of these four values, the worst of them, and
their pair mean values (i.e., the smallest value for United_Diff and Tree_Diff) to represent each
problem’s structural similarity. Fig 5 shows the distribution of United_Diff and Tree_Diff for all the
problems in each dataset. Table 4 shows the mean, mean worst values, and pair mean values under
United_Diff and Tree_Diff settings for all the coding problems (the mean value inside each bar in
the figures) in a dataset.

We observe that the code candidates generated from the same instruction show great similarity
in structure. Specifically, the mean values are 0.33, 0.43, and 0.60 under the United_Diff setting, and
0.41, 0.54, and 0.62 under Tree_Diff setting for CodeContests, APPS, and HumanEval, respectively.
For the three datasets, we could see from Table 4 that the lowest values under United_Diff and

Tree_Diff happen for the CodeContests dataset. By contrast, the largest values under the two
settings both happen for HumanEval. This indicates that ChatGPT is most unstable in structure for
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Table 4. RQ1.3: Structural similarity.

Structural Similarity Metric CodeContests APPS HumanEval

United_Diff Mean value 0.33 0.43 0.60
Mean worst value 0.27 0.35 0.47
Pair mean value 0.46 0.52 0.67

Tree_Diff Mean value 0.41 0.54 0.62
Mean worst value 0.33 0.47 0.48
Pair mean value 0.56 0.63 0.70

CodeContests       APPS       HumanEval
0.00

0.25

0.50

0.75

1.00
UnifiedDiff TreeDiff

(a) Mean

CodeContests       APPS       HumanEval
0.00

0.25

0.50

0.75

1.00
UnifiedDiff TreeDiff

(b) Mean Worst

CodeContests       APPS       HumanEval
0.00

0.25

0.50

0.75

1.00
UnitedDiff TreeDiff

(c) Pair Mean

Fig. 5. RQ1.3: Structural Similarity (United_Diff & Tree_Diff).

the code generation tasks in CodeContests, and most stable for HumanEval. We further explore the
correlation between different similarities and task features in RQ4.

Answer to RQ1.3: Code candidates show high structural similarity under UnitedDiff and
TreeDiff settings. We observe that the code candidates generated from the same instruction
have high similarity in structure. Specifically, the mean values are 0.33, 0.43, and 0.60 under
the United_Diff setting, and 0.41, 0.54, and 0.62 under Tree_Diff setting for CodeContests,
APPS, and HumanEval, respectively.

4.2 RQ2: Influence of Temperature
The default temperature of ChatGPT is 111. This RQ explores whether the code generation non-
determinism of ChatGPT changes with the temperature changes. We use identical measurements
as in RQ1. We show our experiment results on CodeContests only. Results for other datasets are on
our homepage [3].
Table 5 shows the results. Overall, we observe that when temperature=0, ChatGPT has better

determinism than the default configuration (temperature=1) for all three types of similarities.
However, setting the temperature to 0 does not completely avoid non-determinism. Take OER
as an example, there are still 43.64% (CodeContests), 27.40% (APPS), and 18.29% (HumanEval)
of problems with no equal test output among the five code candidates. This is contrary to many
people’s belief that setting the temperature to 0 can make ChatGPT deterministic [7, 13, 39], because
when setting the temperature to 0, the model applies greedy sampling which should indicate full
determinism, with the logit value for the next token being a pure function of the input sequence
and the model weights. The reason for such non-determinism with the temperature being zero is
still controversial [1], with different hypotheses such as floating point, unreliable GPU calculations,
11https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature
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Table 5. RQ2: Influence of temperature (CodeContests).

Temperature Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

0 0.15 0.01 0.11 1.00 1.82%
0.5 0.16 0.02 0.15 1.00 2.42%
1 0.16 0.03 0.24 1.00 3.64%

Temperature OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

0 0.37 43.64% 0.59 0.27 54.55% 0.46
0.5 0.18 62.42% 0.37 0.13 68.48% 0.28
1 0.09 75.76% 0.27 0.06 81.21% 0.19

Temperature LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

0 0.61 0.44 0.62 23.45 35.87 22.31
0.5 0.33 0.23 0.34 44.48 62.02 44.89
1 0.22 0.16 0.23 58.80 77.46 58.86

Temperature United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

0 0.41 0.39 0.67 0.50 0.46 0.74
0.5 0.61 0.49 0.63 0.69 0.58 0.71
1 0.33 0.27 0.46 0.41 0.33 0.56

and its sparse MoE architecture failing to enforce per-sequence determinism [33, 55]. The details
for all the non-deterministic coding tasks and their test outputs with temperature=0 are on our
homepage [3].

When temperature=0.5, we observe that ChatGPT tends to generate code candidates that are more
deterministic than temperature=1, but less deterministic than temperature=0. This is as expected
because the higher temperature brings more creativity to ChatGPT and affects its ability to generate
similar code (as can be observed from the other measurements, such as LCS and LED). Nevertheless,
we observe that the value of test pass rates among the three different temperatures are similar,
which indicates that low temperature might be a better choice given the comparable test pass rate
and the low degree of non-determinism.

Answer to RQ2: Contrary to the widely held belief (and common practices), setting the
temperature to 0 does not guarantee determinism in code generation, although it indeed
brings more determinism than the default configuration (temperature=1) for all three types
of similarities. We also observe that the values of test pass rate among the three different
temperatures are similar, indicating that low temperature might be a better choice for code
generation tasks.

4.3 RQ3: Non-determinism Comparison with Top Candidates in the Same Prediction
RQ1 and RQ2 compare the similarity of 5 code candidates generated in multiple requests. Each
candidate is the top candidate in each request. However, ChatGPT can also generate 5 code candi-
dates within the same request (the top 5 candidates ranked by their predictive probabilities). This
RQ compares the non-determinism degree of code candidates for the two request configurations
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mentioned above (with temperature = 1 and temperature =0). Table 6 shows the results for Code-
Contests, the results for the two other datasets are on our homepage [3]. For ease of presentation,
we use R1 to refer to one-time requests, and R2 to refer to multiple requests.

Our results reveal that when setting temperature=1, it is difficult to tell which way of requesting
is more deterministic. For semantic similarity, R1 and R2’s performance are similar among three
datasets. Code candidates requested in R1 are slightly more random than those requested in R2 in
terms of syntactic similarity since those requested in R1 have lower LCS values and higher LED
values. However, code candidates requested in R1 are slightly more stable than those requested
in R2 when it comes to similarity because those requested in R1 have higher structural similarity
values in both United_Diff and Tree_Diff settings.

When temperature is 0, the difference between the two request ways is obvious. Code Candidates
requested by R1 show higher determinism than those requested by R2. When requesting by R1, the
ratio of worst cases, where max diff is close to 0 (1.20%), and the OER and OER (no ex.) are higher
than R2 and close to 1. The LCS values are higher than the values under other temperatures and LED
values are lower than the values under other temperatures, which indicates higher determinism.
Among the three datasets, the structural similarity values are also higher than the values in other
temperatures, which means the code candidates are more close to each other in terms of their AST
structure.

Table 6. RQ3: Similarity for different request ways (CodeContests), where t represents the temperature
setting.

Request Test Pass Rate

Way Mean value Mean variance Mean max diff Max diff Ratio of worst cases

R1 (t=1) 0.17 0.03 0.28 1.00 8.70%
R2 (t=1) 0.16 0.03 0.24 1.00 3.64%
R1 (t=0) 0.18 0.00 0.00 0.00 1.20%
R2 (t=0) 0.15 0.01 0.11 1.00 1.82%

Request OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

R1 (t=1) 0.09 76.09% 0.27 0.04 83.70% 0.18
R2 (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
R1 (t=0) 1.00 1.20% 1.00 0.81 12.05% 0.81
R2 (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46

Request LCS LED

Way Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

R1 (t=1) 0.21 0.15 0.20 61.30 82.73 63.09
R2 (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
R1 (t=0) 1.00 1.00 1.00 0.00 0.00 0.00
R2 (t=0) 0.61 0.44 0.62 23.45 35.87 22.31

Request United_Diff Tree_Diff

Way Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

R1 (t=1) 0.98 0.98 0.98 0.98 0.98 0.98
R2 (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
R1 (t=0) 1.00 1.00 1.00 1.00 1.00 1.00
R2 (t=0) 0.41 0.39 0.67 0.50 0.46 0.74
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Answer to RQ3: Under default temperature, the top-5 code candidates from one single
request have similar non-determinism with the 5 top-1 candidates from different requests
for ChatGPT when the temperature is 1 (default temperature of ChatGPT), but higher
determinism when the temperature is 0.

4.4 RQ4: Coding Tasks Features and Non-determinism Degree
Our previous experiments demonstrate that there are many non-determinisms in ChatGPT in code
generation. This RQ investigates what affects such non-determinism by checking the correlation
between characteristics of coding tasks and similarity metric values. We use three datasets for this
RQ. For all the datasets, we consider description length as one of their extrinsic features. Because only
the CodeContests dataset has various extrinsic features for each coding task, including difficulty,
time limit, and CF rating, we consider these features as extrinsic features for the CodeContest
dataset as well. Although APPS does have difficulty features, the difficulty features in APPS are
shown as categories, namely, ‘introductory’, ‘interview’, and ‘competition’, which makes it hard
to map them into numerical values. Therefore, our experiment does not include difficulty as an
extrinsic feature for the APPS dataset.
In CodeContests, the CF rating of a problem is a quantitative measure that represents the

problem’s relative difficulty level compared to other problems on the Codeforces platform. The
difficulty of a problem is a qualitative measure that indicates the problem’s level of complexity and
the programming knowledge and skills required to solve it. The timeout indicates the program’s
maximum running time limitation. In addition, we also consider description length (i.e., number of
characters) for each coding task. Note that in this section, we only focus on correlation analysis,
and we do not aim to obtain any causal conclusions.
Figure 6 shows the results for code problems in CodeContests under temperature=1. The rest

figures can be found on our homepage [3]. We observe that description length has a negative
correlation with most of the measurements, except LED. This means that problems with longer
descriptions tend to generate code with more randomness. We suspect that this is because a
longer description may reduce ChatGPT’s understanding of the coding requirements. With longer
descriptions, different code candidates tend to be uniformly worse in their pass rates. Moreover,
the description length has a negative correlation with LCS and structural measurements and a
positive correlation with LED, which means that problems with longer descriptions tend to yield
more inconsistent code candidates in syntax and structure. For temperature = 0, we observe that
description length still has a negative correlation with most of the measurements, except LED,
which is similar to the correlation result under temperature=1.

The difficulty has a positive correlation with the LED and a negative correlation with LCS, which
means that the problem with a higher difficulty level has high non-determinism in syntax. Similar
to difficulty, CF rating also has a positive correlation with the LED and a negative correlation with
LCS.

In the following, we provide some specific examples to further illustrate our observations above.
In exploring the relationship between the length of a code problem description and the degree of
non-determinism, two contrasting examples in the CodeContests dataset corroborate our findings.
The first example, ‘1599_E. Two Arrays’, with a description length of 2149, show a pattern that code
generation with a longer description code problem has a higher degree of non-determinism. Below
is the description of the first code problem, where we present only the core part of the description
due to the extensive length of the overall content.

, Vol. 1, No. 1, Article . Publication date: September 2024.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

TP
R 

m
ea

n 
va

lu
e

TP
R 

m
ea

n 
va

ria
nc

e
TP

R 
m

ea
n 

m
ax

 d
iff

OE
R 

m
ea

n
OE

R_
no

ex
 m

ea
n

LC
S 

m
ea

n
LC

S 
wo

rs
t

LE
D 

m
ea

n
LE

D 
wo

rs
t

Un
ite

d_
Di

ff 
m

ea
n

Un
ite

d_
Di

ff 
wo

rs
t

Tr
ee

_D
iff

 m
ea

n
Tr

ee
_D

iff
 w

or
st

de
sc

rip
tio

n 
le

ng
th

di
ffi

cu
lty

tim
e_

lim
it

cf
_r

at
in

g

TPR mean value

TPR mean variance

TPR mean max diff

OER mean

OER_noex mean

LCS mean

LCS worst

LED mean

LED worst

United_Diff mean

United_Diff worst

Tree_Diff mean

Tree_Diff worst

description length

difficulty

time_limit

cf_rating

1.0 0.47 0.53 0.46 0.65 0.22 - -0.16 - 0.18 - 0.19 0.16 -0.22 - - -

0.47 1.0 0.93 - - - - - - - - - - - - - -0.16

0.53 0.93 1.0 -0.16 - - - - - - - - - - - - -

0.46 - -0.16 1.0 0.79 - - - - - - - - - - - -

0.65 - - 0.79 1.0 0.27 0.2 -0.17 - 0.21 0.18 0.24 0.22 -0.17 - - -

0.22 - - - 0.27 1.0 0.89 -0.71-0.64 0.42 0.45 0.35 0.4 -0.29-0.22 - -0.31

- - - - 0.2 0.89 1.0 -0.63-0.59 0.42 0.48 0.35 0.43 -0.27-0.22-0.16-0.28

-0.16 - - - -0.17-0.71-0.63 1.0 0.95 -0.37-0.38-0.28-0.34 0.38 0.2 - 0.3

- - - - - -0.64-0.59 0.95 1.0 -0.38-0.39-0.29-0.35 0.36 - - 0.26

0.18 - - - 0.21 0.42 0.42 -0.37-0.38 1.0 0.92 0.95 0.87 -0.27 - -0.2 -

- - - - 0.18 0.45 0.48 -0.38-0.39 0.92 1.0 0.86 0.94 -0.21 - -0.18 -0.2

0.19 - - - 0.24 0.35 0.35 -0.28-0.29 0.95 0.86 1.0 0.91 -0.24 - -0.21 -

0.16 - - - 0.22 0.4 0.43 -0.34-0.35 0.87 0.94 0.91 1.0 -0.21 - -0.18 -

-0.22 - - - -0.17-0.29-0.27 0.38 0.36 -0.27-0.21-0.24-0.21 1.0 - - -

- - - - - -0.22-0.22 0.2 - - - - - - 1.0 0.28 0.64

- - - - - - -0.16 - - -0.2 -0.18-0.21-0.18 - 0.28 1.0 0.44

- -0.16 - - - -0.31-0.28 0.3 0.26 - -0.2 - - - 0.64 0.44 1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. RQ4: Correlations between coding tasks and non-determinism (CodeContests, temperature=1). Only
significant correlations will be displayed on the heatmap, while the insignificant correlations (i.e. p-value >
0.05) are masked by ‘-’.

1599_E. Two Arrays
You are given two integer arrays of length N, A1, and A2. You are also given Q queries of 4
types:
1 𝑘 𝑙 𝑟 𝑥 : 𝑠𝑒𝑡𝐴𝑘𝑖 :=𝑚𝑖𝑛(𝐴𝑘𝑖 , 𝑥) for each 𝑙 ≤ 𝑖 ≤ 𝑟 .
2 𝑘 𝑙 𝑟 𝑥 : 𝑠𝑒𝑡𝐴𝑘𝑖 :=𝑚𝑎𝑥 (𝐴𝑘𝑖 , 𝑥) for each 𝑙 ≤ 𝑖 ≤ 𝑟 .
3 𝑘 𝑙 𝑟 𝑥 : 𝑠𝑒𝑡𝐴𝑘𝑖 := 𝐴𝑘𝑖 + 𝑥 for each 𝑙 ≤ 𝑖 ≤ 𝑟 .
4 𝑙 𝑟 : 𝑓 𝑖𝑛𝑑𝑡ℎ𝑒 (∑𝑟

𝑖=𝑙
𝐹 (𝐴1𝑖 +𝐴2𝑖 ))%(109 + 7)

where 𝐹 (𝑘) is the k-th Fibonacci number (𝐹 (0) = 0, 𝐹 (1) = 1, 𝐹 (𝑘) = 𝐹 (𝑘 − 1) + 𝐹 (𝑘 − 2)), and
𝑥%𝑦 denotes the remainder of the division of 𝑥 by 𝑦. You should process these queries and
answer each query of the fourth type.
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This problem exhibits high non-determinism, as indicated by its measurement results across
multiple tests (i.e., the test case rate variance is 0.13, the OER value is zero, the LCS mean value
is 0.15, the mean LED value is 111.5, and both the United_Diff and Tree_Diff values are zero),
suggesting a rather high fluctuation. The detailed description potentially covers a wide array of
scenarios, which may distract the attention from LLMs, which results in inconsistent test results
and higher non-determinism.
The second example ‘1575_M. Managing Telephone Poles’, with a description length of 1511,

shows a pattern that a shorter description leads to more stability in code generation. Below is the
description of the second code problem, where we present only the core part of the description due
to the extensive length of the overall content.

1575_M. Managing Telephone Poles
Mr. Chanek’s city can be represented as a plane. He wants to build a housing complex in
the city. There are some telephone poles on the plane, which is represented by a grid of size
(𝑛 + 1) (𝑚 + 1).
There is a telephone pole at (𝑥,𝑦) if 𝑎𝑥,𝑦 = 1. For each point (𝑥,𝑦), define 𝑆 (𝑥,𝑦) as the square
of the Euclidean distance between the nearest pole and (𝑥,𝑦).
Formally, the square of the Euclidean distance between two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2.
To optimize the building plan, the project supervisor asks you the sum of all 𝑆 (𝑥,𝑦) for each
0 ≤ 𝑥 ≤ 𝑛 and 0 ≤ 𝑦 ≤ 𝑚. Help him by finding the value of

∑𝑛
𝑥=0

∑𝑚
𝑦=0 𝑆 (𝑥,𝑦).

The test pass rates are consistently 1.0 across all tests, with a variance of 0.0, showing no deviation
in the generated code candidates. The LCS mean value is 0.74, and the LED mean value is 3.5,
which indicates a high syntactical stability. Structural similarity is 0.21 and 0.38 under United_Diff
and Tree_Diff settings, which shows the code candidates still vary in their AST. Here, the shorter
description does not introduce ambiguity but rather lets ChatGPT focus on critical details, leading
to a uniform understanding of the code problem and better generation performance.

Answer to RQ4: A coding task with a longer description and higher difficulty tends to
suffer from more non-determinism in the generated code in terms of code syntax and
structure. The generated code also tends to be more buggy.

4.5 RQ5: GPT-4 vs. GPT-3.5
GPT-4 is believed to be “more reliable, creative, and able to handle much more nuanced instructions
than GPT-3.5” [52]. This research question compares GPT-3.5 and GPT-4 in the non-determinism
degree of code generation. To answer this research question, we keep the default setting and use all
the measurements listed in RQ1. In this paper we report the results only on the CodeContests dataset
(with temperature=1). For the results in the other two datasets, we list them on our homepage [3].

For temperature=1, we can observe that GPT-4 is slightly more deterministic than GPT-3.5,
with lower test pass rate variance, lower ratio of worst cases, lower OER and OER (no ex.), lower
LCS, higher LED, and lower structural similarity under two settings. However, for temperature=0,
the analysis, as evidenced by the results in tables comparing GPT-4 across CodeContests, APPS,
and HumanEval datasets, demonstrates that GPT-4’s non-determinism is pronounced and largely
parallels that of GPT-3.5. Across these datasets, similarity metrics indicate comparable levels of
non-determinism across three different evaluation methods.
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Table 7. RQ5: Non-determinism of GPT-4 v.s. GPT-3.5 (CodeContests)

Model Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

GPT-4 (t=1) 0.14 0.01 0.09 1.00 1.21%
GPT-3.5 (t=1) 0.16 0.03 0.24 1.00 3.64%
GPT-4 (t=0) 0.14 0.01 0.08 1.00 1.21%
GPT-3.5 (t=0) 0.15 0.01 0.11 1.00 1.82%

Model OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

GPT-4 (t=1) 0.35 46.06% 0.58 0.25 55.76% 0.46
GPT-3.5 (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
GPT-4 (t=0) 0.37 41.21% 0.59 0.27 52.73% 0.46
GPT-3.5 (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46

Model LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

GPT-4 (t=1) 0.61 0.45 0.62 24.54 39.74 24.81
GPT-3.5 (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
GPT-4 (t=0) 0.61 0.44 0.61 24.45 40.14 24.12
GPT-3.5 (t=0) 0.61 0.44 0.62 23.45 35.87 22.31

Model United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

GPT-4 (t=1) 0.78 0.68 0.79 0.82 0.74 0.84
GPT-3.5 (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
GPT-4 (t=0) 0.78 0.68 0.79 0.83 0.75 0.84
GPT-3.5 (t=0) 0.41 0.39 0.67 0.50 0.46 0.74

Answer to RQ5: The non-determinism issue of GPT-4 is lightly less severe than GPT-3.5
under temperature=1, while the non-determinism issue of GPT-4 is similar to GPT-3.5 under
temperature=0.

4.6 RQ6: Influence of Prompt Engineering Strategies on the Non-determinism
This research question explores how different prompt engineering strategies influence the degree
of non-determinism in code generation. We design two extra prompts in addition to the default one
used for previous RQs. The first prompt is “Generate Python3 code (Markdown), make the code as
concise as possible”. This prompt aims to lead ChatGPT to generate short and concise programs,
which may make the results more deterministic. The second prompt is “Generate Chain-of-Thought
steps of how to solve the problem first, and then generate Python3 code (Markdown)”, thereby
demanding an initial conceptual explanation followed by the code. Then, each prompt is followed
by the code problem description. In the following, we use ‘Concise prompt’ to refer to the first
prompt engineering strategy, and use ‘CoT prompt’ to refer to the second one for short.

The results in Table 8 show that for temperature=1, the difference of non-determinism between
different prompt engineering techniques is not very obvious in the three datasets. With more
instruction information provided in the prompt, Concise and CoT prompts have similar performance
with each other. However, under temperature=0, in CodeContests, requests with CoT prompt show
high mean test pass rates but this kind of prompt suffers from high randomness. Compared with
the Base prompt and Concise prompt, the CoT prompt has a higher mean-variance (0.02), higher
mean maximum difference (0.15), and a rather higher ratio of worst cases (1.82%). Also, the results
in OER and OER (no ex.) show that CoT’s mean value of OER and OER (no ex.) are lower than Base
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Table 8. RQ6: Prompt engineering techniques (CodeContests), where t refers to temperature.

Prompt Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

Concise (t=1) 0.15 0.02 0.19 1.00 3.64%
Base (t=1) 0.16 0.03 0.24 1.00 3.64%
CoT (t=1) 0.15 0.02 0.19 1.00 3.64%
Concise (t=0) 0.16 0.01 0.10 1.00 0.61%
Base (t=0) 0.15 0.01 0.11 1.00 1.82%
CoT (t=0) 0.19 0.02 0.15 1.00 1.82%

Prompt OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

Concise (t=1) 0.10 76.36% 0.26 0.06 81.82% 0.17
Base (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
CoT (t=1) 0.10 73.94% 0.26 0.08 80.0% 0.19
Concise (t=0) 0.39 41.82% 0.63 0.31 49.09% 0.54
Base (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46
CoT (t=0) 0.28 46.06% 0.50 0.19 54.55% 0.36

Prompt LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

Concise (t=1) 0.22 0.16 0.22 61.53 83.01 62.52
Base (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
CoT (t=1) 0.23 0.15 0.23 59.55 77.68 57.05
Concise (t=0) 0.70 0.53 0.71 11.77 20.55 12.14
Base (t=0) 0.61 0.44 0.62 23.45 35.87 22.31
CoT (t=0) 0.38 0.24 0.39 39.31 58.28 39.81

Prompt United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

Concise (t=1) 0.44 0.34 0.48 0.54 0.42 0.59
Base (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
CoT (t=1) 0.45 0.35 0.51 0.55 0.43 0.61
Concise (t=0) 0.83 0.74 0.84 0.88 0.82 0.89
Base (t=0) 0.41 0.39 0.67 0.50 0.46 0.74
CoT (t=0) 0.71 0.58 0.72 0.78 0.67 0.79

and Concise, which can also be told from the high ratio of worst cases in both OER and OER (no
ex.) with 46.06% and 54.55%. Opposite from CoT, code candidates generated from Concise prompt
are more semantically deterministic. Code candidates generated by the CoT prompt have a low
mean LCS value (0.38) and high LED value (39.31), while those generated from the Concise prompt
have a high mean LCS value (0.07) and low LED value (11.77). The other measurements in LCS
and LED also support the above phenomenon. When it comes to structural similarity, under two
different measurement settings, code candidates generated from the CoT prompt have significantly
higher randomness than the code generated from Concise prompt. Our experiment results show a
similar situation in both APPS and HumanEval, where code generated from the Concise prompt
ends up way more deterministic than code generated from the CoT prompt.

Answer to RQ6: Under temperature=1, the difference in non-determinism among different
prompt engineering techniques is not obvious. When setting temperature=0, the code
candidates generated from the Concise prompt are more deterministic than our Base
prompt, while those code candidates generated from the CoT prompt suffer from higher
randomness than our Base prompt.
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5 THREATS TO VALIDITY
The threats to internal validity mainly lie in the implementation of our experiment and result
analysis. To reduce the first threat, we checked our code twice, once during the experiment stage, and
once during the record analysis stage. To reduce the second threat, the two authors independently
analyzed the experiment results and drew experimental conclusions separately. Once their analysis
results were different, the third author discussed with them to determine the final result.
The threats to external validity mainly lie in the datasets, GPT versions, and prompt design in

our study. To reduce the threat in datasets, we use three diverse datasets that are widely used in
code generation tasks. Additionally, the problems in our dataset are from different contests with
different difficulties. For example, CodeContests is the most challenging dataset, while HumanEval
is the easiest, in terms of the average difficulty of coding problems. To reduce the threat in GPT
versions, we consider the two newest versions of GPT: GPT-3.5 and GPT-4, and compare their
non-determinism from multiple aspects. To reduce the threat of prompt design, we use the most
typical prompts that are the most widely used in LLM-based code generation and design an RQ to
study their influence on non-determinism.

Another primary concern highlighted in our analysis revolves around the operationalization of
semantic, syntactic, and structural similarities into measurable metrics for assessing code similarity.
The approach of measuring semantic similarity through the comparison of test execution outputs,
while practical, presents a notable limitation. It potentially oversimplifies the multifaceted nature of
semantic similarity, which should ideally encapsulate the code’s meaning and functionality rather
than merely its output. This method risks ignoring the intricate logic and diverse correct solutions
that different pieces of code may offer. To reduce the threat in measurement tools, we consider
three types of similarities and choose at least two measurements for each type of similarity, and we
also apply statistical analysis techniques to enhance our experiment results. For the HumanEval
dataset, we evaluate our measurement on an external testset, EvalPlus [42]. The result shows that
our measurements show similar evaluation results, which supports the robustness of our chosen
measurements.
However, it is important to acknowledge certain limitations within our study that may affect

the breadth of its applicability and the generalizability of its findings. Firstly, our analysis does not
extend to the impact that different programming languages might have on the non-determinism
of code generation. Programming languages vary widely in syntax, semantics, and complexity,
which can influence how LLMs like ChatGPT interpret and generate code, potentially affecting
the degree of non-determinism in the output. Secondly, our work only adopts a few methods
for measuring code similarity. There is no unified standard for measuring code similarity. It is
challenging to cover all the code similarity measurements. Other methods include embedding-based
similarity measure methods, using pre-trained code language models, such as CodeBERT [17]
and GraphCodeBERT [22]. Thirdly, the influence of the prompt on non-determinism is not fully
considered. The specificity, clarity, and technical depth of prompts provided to ChatGPT can
significantly influence the model’s output, suggesting that prompts could be a crucial factor in
understanding non-determinism. Fourthly, our study focuses exclusively on ChatGPT. While
ChatGPT is a prominent LLM used for code generation, it is not the only one. The landscape of
LLMs is diverse, with models trained on different datasets, architectures, and objectives. Therefore,
our findings may not apply to other LLMs used for similar purposes.
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6 RELATEDWORK
6.1 Code Generation
Code generation generates programs that need to satisfy all the constraints defined by the underlying
task. Usually, the constraints are represented in various forms, e.g. input/output pairs, examples,
problem descriptions, partial programs, and assertions. Relatively early work includes deductive
synthesis approaches [19, 46] and inductive synthesis approaches [8, 57, 58, 60]. The deductive
synthesis approach operated under the assumption that a comprehensive and precise formal
specification of the user’s desired intention would be provided. However, in many instances, this
turned out to be just as intricate and challenging as creating the actual program. While the inductive
synthesis approach was based on inductive specifications such as input/output pairs and examples
etc, such as works on Lisp programs [8, 57, 60], Pygmalion [58] and more recently FlashFill [20].
More information could be found in a survey [21], which covers notable work on the development
of program synthesis approaches.

In recent years, more and more researchers apply neural networks in code generation. Yin and
Neubig [70] combine the grammar rules with the decoder and propose a syntax-driven neural
architecture to improve code generation performance. Instead of RNN, Sun et al. [61] propose a
grammar-based structural CNN to capture the long dependency in code. Bolin et al. [66] propose a
dual learning framework that jointly trains the code generation model and code summarization
model together to achieve better performance in both tasks. Xu et al.[68] present a user study
in-IDE code generation, demonstrating challenges such as time efficiency, correctness, and code
quality, as well as the willingness to use code generation tools from developers.

6.2 Language Model for Code generation
The triumph of transformers in natural language modeling [9] has stimulated considerable interest
among researchers in applying transformer models for code generation. Existing research on code
generation models can be classified into three categories: sequence-based techniques, tree-based
methods, and pre-trained models.

Sequence-based techniques take code as a sequence of tokens and employ language models to
produce source code one token at a time based on input descriptions. Ling et al. [40] propose a gen-
erative model for code generation along with a character level softmax and multi-pointer network
to address the problem of generating code from a mixed language and structured specification, and
receiving success in trading card games (Magic the Gathering and Hearthstone). Hashimoto et al.
[24] train a retrieval model with a noisy encoder-decoder to enable similar code retrieving, and
then use the similar code as an additional input to improve the performance of the generator.

Tree-basedmethods generate a parse tree of the code, e.g. Abstract Syntax Tree (AST), based on
the input description, and then convert the parse tree into the corresponding code. Dong et al. [14]
encode natural language utterances into vectors and generate their corresponding logical forms as
trees using the LSTM model. Yin et al. [71] propose a semantic parser ‘Tranx’, which generates the
tree-construction action sequence with a transition-based neural model, and constructs the AST
from the action sequence.
Pre-trained models are obtained from training on massive data of source code, which could

be later fine-tuned on certain datasets for code generation purposes. Encoder pre-trained models,
such as CodeBERT [17], usually are trained with two objectives, i.e., Masked Language Modeling
and Replaced Token Detection. During the fine-tuning phase, the input should be fed in the same
way as the pre-training phrase, so that semantic relevance could be measured. Decoder pre-trained
models are designed to predict the next token based on a given input context. GPT-series [56] are
typical Decoder pre-trained models, and based on GPT, there are many efforts on code generation.
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Based on GPT-2, Lu et al. [45] provide CodeGPT for code completion and text-to-code generation.
After GPT-3 was developed, CodeX12 and GitHub Compilot13 was created and released their beta
version for trial by academia and industry. Due to neither Codex nor GitHub Copilot being open-
sourced, there are several attempts to reproduce their performance, like PYCODEGPT-CERT [73],
CodeParrot14, and GPT-CC15. Encoder-decoder pre-trained models are composed of an encoder
and a decoder. AlphaCode [37], which is pre-trained through GitHub repositories with 715.1 GB of
code, uses an encoder-decoder transformer architecture. It achieves on average a ranking in the
top 54% in competitions with more than 5,000 participants in simulated evaluations.

ChatGPT, a language model developed by the team of OpenAI, has the potential to play a role in
code generation. As it is widely known, ChatGPT offers a chat window to enable interaction in a
conversational way. In addition to its powerful capabilities for natural language processing tasks,
ChatGPT inherits the code generation capabilities from Codex and can perform even better, so the
OpenAI team has announced the deprecation of Codex series models in its official documents. There
are several research works that mentioned its ability in code-related areas, including mathematical
capability [18], bug-solving capability [62], and software testing [29]. ChatGPT’s ‘Regenerate
response’ function demonstrates the diversity of its output, but at the same time, it also raises
concerns about the consistency of its output given the same input. Currently, people are amazed
by its superficial performance in terms of code generation, however, there is still no research
work focused on the threat of non-determinism. Therefore, we think it is necessary to make a
comprehensive evaluation of ChatGPT’s ability in code generation. More detailed information
could be found on its official website’s blog [2].

6.3 Non-determinism Handling in the Literature
The non-determinism issue has been studied in traditional Deep Learning-related research: Pham
et al. [53] measure the influence of nondeterminism-introducing (NI)-factors in Deep Learning, and
study the awareness of this variance among researchers and practitioners. However, the severity of
the non-determinism threat in LLM-based coding studies remains unclear.

To understand howwell LLM-based code generation papers handle the threat of non-determinism,
we collect research articles from Google Scholar with the query ‘code generation’ AND ‘Large
Language Model’ in the past 2 years (from January 2022 to July 2023). During the search, we
search the full text of the paper (excluding citations and appendixes) for keywords, such as non-
determinism and its synonyms, the number of experimental repetitions, and the variance of
experimental results. After locating these keywords, we manually combine the context to confirm
whether the sentence means to declare that non-determinism exists in their study. If the statement
exists in the experimental section of the paper and the authors consider non-determinism in
their experiment setting and result report, we classify it as considering non-determinism in the
experimental design and mentioning non-determinism in the paper; otherwise, if non-determinism
is mentioned elsewhere without any actions to mitigate non-determinism, such as in the discussion
section, we classify it as only mentioning non-determinism, but not considering this factor in the
experiment. If the above keywords are not mentioned in the paper, we read the full text of the
paper to ensure that there are no sentences mentioning non-determinism in the paper. If relevant
non-determinism statements were encountered, we classify the paper using the above classification
method and update our keyword library. After ensuring that our keyword database is up to date and

12https://openai.com/blog/openai-codex
13https://github.com/features/copilot
14https://huggingface.co/codeparrot/codeparrot
15https://github.com/CodedotAl/gpt-code-clippy
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that the two search results are consistent, we searched all the papers twice to obtain our literature
review data.
There are 107 papers obtained from Google Scholar according to their relevance rankings. In

this survey, we mainly focus on articles with experiments and exclude those with posters and
visions only, which yields a set of 76 papers. After an in-depth reading of the experimental design
and discussion in each paper, we find that only 35.5% (27/76) out of the 76 papers mention non-
determinism or related terms (e.g., stability, randomness, and variance) in their papers. Among
them, 21.1% (16/76) papers consider non-determinism in their experimental evaluation, including
fixed random seeds, multiple runs of experiments with different fixed random seeds, and report
results with error bars or standard deviation. In addition, 14.5% (11/76) of the papers do not consider
non-determinism in their experiments, but discuss the threat of non-determinism in their paper.

7 DISCUSSION
In this section, we discuss the implications, trade-offs of non-determinism, and future research
directions for code generation with LLMs.

7.1 Implications for Software Developers and Researchers
For developers, it is essential to recognize the limitations of ChatGPT and the potential risks of
using generated code in production. If developers prefer a more stable code, they can use a smaller
temperature but should keep in mind that even the smallest temperature (i.e., temperature=0)
could not guarantee the determinism. Moreover, our observation on the correlation between the
length of prompts and code correctness/non-determinism suggests the importance of prompt
engineering. Developers should thoroughly test the generated code before deploying it, and even
consider incorporating more robust testing and validation processes to ensure the determinism
and reliability of the generated code.
For researchers, the variance of the generated code raises questions about the quality and

validity of the results obtained from assessing LLMs in code generation. If the code generated from
ChatGPT is unstable, it can lead to non-reproducible results and unreliable conclusions. Therefore,
researchers should carefully consider the limitations of ChatGPT when designing experiments and
interpreting results. To reduce the randomness caused by the non-determinism issue, researchers
can report the average results, variance, or distribution from multiple requests. Also, it is important
to use different datasets, since our study finds that both the correctness and non-determinism of
the generated code vary significantly from dataset to dataset. In addition, using a prompt with
detailed instructions, a clear structure, and concrete response requirements would help to reduce
randomness in generated code.

7.2 Trade-off of non-determinism
Our empirical study highlights the issue of non-determinism in code generation tasks when using
ChatGPT. While we underscore the challenges this non-determinism introduces, particularly in
terms of ensuring consistency and reliability in generated outputs, it is essential to also acknowledge
the potential benefits that non-determinism brings, especially in the realm of creativity.
The inherent non-deterministic nature of LLMs can foster a degree of creativity and diversity

in the outputs that deterministic systems may not achieve. This aspect is particularly valuable in
applications requiring innovative solutions or creative content generation, where the variety and
uniqueness of the output are more critical than in strictly rule-based or deterministic scenarios. In
other words, the non-determinism implies that making multiple requests to LLMs may increase
the chance for developers to receive high quality code and therefore enhance the code generation
performance. For instance, throughmaking five requests in RQ1with temperature of 1, the candidate
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that achieves the highest pass rate for a given code problem shows an improvement on average
of around 16.13 times (CodeContests), 3.12 times (APPS), and 1.98 times (HumanEval) over the
candidate with the lowest pass rate; it exhibits an overall improvement of 5.21 times (CodeContests),
1.40 times (APPS), and 0.59 times (HumanEval) against its mean performance among five candidates.
Looking deeper into the consistency of the error, we can find that generated code candidates are
more likely (at least 65.85%, 73.83%, and 90.00% in CodeContests, APPS, and HumanEval) to share
the same error type if all of them fail to pass the test cases. The most common error types they share
are IndexError (46.03% in CodeContests), IndexError (34.78% in APPS), and NameError (33.33% in
HumanEval) respectively, under temperature=0.

7.3 Future work
Achieving an optimal balance between determinism and creativity is crucial for enhancing LLMs’
effectiveness across a broad spectrum of applications. Too much determinism could stifle creativity,
leading to predictable and monotonous outputs, while excessive non-determinism might com-
promise the reliability and consistency necessary for applications requiring precise and accurate
results. To address these challenges and strike a balance between determinism and creativity, future
research could explore several promising directions:
Voting Mechanism: Implementing a voting mechanism wherein multiple candidates of the

model generate outputs, and a consensus approach should be used to select the most appropriate
output. This method can help mitigate the effects of non-determinism by leveraging the collective
decision-making process to choose outputs that are both creative and relevant to the task.
Repair Loop Driven by LLMs: Developing techniques for loop repair driven by LLMs can

offer a novel approach to addressing non-determinism. By automatically identifying and correcting
inconsistencies or errors in the generated code, such a system could enhance the reliability of
outputs without significantly compromising creativity. This approach would rely on the model’s
ability to learn from feedback loops, improving its performance over time.

Hybrid Models: Investigating hybrid models that combine deterministic and non-deterministic
components might offer a pathway to achieving the desired balance. Such models could leverage
the strengths of both approaches, using deterministic methods to ensure reliability and consistency
where needed, while allowing for creative freedom through non-deterministic processes in aspects
where innovation is prized.

Customizable Levels of Determinism: Developing LLMs that allow users to specify their
preferred level of determinism versus creativity could cater to a wide range of applications. This
customization could enable users to tune the model’s outputs according to the specific requirements
(e.g. domain-specific) of their task, whether that be generating highly creative content or producing
consistent and reliable code.

8 CONCLUSION
This work studies the non-determinism threat of code generation with ChatGPT. We perform
experiments on three widely studied code generation benchmarks and find that the correctness, test
outputs, as well as syntax and structure of code candidates generated from the same instruction,
vary significantly in different requests. We hope that this paper could raise awareness of the threat
of non-determinism in future code generation tasks when using large language models.
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