
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

An Empirical Study of the Non-determinism of ChatGPT in
Code Generation
SHUYIN OUYANG, King’s College London, United Kingdom
JIE M. ZHANG, King’s College London, United Kingdom
MARK HARMAN, University College London, United Kingdom
MENGWANG, University of Bristol, United Kingdom

There has been a recent explosion of research on Large Language Models (LLMs) for software engineering
tasks, in particular code generation. However, results from LLMs can be highly unstable; nondeterministi-
cally returning very different code for the same prompt. Such non-determinism affects the correctness and
consistency of the generated code, undermines developers’ trust in LLMs, and yields low reproducibility in
LLM-based papers. Nevertheless, there is no work investigating how serious this non-determinism threat is.

To fill this gap, this paper conducts an empirical study on the non-determinism of ChatGPT in code
generation. We chose to study ChatGPT because it is already highly prevalent in the code generation research
literature. We report results from a study of 829 code generation problems across three code generation
benchmarks (i.e., CodeContests, APPS, and HumanEval) with three aspects of code similarities: semantic
similarity, syntactic similarity, and structural similarity. Our results reveal that ChatGPT exhibits a high degree
of non-determinism under the default setting: the ratio of coding tasks with zero equal test output across
different requests is 75.76%, 51.00%, and 47.56% for three different code generation datasets (i.e., CodeContests,
APPS, and HumanEval), respectively. In addition, we find that setting the temperature to 0 does not guarantee
determinism in code generation, although it indeed brings less non-determinism than the default configuration
(temperature=1). In order to put LLM-based research on firmer scientific foundations, researchers need to take
into account non-determinism in drawing their conclusions.

1 INTRODUCTION
Large Language Models (LLMs) are nondeterministic by nature [34]. This is because LLMs predict
the probability of a word or token given the context, represented by a sample of words. The
randomness in LLMs typically comes from the sampling methods used during text generation, such
as top-k sampling or nucleus sampling [31, 50]. As a result, identical instructions or prompts can
yield completely different responses to separate requests.
This non-determinism (i.e., the inconsistency in the code candidates generated in different

requests with identical prompts)1 is an essential consideration when using LLM in practice [59].
Unreliable and inconsistent code snippets can have significant negative effects on the process of
software development, particularly in safety-critical applications where consistency and reliability
are paramount [11, 30]. It may also undermine developers’ trust in LLMs when completely different
suggestions are given at different times [64].
Moreover, non-determinism affects the reliability and reproducibility of empirical software

engineering [54]. Indeed, compared to other tasks of ChatGPT, such as question answering and text
summarization, the non-determinism threat in code-related tasks is much more serious, because the
inconsistency (especially semantic inconsistency) often indicates errors in the generated code [28].
It is therefore of vital importance to understand how serious the non-determinism is for LLM-based
software engineering tasks and call for actionable solutions to alleviate this issue.

1There are other terms in the literature that also refer to non-determinism, such as inconsistency, variance, randomness,
and instability.

Authors’ addresses: Shuyin Ouyang, King’s College London, London, United Kingdom; Jie M. Zhang, King’s College London,
London, United Kingdom; Mark Harman, University College London, London, United Kingdom; Meng Wang, University of
Bristol, Bristol, United Kingdom.

, Vol. 1, No. 1, Article . Publication date: September 2024.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

This paper presents the first systematic empirical study on the threat of non-determinism of
ChatGPT in code generation tasks. We choose the code generation tasks because code generation
with Large Language Models (LLMs), such as ChatGPT, has recently attracted significant attention
due to its impressive and cutting-edge performance [10, 15, 37]. Indeed, many publications have
emerged from both the software engineering community and the machine learning community on
evaluating the capability of ChatGPT in code generation [6, 10, 16, 41, 69].
This paper focuses on ChatGPT (including GPT-3.5 and GPT-4), rather than other LLMs, for

the following two reasons: 1) ChatGPT is the most widely adopted LLM in code generation in the
literature [15, 16, 23, 42, 44, 65, 72]; 2) ChatGPT has the best performance in code generation and
represents the state-of-the-art so far [4, 15]. Thus, as the first work on the non-determinism of
LLMs in software engineering tasks, we focus on ChatGPT in this paper but encourage other work
to continue to investigate the non-determinism issue in other LLMs.
We conduct a series of experiments using the ChatGPT models on three widely-studied code

generation benchmarks (i.e. CodeContests, APPS, and HumanEval) with 829 coding problems. For
each code generation task, we let ChatGPT make five predictions. We then compare the similarity
of the five code candidates from three aspects, namely semantic similarity, syntactic similarity, and
structural similarity. We also explore the influence of temperature (i.e., a parameter that controls the
randomness of the response generated by ChatGPT) on non-determinism, as well as the correlation
between non-determinism and coding task features such as the length of coding instruction and
the difficulty of the task. We show the non-determinism with different models of ChatGPT, namely,
GPT-3.5 and GPT-4. Finally, we compare the non-determinism of code generation with different
prompt engineering strategies.

Our results reveal that the threat of non-determinism in ChatGPT for code generation is serious,
especially under default setting: In particular, 1) the ratio of problems with not a single equal test
output among the top-five code candidates is above 50% for all the benchmarks we study; 2) the
maximumdifference of the test pass rate reaches 1.00 for all three datasets, and accounts for 39.63% of
the problems in HumanEval, the most widely used code generation benchmark; In addition, contrary
to the widely held belief (and practice followed to minimize nondeterminism) [7, 13, 39], setting
the temperature to zero does not guarantee determinism in code generation. Also interestingly,
our result analysis suggests that the length of coding instructions has a negative correlation with
almost all our similarity measurements, meaning that longer description length tends to yield code
candidates with less similarity and more buggy code. Different prompt engineering strategies also
yield different degrees of non-determinism in code generation.

To understand how the literature handles the non-determinism threat, we collect 76 LLM-based
code generation papers that appeared in the last 2 years. Our manual analysis results highlight that
only 21.1% of these papers consider the non-determinism threat in their experiments. These results
highlight that there is currently a significant threat to the validity of scientific conclusions. We call
for researchers to take into account the non-determinism threat in drawing their conclusions.

To summarize, this paper makes the following contributions:

• We present the first study of the non-determinism threat in code generation tasks on ChatGPT,
with three widely-studied datasets (CodeContest, APPS, HumanEval) and three types of similarity
measurements. Our results reveal that the non-determinism threat is serious and deserves
attention from both academia and industry.

• We study the influence of temperature on the non-determinism of ChatGPT and find that setting
temperature to zero does not guarantee determinism in code generation, which is contrary to
many people’s beliefs.

, Vol. 1, No. 1, Article . Publication date: September 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 3

• We study the correlation between coding task features and the degree of non-determinism. The
results reveal that the length of coding instruction has a negative correlation with syntactic and
structural similarity, as well as the average correctness of the generated code.

• We study the influence of different prompt engineering techniques on code generation non-
determinism. We find that prompts with a Chain-of-Thought strategy leads to more non-
determinism when temperature=0, while code candidates generated from prompts requesting
simple and concise code are more stable.
We release our data, code, and results at our homepage [3]. The rest of the paper is organized as

follows. Section 2 introduces the main procedure of our study. Section 3 describes the design of the
experiments, including research questions, benchmarks, selected models, and measurement tools.
Section 4 presents the results and discusses some interesting findings based on the experimental
results we obtained. Section 5 discusses the threats to validity in two aspects, as well as the
limitations of this study. Section 6 introduces the related work of our study. Section 7 discusses the
implications for software developers and researchers and future work. Section 8 concludes.

2 METHOD
Fig 1 shows an overview of our experimental procedure. For each code generation task, our study
first produces a prompt with a coding instruction, then feeds this prompt to ChatGPT API [2] to
generate code (zero-shot). We call the API five times to let ChatGPT make five predictions with the
same prompt. We then extract code from each of the five responses, to get five code candidates. Our
non-determinism analysis compares the five code candidates in terms of their semantic similarity,
syntactic similarity, and structural similarity.

datasets

Optimised
code

Bugs
existence?

Generated
code

S

context-similar
mutation

structural
filtering

similarity
analysis

probability or
 cross reference

machine
translator

automatic test input generation automatic test oracle generation automatic inconsistency repair

mutant
candidates

filtered
mutants

original
translation

mutant
translations

final
translation

Inconsistency?

Yes
best

translation

original
sentence

machine
translator

tr
an

sl
at

io
n

m

ap
p

in
g

original translation input

t(S)

translation output for S

S?

transformed
translation input

t(S?)

translation output for S?

machine translator

machine translator

sim(t(S), t(S')) < r?similarity analysis
between t(S) and t(S')

repair t(S)

repair t(S')

Yes

repair with the best
mutant translation

R(t(S))

R(t(S'))

similarity analysis between
R(t(S))and R(t(S'))

sim(R(t(S)), R(t(S')))
< r?

Is the similarity between
the two translations

smaller than threshold r?

Is the similarity between the
two repaired translations
smaller than threshold r?

repair t(S') with another
mutant translation

Yes

end No

 a
ut

om
at

ic
 in

co
ns

is
te

nc
y

re
pa

ir
au

to
m

at
ic

 te
st

in
g

t(S') has other mutant
translations?

Does t(S') have mutant
translations that have not

been used ?

Yes

No

repair results

repair with the next-best
mutant translation

Learning
program

Conversational AI
model building

Offline
validation

Online
deployment

chatbot

user

User input
Original bot
response

Online fairness
testing

Online fairness
enhancement

Fair bot
response

Explainability
improvement via
per-mutation and
causal analysisTraining data

 data
generation

algorithm improvement

 data
augementation

mutation

filtering

fairness
analysis

 ensemble

chatbot

 WP1: test input and oracle design

mutant
candidates

filtered
mutants

resonse for
mutants

final bot
response

unfairness?

best and fair
response

user input

re
sp

o
n

se

ed
it

in
g

chatbot

augmented
data

fine-tuning

WP2: automatic fairness testing

mutation

filtering

fairness
analysis

 ensemble

chatbot

mutant
candidates

filtered
mutants

original bot
reponse

resonse for
mutants

final bot
response

unfairness?
best and fair

response

user input

re
sp

o
n

se

ed
it

in
g

chatbot

augmented
data

fine-tuning

Yes

 WP3: automatic fairness enhancement

Yes

original bot
reponse

WP4: Data augmentation
and fine-tuning

AI code
generator

WP1: Bug
prediction

WP2:
Automatic

testing

WP3:
Automatic bug

localisation

WP4:
Automatic
bug repair

Developers

Yes

Bug corpus

Black-box optimisation

Return original code to developers

No

 WP5: Tool and dataset developoment

Automatic bug detection Automatic bug repair

Understanding

W1:
Capabilitites

and risks

W2: Influence
on the society

Correctness and Performance

Security, Fairness, and Privacy

Robustness and Stability

Understandability and Evolvability

Industry

Education

Research

Before code
generation

W4: Code
assessment

W5: Code
optimisation

W3: Prompt
engineering

Assuring

After code
generation

Assessing

Before code
generation

Code testing

Code
optimisation

Prompt
engineering

Assuring

After code
generation

Piloting Influence on
the society

Industry

Education

Research

Government

 Trustworthiness
of code

Correctness and
Performance

Security, Fairness,
and Privacy

Robustness and
Stability

Understandability
and Evolvability

prompt

ChatGPT

problem
description

response 1

response 2

response n

...

program 1

program 2

program n

...

test execution
results

text analysis

AST

Semantic
similarity

Syntactic
similarity

Structural
similarity

test suite

Fig. 1. Overview of the experimental procedure.

Prompt synthesis: The first step in our study is prompt preparation. There are many ways to
conduct prompt engineering for code generation. In this paper, we follow the common practice
in LLM-based code generation assessment [5, 15]. In particular, 1) we ask ChatGPT to generate
Python code for each code generation task with zero-shot prompting; 2) we use the basic prompt
design directly followed by programming task descriptions. To guarantee that ChatGPT produces
code rather than pure natural languages in its response, we augment the original coding problem
description with an instruction to request for Python code.
One challenge in extracting the code from the API response is that there is no clear signal to

distinguish code with plain text in the response, which is different from ChatGPT’s web chat
window (i.e. in the chat window, codes are returned with Markdown code blocks). To address
this problem, we specify the format of the generated code into ‘Markdown’. Thus, for each code
generation task, our prompt is shown as follows:

, Vol. 1, No. 1, Article . Publication date: September 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Generate Python3 code (Markdown):

this is the original coding problem description.

Code Extraction: After receiving the response from ChatGPT, we apply code extraction to retrieve
the code from the generated text. We compile the code directly without making any modifications.
Our experiments are mainly run on Google Deep Learning VM instances, with the Linux environ-
ment pre-installed from open images2. All of the necessary libraries are pre-installed. In this way,
it can ensure to the greatest extent that the generated code will not cause import errors caused by
the library not being installed during running.
Test Case Execution: To evaluate the semantics of ChatGPT’s generated code, we use the test
suite that is suited to each benchmark. We not only record whether each test passes or not but also
record every specific test output, which enables us to compare the similarity of test outputs even if
they both fail. For CodeContests and HumanEval datasets, every problem has a certain timeout
value of 3 seconds. The APPS dataset does not provide a default timeout value, and we set the value
to be 3 seconds as well. We use single-threaded scripts to run the tests to ensure that the test cases
are executed sequentially to avoid race conditions that may arise from concurrent executions.
Similarity Checking: To measure the similarity between code candidates, we introduce similarity
measurement tools that evaluated the semantic, syntactic, and structural similarity between the
generated code solutions. The semantic similarity is measured by comparing test execution outputs.
The syntactic similarity is measured by comparing the text similarity between codes. The structural
similarity is evaluated by comparing the code candidates’ abstract syntax trees (ASTs). More details
about our similarity measurement methods are mentioned in Section 3.4.

3 EXPERIMENTAL DESIGN
3.1 ResearchQuestions
This study answers the following questions:
RQ1: To what extent is ChatGPT susceptible to non-determinism in code generation under
the default setting? This RQ investigates the non-determinism of ChatGPT in terms of the
semantic, syntactic, and structural similarity among the code candidates generated with identical
instructions under the default setting. There are three sub-RQs:
• Sub-RQ1.1: To what extent is ChatGPT susceptible to non-determinism in terms of semantic
similarity?

• Sub-RQ1.2: To what extent is ChatGPT susceptible to non-determinism in terms of syntactic
similarity?

• Sub-RQ1.3: To what extent is ChatGPT susceptible to non-determinism in terms of structural
similarity?

RQ2: How does temperature affect the degree of non-determinism? Temperature is a hyperpa-
rameter of LLMs for controlling the randomness of the predictions. This RQ checks and compares
the non-determinism of ChatGPT in code generation with different choices of temperature.
RQ3: How does the non-determinism compare to the similarity of the top code candidates
generated within the same prediction? ChatGPT can be configured to generate multiple candi-
dates for one prediction, which are ranked by their predictive probability. This RQ compares the
similarity of the code candidates obtained in different predictions with those obtained within the
same prediction.
RQ4: What types of coding tasks have a higher degree of non-determinism? To understand
what affects non-determinism, this RQ studies the correlation between the features of coding tasks
2https://cloud.google.com/compute/docs/images

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://cloud.google.com/compute/docs/images

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 5

(e.g., the length of code generation instructions, the code problem difficulty, and labels) and the
similarity metrics used in our study. We also conduct qualitative analysis on specific cases for deep
analysis.
RQ5: How is GPT-4’s non-determinism compared with GPT-3.5? This RQ compares GPT-3.5
and GPT-4 in their degree of non-determinism in generating code.
RQ6:Howdo different prompt engineering strategies influence the degree of non-determinism?
This RQ compares the degree of non-determinism for different prompt engineering strategies (i.e.,
Chain-Of-Thought and requesting generated code as concise as possible) when using ChatGPT to
generate code.

3.2 Code Generation Benchmarks
Our experiments use the three most widely studied code generation benchmarks: CodeContest
[37], APPS [26], and HumanEval [12]. Table 1 shows their details. Each of these datasets has unique
characteristics, which are introduced below. The distribution of difficulty and problem tags of these
datasets are available on our homepage [3].

Table 1. Code generation benchmarks

Name Mean Length No. of Mean No. of Mean No. of Provided
of description Problems Test Cases Correct Solutions

CodeContests 1989.19 165 203.84 49.99
APPS 1663.94 500 80.43 20.92
HumanEval 450.60 164 9.24 1.00

CodeContests: CodeContests is used when training AlphaCode, which comprises coding problems
from various sources such as Aizu3, AtCoder4, CodeChef5, CodeforcesCodeChef6, and HackerEarth-
CodeChef7. In our experiment, following the assessment practice of AlphaCode, we use the test set
of CodeContests to benchmark the code generation tasks of ChatGPT.
APPS: APPS includes 10,000 coding problems (both the training set and testing set). This dataset
is exclusively designed for Python program synthesis evaluation. The original test set contains
5,000 code-generation problems, and we randomly sample 500 problems, among which there are
60.20% interview problems, 19.60% introductory problems, and 20.20% competition problems. APPS
evaluates models not only on their ability to code syntactically correct programs but also on their
ability to understand task descriptions and devise algorithms to solve these tasks [27].
HumanEval: The HumanEval dataset is an evaluation set first proposed in [12], which contains
164 hand-written coding problems. Each problem includes a function signature, docstring, body,
and several unit tests, with an average of 9.24 test cases per problem. We use the whole dataset to
benchmark our experiments.
As mentioned in Section 2, we especially focus on the code generated with Python3 language,

since it is one of the most widely studied programming languages in code generation [5, 12, 17, 37,
61, 63, 66].

3https://judge.u-aizu.ac.jp
4https://atcoder.jp
5https://www.codechef.com
6https://codeforces.com
7https://www.hackerearth.com

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://judge.u-aizu.ac.jp
https://atcoder.jp
https://www.codechef.com
https://codeforces.com
https://www.hackerearth.com

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

3.3 Configuration of ChatGPT
ChatGPT has gained widespread popularity and recognition in multiple tasks including question-
answering, language translation, sentiment analysis, and text summarising, among which code
generation is one of the most impressive tasks [10, 37]. There are several reasons why we have
chosen ChatGPT as our research target among all large language models. Firstly, ChatGPT has the
ability to generate highly coherent and contextually appropriate responses to a wide variety of
textual prompts [25]. This makes it an ideal tool for conducting research in areas of code generation
by designing specific prompts. Secondly, the GPT-3.5 series is a particularly attractive option due
to its impressive performance and large-scale training data, which allows for more accurate and
nuanced language processing capabilities [43]. Thirdly, the model API ‘gpt-3.5-turbo’ and ‘gpt-4’
released with ChatGPT have not been extensively studied in academia, and their capabilities in
terms of code generation are thus still unknown. Therefore, we choose them as our experiment
target models. Written in ChatGPT’s official website8, using ChatGPT’s model API requires various
parameters. We use the default values for most of the parameters in addition to the following ones:
• model: ID of the model to use. This parameter is strictly required, and in our case, we set this
parameter to ‘gpt-3.5-turbo-0125’ or ‘gpt-4-0613’.

• message: A list of messages describing the conversation so far, where two key values ‘role’
and ‘content’ should be filled. This parameter is also strictly required. In our experiments, the
message’s ‘role’ is ‘user’ and the ‘content’ contains the prompt we used for requesting for all of
the RQs.

• temperature: What sampling temperature to use, between 0 and 2 (Default value is 1). Higher
values will make the output more random, while lower values will make it more focused and
deterministic. In our study, we study the influence of temperature in RQ2 with three temperature
values: 0, 1, and 1.5. For RQ1, we use temperature=1 only, and for the rest of the RQs, we present
results with both temperature=1 and temperature=0.

• top_p: An alternative to sampling with temperature, called nucleus sampling, where the model
considers the results of the tokens with top_p probability mass. In our experiment, we do not
take it into consideration and set this value to remain at its default setting (i.e., top_p=1).

• n: How many code candidates (the so-called “chat completion choices” according to the ChatGPT
API website [2]) to generate for each input message (with 1 being the default value). The default
value of n is 1. In RQ3, we set n=5 to investigate how the non-determinism of code candidates
from the same request compares with those from different requests. We choose n=5, since 5 is a
widely used figure in the papers studying variance [51]. n=5 is only used in RQ3.

3.4 Non-determinism Measurement
In order to answer our research questions, we introduce the following tools for measuring the
degree of non-determinism.

3.4.1 Semantic similarity. We measure the semantic similarity of different code candidates by
checking their similarity in test execution results, including test pass rate and output equivalence
rate. The test pass rate calculates the ratio of the passed test case number against the total test case
number for code candidates. It is one of the most widely used measurement metrics for assessing
code generation capabilities9 [5, 12, 26, 37, 73]. Each code generation problem has five test pass
rates, one for each code candidate. We use the variance and maximum difference of the five values
to indicate semantic similarity. We also calculate the mean of the five values for the purpose of
8https://platform.openai.com/docs/api-reference/chat/create
9Although the benchmarks are very widely studied, their test suites can be inadequate. This paper is less affected by the
inadequate test suite issue as we focus on the similarity of test pass rate, rather than the absolute value of test pass rate.

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://platform.openai.com/docs/api-reference/chat/create

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 7

understanding correctness as well as the correlation between correctness and non-determinism
(RQ4).

The output equivalence rate records the ratio of identical test outputs (across different code
candidates for the same code generation instruction) against the total test outputs. Each instruction
has one output equivalence rate. For tests that produce specific outputs (without exceptions or
errors), we check whether the output values of different code candidates are equal to each other. In
the following parts of this paper, we use OER to represent output equivalence rate and use OER
(no ex.) to represent output equivalence rate (without exceptions or errors) for short. Each code
generation problem has only one OER and OER (no ex.). Additionally, we measure the OER and
OER (no ex.) in pairs and report the mean output equivalence rate of the combinations of every
two code candidates for a coding problem. For tests that yield exceptions or timeout errors, we
consider the test outputs to be the same if the exception or error messages are the same.
Some papers use the pass@k metric [12, 32] (i.e., the ratio of coding tasks with 100% test pass

rate) to indicate the high-level code generation correctness of a code generation approach. We do
not use this metric in our main body of experiments because we focus on the non-determinism
threat, while pass@k ignores the correctness of each single coding task and concentrates only on
the ratio of correct code candidates in all the tasks, which can cover the non-determinism across
different requests. In addition, pass@k does not reflect the practical application scenario of LLMs
in code generation, because developers are less likely to try the model for k times until they finally
get one correct solution.

3.4.2 Syntactic similarity. The syntactic similarity in this study treats different code candidates
as texts and checks their textual similarity. We choose the Longest Common Subsequence and
Levenshtein Edit Distance as evaluation tools [35, 36, 47, 68]. In the following content, we use
LCS and LED to represent the Longest Common Subsequence and Levenshtein Edit Distance for
short respectively. LCS measures the similarity via the normalized length of the longest common
subsequence between two sequences. LED measures the minimum number of single-token edits
(insertions, deletions, or substitutions) required to change one code into the other. LCS and LED
both regard the token as the smallest unit, and the token is divided by the .split() method, that
is, any whitespace is used as the separator to divide the code into tokens. We measure the syntactic
similarity with LCS/LED by comparing the first code candidate with each of the remaining four
code candidates. Thus, each code-generation problem has four values of each metric. We use the
mean, mean worst value (i.e., mean highest value for LED and mean lowest value for LCS), and pair
mean (by comparing all the combinations of two code candidates in pairs) to indicate the syntactic
similarity measured by each metric.

Below are the formulas for the LCS and LED:

𝐿𝐶𝑆 =
𝑙𝑒𝑛(𝑙𝑐𝑠 (𝑠, 𝑡))

𝑙𝑒𝑛(𝑠)
where 𝑠 is reference string, 𝑡 is the string to be compared, 𝑙𝑐𝑠 (𝑠, 𝑡) is the longest common subsequence
between 𝑠 and 𝑡 .

LED𝑠,𝑡 (𝑖, 𝑗) =


max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0

min


led𝑠,𝑡 (𝑖 − 1, 𝑗) + 1
led𝑠,𝑡 (𝑖, 𝑗 − 1) + 1
led𝑠,𝑡 (𝑖 − 1, 𝑗 − 1) + 1(𝑠𝑖≠𝑡 𝑗)

otherwise

where LED𝑠,𝑡 (𝑖, 𝑗) is the LED between the first 𝑖 characters of 𝑠 and the first 𝑗 characters of 𝑡 , and
diff (𝑠𝑖 , 𝑡 𝑗) is 0 if the 𝑖-th character of 𝑠 is the same as the 𝑗-th character of 𝑡 , and 1 otherwise.

, Vol. 1, No. 1, Article . Publication date: September 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

3.4.3 Structural similarity. We design structural similarity to measure the code similarity in terms
of the Abstract Syntax Tree (AST). AST is a tree-like representation of the source code in which each
node in the tree represents a construct in the code, such as variable, function, or control structure,
and the edges between nodes represent the relationships between these constructs. We use a
Python library called pycode_similar10 [38, 67] to calculate the similarity. The pycode_similar
normalizes Python code into AST representation and uses Python library difflib to get the
modification from referenced code to target code. There are two different measurement settings, i.e.
Unified_Diff and Tree_Diff. Unified_Diff measures the difference of normalized function AST
string lines, while Tree_Diff measures the difference in tree edit distance between two given ASTs.
Similar to syntactic similarity, for each code generation problem, we report the mean, smallest
similarity values, and pair mean among the five candidates.

3.4.4 Statistical Analysis. We conduct statistical analysis to demonstrate the significance of the
differences among the outputs. We choose Kruskal-Wallis test [48] which does not require as-
sumptions of normal distribution. The Kruskal-Wallis test stands as a non-parametric method
for analyzing data, serving as an extension of the Mann-Whitney U test [49] to more than two
independent groups. The essence of the Kruskal-Wallis test lies in comparing the median ranks
among groups, rather than the means, which makes it robust against outliers and non-normal
distribution of data.

4 RESULTS AND FINDINGS
This section introduces the experimental results as well as the analysis and discussion for each RQ.

4.1 RQ1: Non-determinism of ChatGPT with Three Types of Similarities under default
setting

4.1.1 RQ1.1: Semantic Similarity. Semantic similarity is measured by the following metrics: test
pass rate and OER (output equivalence rate), and OER excluding exceptions. As mentioned in
Section 3.4, each coding problem has five test pass rates, we use the variance and maximum
difference of these five values to indicate ChatGPT’s non-determinism in generating code for the
task. We also report the mean value, which represents the average correctness of the generated
code. For OER or OER (no ex.), we compare the equivalence across all the five code candidates
as well as between every two candidates. For each dataset, we report the distribution of different
measurements in Figure 2 and Figure 3. The mean measurement values for all the coding problems
(the mean value inside each bar in each bar chart) in a dataset are shown in Table 2. The max diff
refers to the maximum value of the max diff among all the coding problems. In addition, Table 2
also shows the “Ratio of worst cases”, which is the ratio of problems with maximum diff of test
pass rate being 1 or OER being 0.
From Figure 2, Figure 3, and Table 2, we observe that ChatGPT is very unstable in generating

semantically consistent code candidates. In particular, the ratios of tasks with zero equal test output
(i.e., OER=0) among the five code candidates are 75.76%, 51.00%, and 47.56% for the three datasets,
respectively. This indicates that for the majority of the cases, ChatGPT generates code candidates
with completely different semantics from identical instructions.

The mean variance of the test pass rate is relatively small from Table 2, ranging between 0.03
and 0.09, this is because the test pass rate of different code candidates is often equally worse, as
can be observed from Figure 2.(a). However, the max diff of the test pass rate reaches 1.00 for all
three datasets and accounts for 39.63% of the problems in HumanEval, the most widely used code
generation benchmark. This indicates the correctness of code candidates generated from the same
10https://github.com/fyrestone/pycode_similar

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://github.com/fyrestone/pycode_similar

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 9

CodeContests

APPS

HumanEval
0.0

0.1

0.2

(a) Variance

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(b) Mean

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(c) Max Diff

Fig. 2. RQ1.1: Distribution of semantic similarity in terms of test pass rate.

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(a) OER

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(b) OER (no ex.)

Fig. 3. RQ1.1: Distribution of semantic similarity in terms of test output equivalence rate (OER and OER (no
ex.)).

Table 2. RQ1.1: Results of semantic similarity. OER and OER (no ex.) are the output equivalence rate and the
equivalence rate excluding exceptions.

Semantic similarity Metric CodeContests APPS HumanEval

Test pass rate

Mean value 0.16 0.42 0.63
Mean variance 0.03 0.04 0.09
Mean max diff 0.24 0.35 0.53
Max diff 1.00 1.00 1.00
Ratio of worst cases 3.64% 10.40% 39.63%

OER
Mean value 0.09 0.27 0.39
Pair mean value 0.27 0.47 0.67
Worst value 0.00 0.00 0.00
Ratio of worst cases 75.76% 51.00% 47.56%

OER (no ex.)
Mean value 0.06 0.25 0.35
Pair mean value 0.19 0.42 0.61
Worst value 0.00 0.00 0.00
Ratio of worst cases 81.21% 53.40% 51.22%

instruction can vary significantly. The large difference in different datasets also sheds light on the
importance of using multiple datasets when assessing the code generation performance for large
language models.

, Vol. 1, No. 1, Article . Publication date: September 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Our statistical analysis with Kruskal-Wallis test shows that, in 92.1% of CodeContests, 39.4% of
APPS, and 40% of HumanEval, the outputs of the code are indeed significantly different, where the
p-value under the Kruskal-Wallis test is less than 0.05.

Answer to RQ1.1: The semantic difference among the code generated by ChatGPT in
different requests is significant. In particular, the ratio of coding tasks with not a single equal
test output among the five different requests is 75.76%, 51.00%, and 47.56% for CodeContests,
APPS, and HumanEval, respectively. In addition, the maximum difference of the test pass
rate reaches 1.00 for all three datasets and accounts for 39.63% of the problems in HumanEval,
the most widely used code generation benchmark.

4.1.2 RQ1.2: Syntactic Similarity. Syntactic similarity measures the text similarity among code
candidates. In our experiment, the syntactic similarity is evaluated by the following metrics: LCS
and LED (more details in Section 3.4). For the five code candidates for each coding problem, we use
the first code candidate as a reference and calculate the LCS and LED between the reference and
the remaining four candidates. In addition, we calculate LCS and LED with code candidates in pairs,
for each pair combination. Thus, each problem has four LCS values and LED values, and 20 LCS
and LED values in pairs, each value indicating a syntactic similarity. We use the mean of these four
values as well as the worst of them (i.e., the smallest value for LCS and the largest value for LED),
and the mean of these 20 values calculated in pairs to represent each problem’s syntactic similarity.
Figure 4 shows the distribution of LCS and LED for all the problems in each dataset. Table 3 shows
the mean, mean worst, and pair mean LCS and LED values for all the coding problems (the mean
value inside each bar in the figures) in a dataset.

Table 3. RQ1.2: Syntactic similarity. Lower LCS and higher LED indicate lower syntactic similarity.

Syntactic Similarity Metric CodeContests APPS HumanEval

LCS Mean value 0.22 0.23 0.42
Mean worst value 0.16 0.16 0.25
Pair mean value 0.23 0.24 0.41

LED Mean value 58.80 47.37 26.56
Mean worst value 77.46 61.55 43.91
Pair mean value 58.86 46.94 27.10

We observe that the code candidates generated from the same instruction also differ largely in
the syntactic measure. Specifically, the mean LCS is 0.22, 0.23, and 0.42 for CodeContests, APPS, and
HumanEval, respectively, indicating the mean ratio of the longest common subsequences among
the code candidates.
For the three datasets, we could see from Table 3 that the lowest LCS and largest LED values

both happen for the CodeContests dataset. By contrast, the largest LCS and smallest LED values
both happen for HumanEval. This indicates that ChatGPT is most unstable syntactically for the
code generation tasks in CodeContests, and most stable for HumanEval. We further explore the
correlation between different similarities and code task features in Section 4.4.

Answer to RQ1.2: Code candidates generated by ChatGPT in different requests also differ
significantly in syntax. The mean syntax similarity (LCS) is only 0.22, 0.23, and 0.42 for
CodeContests, APPS, and HumanEval, respectively.

, Vol. 1, No. 1, Article . Publication date: September 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 11

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(a) LCS mean

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(b) LCS Worst

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(c) Pair LCS

CodeContests

APPS

HumanEval
0

200

400

600

(d) LED Mean

CodeContests

APPS

HumanEval
0

200

400

600

(e) LED Worst

CodeContests

APPS

HumanEval
0

100

200

300

(f) Pair LED

Fig. 4. RQ1.2: Distribution of syntactic similarity (LCS & LED). Lower LCS and higher LED indicate less
syntactic similarity.

4.1.3 RQ1.3: Structural Similarity. Structural similaritymeasures the codes’ similarity based on their
AST. In our experiment, the structural similarity is mainly measured by the tool pycode_similar
with two different settings, namely United_Diff and Tree_Diff (more details in Section 3.4). For the
five code candidates for each coding problem, we use the first code candidate as a reference and
calculate the structural similarity between the first candidate with the remaining four candidates
under United_Diff and Tree_Diff settings. We also calculate the structural similarity with code
candidates in pairs, with a total of 20 pair mean values. Thus, each problem has four mean values
and 20 pair mean values for United_Diff and Tree_Diff respectively, with each value indicating
a structural similarity measure. We use the mean of these four values, the worst of them, and
their pair mean values (i.e., the smallest value for United_Diff and Tree_Diff) to represent each
problem’s structural similarity. Fig 5 shows the distribution of United_Diff and Tree_Diff for all the
problems in each dataset. Table 4 shows the mean, mean worst values, and pair mean values under
United_Diff and Tree_Diff settings for all the coding problems (the mean value inside each bar in
the figures) in a dataset.

We observe that the code candidates generated from the same instruction show great similarity
in structure. Specifically, the mean values are 0.33, 0.43, and 0.60 under the United_Diff setting, and
0.41, 0.54, and 0.62 under Tree_Diff setting for CodeContests, APPS, and HumanEval, respectively.
For the three datasets, we could see from Table 4 that the lowest values under United_Diff and

Tree_Diff happen for the CodeContests dataset. By contrast, the largest values under the two
settings both happen for HumanEval. This indicates that ChatGPT is most unstable in structure for

, Vol. 1, No. 1, Article . Publication date: September 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Table 4. RQ1.3: Structural similarity.

Structural Similarity Metric CodeContests APPS HumanEval

United_Diff Mean value 0.33 0.43 0.60
Mean worst value 0.27 0.35 0.47
Pair mean value 0.46 0.52 0.67

Tree_Diff Mean value 0.41 0.54 0.62
Mean worst value 0.33 0.47 0.48
Pair mean value 0.56 0.63 0.70

CodeContests APPS HumanEval
0.00

0.25

0.50

0.75

1.00
UnifiedDiff TreeDiff

(a) Mean

CodeContests APPS HumanEval
0.00

0.25

0.50

0.75

1.00
UnifiedDiff TreeDiff

(b) Mean Worst

CodeContests APPS HumanEval
0.00

0.25

0.50

0.75

1.00
UnitedDiff TreeDiff

(c) Pair Mean

Fig. 5. RQ1.3: Structural Similarity (United_Diff & Tree_Diff).

the code generation tasks in CodeContests, and most stable for HumanEval. We further explore the
correlation between different similarities and task features in RQ4.

Answer to RQ1.3: Code candidates show high structural similarity under UnitedDiff and
TreeDiff settings. We observe that the code candidates generated from the same instruction
have high similarity in structure. Specifically, the mean values are 0.33, 0.43, and 0.60 under
the United_Diff setting, and 0.41, 0.54, and 0.62 under Tree_Diff setting for CodeContests,
APPS, and HumanEval, respectively.

4.2 RQ2: Influence of Temperature
The default temperature of ChatGPT is 111. This RQ explores whether the code generation non-
determinism of ChatGPT changes with the temperature changes. We use identical measurements
as in RQ1. We show our experiment results on CodeContests only. Results for other datasets are on
our homepage [3].
Table 5 shows the results. Overall, we observe that when temperature=0, ChatGPT has better

determinism than the default configuration (temperature=1) for all three types of similarities.
However, setting the temperature to 0 does not completely avoid non-determinism. Take OER
as an example, there are still 43.64% (CodeContests), 27.40% (APPS), and 18.29% (HumanEval)
of problems with no equal test output among the five code candidates. This is contrary to many
people’s belief that setting the temperature to 0 can make ChatGPT deterministic [7, 13, 39], because
when setting the temperature to 0, the model applies greedy sampling which should indicate full
determinism, with the logit value for the next token being a pure function of the input sequence
and the model weights. The reason for such non-determinism with the temperature being zero is
still controversial [1], with different hypotheses such as floating point, unreliable GPU calculations,
11https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 13

Table 5. RQ2: Influence of temperature (CodeContests).

Temperature Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

0 0.15 0.01 0.11 1.00 1.82%
0.5 0.16 0.02 0.15 1.00 2.42%
1 0.16 0.03 0.24 1.00 3.64%

Temperature OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

0 0.37 43.64% 0.59 0.27 54.55% 0.46
0.5 0.18 62.42% 0.37 0.13 68.48% 0.28
1 0.09 75.76% 0.27 0.06 81.21% 0.19

Temperature LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

0 0.61 0.44 0.62 23.45 35.87 22.31
0.5 0.33 0.23 0.34 44.48 62.02 44.89
1 0.22 0.16 0.23 58.80 77.46 58.86

Temperature United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

0 0.41 0.39 0.67 0.50 0.46 0.74
0.5 0.61 0.49 0.63 0.69 0.58 0.71
1 0.33 0.27 0.46 0.41 0.33 0.56

and its sparse MoE architecture failing to enforce per-sequence determinism [33, 55]. The details
for all the non-deterministic coding tasks and their test outputs with temperature=0 are on our
homepage [3].

When temperature=0.5, we observe that ChatGPT tends to generate code candidates that are more
deterministic than temperature=1, but less deterministic than temperature=0. This is as expected
because the higher temperature brings more creativity to ChatGPT and affects its ability to generate
similar code (as can be observed from the other measurements, such as LCS and LED). Nevertheless,
we observe that the value of test pass rates among the three different temperatures are similar,
which indicates that low temperature might be a better choice given the comparable test pass rate
and the low degree of non-determinism.

Answer to RQ2: Contrary to the widely held belief (and common practices), setting the
temperature to 0 does not guarantee determinism in code generation, although it indeed
brings more determinism than the default configuration (temperature=1) for all three types
of similarities. We also observe that the values of test pass rate among the three different
temperatures are similar, indicating that low temperature might be a better choice for code
generation tasks.

4.3 RQ3: Non-determinism Comparison with Top Candidates in the Same Prediction
RQ1 and RQ2 compare the similarity of 5 code candidates generated in multiple requests. Each
candidate is the top candidate in each request. However, ChatGPT can also generate 5 code candi-
dates within the same request (the top 5 candidates ranked by their predictive probabilities). This
RQ compares the non-determinism degree of code candidates for the two request configurations

, Vol. 1, No. 1, Article . Publication date: September 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

mentioned above (with temperature = 1 and temperature =0). Table 6 shows the results for Code-
Contests, the results for the two other datasets are on our homepage [3]. For ease of presentation,
we use R1 to refer to one-time requests, and R2 to refer to multiple requests.

Our results reveal that when setting temperature=1, it is difficult to tell which way of requesting
is more deterministic. For semantic similarity, R1 and R2’s performance are similar among three
datasets. Code candidates requested in R1 are slightly more random than those requested in R2 in
terms of syntactic similarity since those requested in R1 have lower LCS values and higher LED
values. However, code candidates requested in R1 are slightly more stable than those requested
in R2 when it comes to similarity because those requested in R1 have higher structural similarity
values in both United_Diff and Tree_Diff settings.

When temperature is 0, the difference between the two request ways is obvious. Code Candidates
requested by R1 show higher determinism than those requested by R2. When requesting by R1, the
ratio of worst cases, where max diff is close to 0 (1.20%), and the OER and OER (no ex.) are higher
than R2 and close to 1. The LCS values are higher than the values under other temperatures and LED
values are lower than the values under other temperatures, which indicates higher determinism.
Among the three datasets, the structural similarity values are also higher than the values in other
temperatures, which means the code candidates are more close to each other in terms of their AST
structure.

Table 6. RQ3: Similarity for different request ways (CodeContests), where t represents the temperature
setting.

Request Test Pass Rate

Way Mean value Mean variance Mean max diff Max diff Ratio of worst cases

R1 (t=1) 0.17 0.03 0.28 1.00 8.70%
R2 (t=1) 0.16 0.03 0.24 1.00 3.64%
R1 (t=0) 0.18 0.00 0.00 0.00 1.20%
R2 (t=0) 0.15 0.01 0.11 1.00 1.82%

Request OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

R1 (t=1) 0.09 76.09% 0.27 0.04 83.70% 0.18
R2 (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
R1 (t=0) 1.00 1.20% 1.00 0.81 12.05% 0.81
R2 (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46

Request LCS LED

Way Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

R1 (t=1) 0.21 0.15 0.20 61.30 82.73 63.09
R2 (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
R1 (t=0) 1.00 1.00 1.00 0.00 0.00 0.00
R2 (t=0) 0.61 0.44 0.62 23.45 35.87 22.31

Request United_Diff Tree_Diff

Way Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

R1 (t=1) 0.98 0.98 0.98 0.98 0.98 0.98
R2 (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
R1 (t=0) 1.00 1.00 1.00 1.00 1.00 1.00
R2 (t=0) 0.41 0.39 0.67 0.50 0.46 0.74

, Vol. 1, No. 1, Article . Publication date: September 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 15

Answer to RQ3: Under default temperature, the top-5 code candidates from one single
request have similar non-determinism with the 5 top-1 candidates from different requests
for ChatGPT when the temperature is 1 (default temperature of ChatGPT), but higher
determinism when the temperature is 0.

4.4 RQ4: Coding Tasks Features and Non-determinism Degree
Our previous experiments demonstrate that there are many non-determinisms in ChatGPT in code
generation. This RQ investigates what affects such non-determinism by checking the correlation
between characteristics of coding tasks and similarity metric values. We use three datasets for this
RQ. For all the datasets, we consider description length as one of their extrinsic features. Because only
the CodeContests dataset has various extrinsic features for each coding task, including difficulty,
time limit, and CF rating, we consider these features as extrinsic features for the CodeContest
dataset as well. Although APPS does have difficulty features, the difficulty features in APPS are
shown as categories, namely, ‘introductory’, ‘interview’, and ‘competition’, which makes it hard
to map them into numerical values. Therefore, our experiment does not include difficulty as an
extrinsic feature for the APPS dataset.
In CodeContests, the CF rating of a problem is a quantitative measure that represents the

problem’s relative difficulty level compared to other problems on the Codeforces platform. The
difficulty of a problem is a qualitative measure that indicates the problem’s level of complexity and
the programming knowledge and skills required to solve it. The timeout indicates the program’s
maximum running time limitation. In addition, we also consider description length (i.e., number of
characters) for each coding task. Note that in this section, we only focus on correlation analysis,
and we do not aim to obtain any causal conclusions.
Figure 6 shows the results for code problems in CodeContests under temperature=1. The rest

figures can be found on our homepage [3]. We observe that description length has a negative
correlation with most of the measurements, except LED. This means that problems with longer
descriptions tend to generate code with more randomness. We suspect that this is because a
longer description may reduce ChatGPT’s understanding of the coding requirements. With longer
descriptions, different code candidates tend to be uniformly worse in their pass rates. Moreover,
the description length has a negative correlation with LCS and structural measurements and a
positive correlation with LED, which means that problems with longer descriptions tend to yield
more inconsistent code candidates in syntax and structure. For temperature = 0, we observe that
description length still has a negative correlation with most of the measurements, except LED,
which is similar to the correlation result under temperature=1.

The difficulty has a positive correlation with the LED and a negative correlation with LCS, which
means that the problem with a higher difficulty level has high non-determinism in syntax. Similar
to difficulty, CF rating also has a positive correlation with the LED and a negative correlation with
LCS.

In the following, we provide some specific examples to further illustrate our observations above.
In exploring the relationship between the length of a code problem description and the degree of
non-determinism, two contrasting examples in the CodeContests dataset corroborate our findings.
The first example, ‘1599_E. Two Arrays’, with a description length of 2149, show a pattern that code
generation with a longer description code problem has a higher degree of non-determinism. Below
is the description of the first code problem, where we present only the core part of the description
due to the extensive length of the overall content.

, Vol. 1, No. 1, Article . Publication date: September 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

TP
R

m
ea

n
va

lu
e

TP
R

m
ea

n
va

ria
nc

e
TP

R
m

ea
n

m
ax

 d
iff

OE
R

m
ea

n
OE

R_
no

ex
 m

ea
n

LC
S

m
ea

n
LC

S
wo

rs
t

LE
D

m
ea

n
LE

D
wo

rs
t

Un
ite

d_
Di

ff
m

ea
n

Un
ite

d_
Di

ff
wo

rs
t

Tr
ee

_D
iff

 m
ea

n
Tr

ee
_D

iff
 w

or
st

de
sc

rip
tio

n
le

ng
th

di
ffi

cu
lty

tim
e_

lim
it

cf
_r

at
in

g

TPR mean value

TPR mean variance

TPR mean max diff

OER mean

OER_noex mean

LCS mean

LCS worst

LED mean

LED worst

United_Diff mean

United_Diff worst

Tree_Diff mean

Tree_Diff worst

description length

difficulty

time_limit

cf_rating

1.0 0.47 0.53 0.46 0.65 0.22 - -0.16 - 0.18 - 0.19 0.16 -0.22 - - -

0.47 1.0 0.93 - - - - - - - - - - - - - -0.16

0.53 0.93 1.0 -0.16 - - - - - - - - - - - - -

0.46 - -0.16 1.0 0.79 - - - - - - - - - - - -

0.65 - - 0.79 1.0 0.27 0.2 -0.17 - 0.21 0.18 0.24 0.22 -0.17 - - -

0.22 - - - 0.27 1.0 0.89 -0.71-0.64 0.42 0.45 0.35 0.4 -0.29-0.22 - -0.31

- - - - 0.2 0.89 1.0 -0.63-0.59 0.42 0.48 0.35 0.43 -0.27-0.22-0.16-0.28

-0.16 - - - -0.17-0.71-0.63 1.0 0.95 -0.37-0.38-0.28-0.34 0.38 0.2 - 0.3

- - - - - -0.64-0.59 0.95 1.0 -0.38-0.39-0.29-0.35 0.36 - - 0.26

0.18 - - - 0.21 0.42 0.42 -0.37-0.38 1.0 0.92 0.95 0.87 -0.27 - -0.2 -

- - - - 0.18 0.45 0.48 -0.38-0.39 0.92 1.0 0.86 0.94 -0.21 - -0.18 -0.2

0.19 - - - 0.24 0.35 0.35 -0.28-0.29 0.95 0.86 1.0 0.91 -0.24 - -0.21 -

0.16 - - - 0.22 0.4 0.43 -0.34-0.35 0.87 0.94 0.91 1.0 -0.21 - -0.18 -

-0.22 - - - -0.17-0.29-0.27 0.38 0.36 -0.27-0.21-0.24-0.21 1.0 - - -

- - - - - -0.22-0.22 0.2 - - - - - - 1.0 0.28 0.64

- - - - - - -0.16 - - -0.2 -0.18-0.21-0.18 - 0.28 1.0 0.44

- -0.16 - - - -0.31-0.28 0.3 0.26 - -0.2 - - - 0.64 0.44 1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. RQ4: Correlations between coding tasks and non-determinism (CodeContests, temperature=1). Only
significant correlations will be displayed on the heatmap, while the insignificant correlations (i.e. p-value >
0.05) are masked by ‘-’.

1599_E. Two Arrays
You are given two integer arrays of length N, A1, and A2. You are also given Q queries of 4
types:
1 𝑘 𝑙 𝑟 𝑥 : 𝑠𝑒𝑡𝐴𝑘𝑖 :=𝑚𝑖𝑛(𝐴𝑘𝑖 , 𝑥) for each 𝑙 ≤ 𝑖 ≤ 𝑟 .
2 𝑘 𝑙 𝑟 𝑥 : 𝑠𝑒𝑡𝐴𝑘𝑖 :=𝑚𝑎𝑥 (𝐴𝑘𝑖 , 𝑥) for each 𝑙 ≤ 𝑖 ≤ 𝑟 .
3 𝑘 𝑙 𝑟 𝑥 : 𝑠𝑒𝑡𝐴𝑘𝑖 := 𝐴𝑘𝑖 + 𝑥 for each 𝑙 ≤ 𝑖 ≤ 𝑟 .
4 𝑙 𝑟 : 𝑓 𝑖𝑛𝑑𝑡ℎ𝑒 (∑𝑟

𝑖=𝑙
𝐹 (𝐴1𝑖 +𝐴2𝑖))%(109 + 7)

where 𝐹 (𝑘) is the k-th Fibonacci number (𝐹 (0) = 0, 𝐹 (1) = 1, 𝐹 (𝑘) = 𝐹 (𝑘 − 1) + 𝐹 (𝑘 − 2)), and
𝑥%𝑦 denotes the remainder of the division of 𝑥 by 𝑦. You should process these queries and
answer each query of the fourth type.

, Vol. 1, No. 1, Article . Publication date: September 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 17

This problem exhibits high non-determinism, as indicated by its measurement results across
multiple tests (i.e., the test case rate variance is 0.13, the OER value is zero, the LCS mean value
is 0.15, the mean LED value is 111.5, and both the United_Diff and Tree_Diff values are zero),
suggesting a rather high fluctuation. The detailed description potentially covers a wide array of
scenarios, which may distract the attention from LLMs, which results in inconsistent test results
and higher non-determinism.
The second example ‘1575_M. Managing Telephone Poles’, with a description length of 1511,

shows a pattern that a shorter description leads to more stability in code generation. Below is the
description of the second code problem, where we present only the core part of the description due
to the extensive length of the overall content.

1575_M. Managing Telephone Poles
Mr. Chanek’s city can be represented as a plane. He wants to build a housing complex in
the city. There are some telephone poles on the plane, which is represented by a grid of size
(𝑛 + 1) (𝑚 + 1).
There is a telephone pole at (𝑥,𝑦) if 𝑎𝑥,𝑦 = 1. For each point (𝑥,𝑦), define 𝑆 (𝑥,𝑦) as the square
of the Euclidean distance between the nearest pole and (𝑥,𝑦).
Formally, the square of the Euclidean distance between two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2.
To optimize the building plan, the project supervisor asks you the sum of all 𝑆 (𝑥,𝑦) for each
0 ≤ 𝑥 ≤ 𝑛 and 0 ≤ 𝑦 ≤ 𝑚. Help him by finding the value of

∑𝑛
𝑥=0

∑𝑚
𝑦=0 𝑆 (𝑥,𝑦).

The test pass rates are consistently 1.0 across all tests, with a variance of 0.0, showing no deviation
in the generated code candidates. The LCS mean value is 0.74, and the LED mean value is 3.5,
which indicates a high syntactical stability. Structural similarity is 0.21 and 0.38 under United_Diff
and Tree_Diff settings, which shows the code candidates still vary in their AST. Here, the shorter
description does not introduce ambiguity but rather lets ChatGPT focus on critical details, leading
to a uniform understanding of the code problem and better generation performance.

Answer to RQ4: A coding task with a longer description and higher difficulty tends to
suffer from more non-determinism in the generated code in terms of code syntax and
structure. The generated code also tends to be more buggy.

4.5 RQ5: GPT-4 vs. GPT-3.5
GPT-4 is believed to be “more reliable, creative, and able to handle much more nuanced instructions
than GPT-3.5” [52]. This research question compares GPT-3.5 and GPT-4 in the non-determinism
degree of code generation. To answer this research question, we keep the default setting and use all
the measurements listed in RQ1. In this paper we report the results only on the CodeContests dataset
(with temperature=1). For the results in the other two datasets, we list them on our homepage [3].

For temperature=1, we can observe that GPT-4 is slightly more deterministic than GPT-3.5,
with lower test pass rate variance, lower ratio of worst cases, lower OER and OER (no ex.), lower
LCS, higher LED, and lower structural similarity under two settings. However, for temperature=0,
the analysis, as evidenced by the results in tables comparing GPT-4 across CodeContests, APPS,
and HumanEval datasets, demonstrates that GPT-4’s non-determinism is pronounced and largely
parallels that of GPT-3.5. Across these datasets, similarity metrics indicate comparable levels of
non-determinism across three different evaluation methods.

, Vol. 1, No. 1, Article . Publication date: September 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Table 7. RQ5: Non-determinism of GPT-4 v.s. GPT-3.5 (CodeContests)

Model Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

GPT-4 (t=1) 0.14 0.01 0.09 1.00 1.21%
GPT-3.5 (t=1) 0.16 0.03 0.24 1.00 3.64%
GPT-4 (t=0) 0.14 0.01 0.08 1.00 1.21%
GPT-3.5 (t=0) 0.15 0.01 0.11 1.00 1.82%

Model OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

GPT-4 (t=1) 0.35 46.06% 0.58 0.25 55.76% 0.46
GPT-3.5 (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
GPT-4 (t=0) 0.37 41.21% 0.59 0.27 52.73% 0.46
GPT-3.5 (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46

Model LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

GPT-4 (t=1) 0.61 0.45 0.62 24.54 39.74 24.81
GPT-3.5 (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
GPT-4 (t=0) 0.61 0.44 0.61 24.45 40.14 24.12
GPT-3.5 (t=0) 0.61 0.44 0.62 23.45 35.87 22.31

Model United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

GPT-4 (t=1) 0.78 0.68 0.79 0.82 0.74 0.84
GPT-3.5 (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
GPT-4 (t=0) 0.78 0.68 0.79 0.83 0.75 0.84
GPT-3.5 (t=0) 0.41 0.39 0.67 0.50 0.46 0.74

Answer to RQ5: The non-determinism issue of GPT-4 is lightly less severe than GPT-3.5
under temperature=1, while the non-determinism issue of GPT-4 is similar to GPT-3.5 under
temperature=0.

4.6 RQ6: Influence of Prompt Engineering Strategies on the Non-determinism
This research question explores how different prompt engineering strategies influence the degree
of non-determinism in code generation. We design two extra prompts in addition to the default one
used for previous RQs. The first prompt is “Generate Python3 code (Markdown), make the code as
concise as possible”. This prompt aims to lead ChatGPT to generate short and concise programs,
which may make the results more deterministic. The second prompt is “Generate Chain-of-Thought
steps of how to solve the problem first, and then generate Python3 code (Markdown)”, thereby
demanding an initial conceptual explanation followed by the code. Then, each prompt is followed
by the code problem description. In the following, we use ‘Concise prompt’ to refer to the first
prompt engineering strategy, and use ‘CoT prompt’ to refer to the second one for short.

The results in Table 8 show that for temperature=1, the difference of non-determinism between
different prompt engineering techniques is not very obvious in the three datasets. With more
instruction information provided in the prompt, Concise and CoT prompts have similar performance
with each other. However, under temperature=0, in CodeContests, requests with CoT prompt show
high mean test pass rates but this kind of prompt suffers from high randomness. Compared with
the Base prompt and Concise prompt, the CoT prompt has a higher mean-variance (0.02), higher
mean maximum difference (0.15), and a rather higher ratio of worst cases (1.82%). Also, the results
in OER and OER (no ex.) show that CoT’s mean value of OER and OER (no ex.) are lower than Base

, Vol. 1, No. 1, Article . Publication date: September 2024.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 19

Table 8. RQ6: Prompt engineering techniques (CodeContests), where t refers to temperature.

Prompt Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

Concise (t=1) 0.15 0.02 0.19 1.00 3.64%
Base (t=1) 0.16 0.03 0.24 1.00 3.64%
CoT (t=1) 0.15 0.02 0.19 1.00 3.64%
Concise (t=0) 0.16 0.01 0.10 1.00 0.61%
Base (t=0) 0.15 0.01 0.11 1.00 1.82%
CoT (t=0) 0.19 0.02 0.15 1.00 1.82%

Prompt OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

Concise (t=1) 0.10 76.36% 0.26 0.06 81.82% 0.17
Base (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
CoT (t=1) 0.10 73.94% 0.26 0.08 80.0% 0.19
Concise (t=0) 0.39 41.82% 0.63 0.31 49.09% 0.54
Base (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46
CoT (t=0) 0.28 46.06% 0.50 0.19 54.55% 0.36

Prompt LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

Concise (t=1) 0.22 0.16 0.22 61.53 83.01 62.52
Base (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
CoT (t=1) 0.23 0.15 0.23 59.55 77.68 57.05
Concise (t=0) 0.70 0.53 0.71 11.77 20.55 12.14
Base (t=0) 0.61 0.44 0.62 23.45 35.87 22.31
CoT (t=0) 0.38 0.24 0.39 39.31 58.28 39.81

Prompt United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

Concise (t=1) 0.44 0.34 0.48 0.54 0.42 0.59
Base (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
CoT (t=1) 0.45 0.35 0.51 0.55 0.43 0.61
Concise (t=0) 0.83 0.74 0.84 0.88 0.82 0.89
Base (t=0) 0.41 0.39 0.67 0.50 0.46 0.74
CoT (t=0) 0.71 0.58 0.72 0.78 0.67 0.79

and Concise, which can also be told from the high ratio of worst cases in both OER and OER (no
ex.) with 46.06% and 54.55%. Opposite from CoT, code candidates generated from Concise prompt
are more semantically deterministic. Code candidates generated by the CoT prompt have a low
mean LCS value (0.38) and high LED value (39.31), while those generated from the Concise prompt
have a high mean LCS value (0.07) and low LED value (11.77). The other measurements in LCS
and LED also support the above phenomenon. When it comes to structural similarity, under two
different measurement settings, code candidates generated from the CoT prompt have significantly
higher randomness than the code generated from Concise prompt. Our experiment results show a
similar situation in both APPS and HumanEval, where code generated from the Concise prompt
ends up way more deterministic than code generated from the CoT prompt.

Answer to RQ6: Under temperature=1, the difference in non-determinism among different
prompt engineering techniques is not obvious. When setting temperature=0, the code
candidates generated from the Concise prompt are more deterministic than our Base
prompt, while those code candidates generated from the CoT prompt suffer from higher
randomness than our Base prompt.

, Vol. 1, No. 1, Article . Publication date: September 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

5 THREATS TO VALIDITY
The threats to internal validity mainly lie in the implementation of our experiment and result
analysis. To reduce the first threat, we checked our code twice, once during the experiment stage, and
once during the record analysis stage. To reduce the second threat, the two authors independently
analyzed the experiment results and drew experimental conclusions separately. Once their analysis
results were different, the third author discussed with them to determine the final result.
The threats to external validity mainly lie in the datasets, GPT versions, and prompt design in

our study. To reduce the threat in datasets, we use three diverse datasets that are widely used in
code generation tasks. Additionally, the problems in our dataset are from different contests with
different difficulties. For example, CodeContests is the most challenging dataset, while HumanEval
is the easiest, in terms of the average difficulty of coding problems. To reduce the threat in GPT
versions, we consider the two newest versions of GPT: GPT-3.5 and GPT-4, and compare their
non-determinism from multiple aspects. To reduce the threat of prompt design, we use the most
typical prompts that are the most widely used in LLM-based code generation and design an RQ to
study their influence on non-determinism.

Another primary concern highlighted in our analysis revolves around the operationalization of
semantic, syntactic, and structural similarities into measurable metrics for assessing code similarity.
The approach of measuring semantic similarity through the comparison of test execution outputs,
while practical, presents a notable limitation. It potentially oversimplifies the multifaceted nature of
semantic similarity, which should ideally encapsulate the code’s meaning and functionality rather
than merely its output. This method risks ignoring the intricate logic and diverse correct solutions
that different pieces of code may offer. To reduce the threat in measurement tools, we consider
three types of similarities and choose at least two measurements for each type of similarity, and we
also apply statistical analysis techniques to enhance our experiment results. For the HumanEval
dataset, we evaluate our measurement on an external testset, EvalPlus [42]. The result shows that
our measurements show similar evaluation results, which supports the robustness of our chosen
measurements.
However, it is important to acknowledge certain limitations within our study that may affect

the breadth of its applicability and the generalizability of its findings. Firstly, our analysis does not
extend to the impact that different programming languages might have on the non-determinism
of code generation. Programming languages vary widely in syntax, semantics, and complexity,
which can influence how LLMs like ChatGPT interpret and generate code, potentially affecting
the degree of non-determinism in the output. Secondly, our work only adopts a few methods
for measuring code similarity. There is no unified standard for measuring code similarity. It is
challenging to cover all the code similarity measurements. Other methods include embedding-based
similarity measure methods, using pre-trained code language models, such as CodeBERT [17]
and GraphCodeBERT [22]. Thirdly, the influence of the prompt on non-determinism is not fully
considered. The specificity, clarity, and technical depth of prompts provided to ChatGPT can
significantly influence the model’s output, suggesting that prompts could be a crucial factor in
understanding non-determinism. Fourthly, our study focuses exclusively on ChatGPT. While
ChatGPT is a prominent LLM used for code generation, it is not the only one. The landscape of
LLMs is diverse, with models trained on different datasets, architectures, and objectives. Therefore,
our findings may not apply to other LLMs used for similar purposes.

, Vol. 1, No. 1, Article . Publication date: September 2024.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 21

6 RELATEDWORK
6.1 Code Generation
Code generation generates programs that need to satisfy all the constraints defined by the underlying
task. Usually, the constraints are represented in various forms, e.g. input/output pairs, examples,
problem descriptions, partial programs, and assertions. Relatively early work includes deductive
synthesis approaches [19, 46] and inductive synthesis approaches [8, 57, 58, 60]. The deductive
synthesis approach operated under the assumption that a comprehensive and precise formal
specification of the user’s desired intention would be provided. However, in many instances, this
turned out to be just as intricate and challenging as creating the actual program. While the inductive
synthesis approach was based on inductive specifications such as input/output pairs and examples
etc, such as works on Lisp programs [8, 57, 60], Pygmalion [58] and more recently FlashFill [20].
More information could be found in a survey [21], which covers notable work on the development
of program synthesis approaches.

In recent years, more and more researchers apply neural networks in code generation. Yin and
Neubig [70] combine the grammar rules with the decoder and propose a syntax-driven neural
architecture to improve code generation performance. Instead of RNN, Sun et al. [61] propose a
grammar-based structural CNN to capture the long dependency in code. Bolin et al. [66] propose a
dual learning framework that jointly trains the code generation model and code summarization
model together to achieve better performance in both tasks. Xu et al.[68] present a user study
in-IDE code generation, demonstrating challenges such as time efficiency, correctness, and code
quality, as well as the willingness to use code generation tools from developers.

6.2 Language Model for Code generation
The triumph of transformers in natural language modeling [9] has stimulated considerable interest
among researchers in applying transformer models for code generation. Existing research on code
generation models can be classified into three categories: sequence-based techniques, tree-based
methods, and pre-trained models.

Sequence-based techniques take code as a sequence of tokens and employ language models to
produce source code one token at a time based on input descriptions. Ling et al. [40] propose a gen-
erative model for code generation along with a character level softmax and multi-pointer network
to address the problem of generating code from a mixed language and structured specification, and
receiving success in trading card games (Magic the Gathering and Hearthstone). Hashimoto et al.
[24] train a retrieval model with a noisy encoder-decoder to enable similar code retrieving, and
then use the similar code as an additional input to improve the performance of the generator.

Tree-basedmethods generate a parse tree of the code, e.g. Abstract Syntax Tree (AST), based on
the input description, and then convert the parse tree into the corresponding code. Dong et al. [14]
encode natural language utterances into vectors and generate their corresponding logical forms as
trees using the LSTM model. Yin et al. [71] propose a semantic parser ‘Tranx’, which generates the
tree-construction action sequence with a transition-based neural model, and constructs the AST
from the action sequence.
Pre-trained models are obtained from training on massive data of source code, which could

be later fine-tuned on certain datasets for code generation purposes. Encoder pre-trained models,
such as CodeBERT [17], usually are trained with two objectives, i.e., Masked Language Modeling
and Replaced Token Detection. During the fine-tuning phase, the input should be fed in the same
way as the pre-training phrase, so that semantic relevance could be measured. Decoder pre-trained
models are designed to predict the next token based on a given input context. GPT-series [56] are
typical Decoder pre-trained models, and based on GPT, there are many efforts on code generation.

, Vol. 1, No. 1, Article . Publication date: September 2024.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Based on GPT-2, Lu et al. [45] provide CodeGPT for code completion and text-to-code generation.
After GPT-3 was developed, CodeX12 and GitHub Compilot13 was created and released their beta
version for trial by academia and industry. Due to neither Codex nor GitHub Copilot being open-
sourced, there are several attempts to reproduce their performance, like PYCODEGPT-CERT [73],
CodeParrot14, and GPT-CC15. Encoder-decoder pre-trained models are composed of an encoder
and a decoder. AlphaCode [37], which is pre-trained through GitHub repositories with 715.1 GB of
code, uses an encoder-decoder transformer architecture. It achieves on average a ranking in the
top 54% in competitions with more than 5,000 participants in simulated evaluations.

ChatGPT, a language model developed by the team of OpenAI, has the potential to play a role in
code generation. As it is widely known, ChatGPT offers a chat window to enable interaction in a
conversational way. In addition to its powerful capabilities for natural language processing tasks,
ChatGPT inherits the code generation capabilities from Codex and can perform even better, so the
OpenAI team has announced the deprecation of Codex series models in its official documents. There
are several research works that mentioned its ability in code-related areas, including mathematical
capability [18], bug-solving capability [62], and software testing [29]. ChatGPT’s ‘Regenerate
response’ function demonstrates the diversity of its output, but at the same time, it also raises
concerns about the consistency of its output given the same input. Currently, people are amazed
by its superficial performance in terms of code generation, however, there is still no research
work focused on the threat of non-determinism. Therefore, we think it is necessary to make a
comprehensive evaluation of ChatGPT’s ability in code generation. More detailed information
could be found on its official website’s blog [2].

6.3 Non-determinism Handling in the Literature
The non-determinism issue has been studied in traditional Deep Learning-related research: Pham
et al. [53] measure the influence of nondeterminism-introducing (NI)-factors in Deep Learning, and
study the awareness of this variance among researchers and practitioners. However, the severity of
the non-determinism threat in LLM-based coding studies remains unclear.

To understand howwell LLM-based code generation papers handle the threat of non-determinism,
we collect research articles from Google Scholar with the query ‘code generation’ AND ‘Large
Language Model’ in the past 2 years (from January 2022 to July 2023). During the search, we
search the full text of the paper (excluding citations and appendixes) for keywords, such as non-
determinism and its synonyms, the number of experimental repetitions, and the variance of
experimental results. After locating these keywords, we manually combine the context to confirm
whether the sentence means to declare that non-determinism exists in their study. If the statement
exists in the experimental section of the paper and the authors consider non-determinism in
their experiment setting and result report, we classify it as considering non-determinism in the
experimental design and mentioning non-determinism in the paper; otherwise, if non-determinism
is mentioned elsewhere without any actions to mitigate non-determinism, such as in the discussion
section, we classify it as only mentioning non-determinism, but not considering this factor in the
experiment. If the above keywords are not mentioned in the paper, we read the full text of the
paper to ensure that there are no sentences mentioning non-determinism in the paper. If relevant
non-determinism statements were encountered, we classify the paper using the above classification
method and update our keyword library. After ensuring that our keyword database is up to date and

12https://openai.com/blog/openai-codex
13https://github.com/features/copilot
14https://huggingface.co/codeparrot/codeparrot
15https://github.com/CodedotAl/gpt-code-clippy

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://openai.com/blog/openai-codex
https://github.com/features/copilot
https://huggingface.co/codeparrot/codeparrot
https://github.com/CodedotAl/gpt-code-clippy

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 23

that the two search results are consistent, we searched all the papers twice to obtain our literature
review data.
There are 107 papers obtained from Google Scholar according to their relevance rankings. In

this survey, we mainly focus on articles with experiments and exclude those with posters and
visions only, which yields a set of 76 papers. After an in-depth reading of the experimental design
and discussion in each paper, we find that only 35.5% (27/76) out of the 76 papers mention non-
determinism or related terms (e.g., stability, randomness, and variance) in their papers. Among
them, 21.1% (16/76) papers consider non-determinism in their experimental evaluation, including
fixed random seeds, multiple runs of experiments with different fixed random seeds, and report
results with error bars or standard deviation. In addition, 14.5% (11/76) of the papers do not consider
non-determinism in their experiments, but discuss the threat of non-determinism in their paper.

7 DISCUSSION
In this section, we discuss the implications, trade-offs of non-determinism, and future research
directions for code generation with LLMs.

7.1 Implications for Software Developers and Researchers
For developers, it is essential to recognize the limitations of ChatGPT and the potential risks of
using generated code in production. If developers prefer a more stable code, they can use a smaller
temperature but should keep in mind that even the smallest temperature (i.e., temperature=0)
could not guarantee the determinism. Moreover, our observation on the correlation between the
length of prompts and code correctness/non-determinism suggests the importance of prompt
engineering. Developers should thoroughly test the generated code before deploying it, and even
consider incorporating more robust testing and validation processes to ensure the determinism
and reliability of the generated code.
For researchers, the variance of the generated code raises questions about the quality and

validity of the results obtained from assessing LLMs in code generation. If the code generated from
ChatGPT is unstable, it can lead to non-reproducible results and unreliable conclusions. Therefore,
researchers should carefully consider the limitations of ChatGPT when designing experiments and
interpreting results. To reduce the randomness caused by the non-determinism issue, researchers
can report the average results, variance, or distribution from multiple requests. Also, it is important
to use different datasets, since our study finds that both the correctness and non-determinism of
the generated code vary significantly from dataset to dataset. In addition, using a prompt with
detailed instructions, a clear structure, and concrete response requirements would help to reduce
randomness in generated code.

7.2 Trade-off of non-determinism
Our empirical study highlights the issue of non-determinism in code generation tasks when using
ChatGPT. While we underscore the challenges this non-determinism introduces, particularly in
terms of ensuring consistency and reliability in generated outputs, it is essential to also acknowledge
the potential benefits that non-determinism brings, especially in the realm of creativity.
The inherent non-deterministic nature of LLMs can foster a degree of creativity and diversity

in the outputs that deterministic systems may not achieve. This aspect is particularly valuable in
applications requiring innovative solutions or creative content generation, where the variety and
uniqueness of the output are more critical than in strictly rule-based or deterministic scenarios. In
other words, the non-determinism implies that making multiple requests to LLMs may increase
the chance for developers to receive high quality code and therefore enhance the code generation
performance. For instance, throughmaking five requests in RQ1with temperature of 1, the candidate

, Vol. 1, No. 1, Article . Publication date: September 2024.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

that achieves the highest pass rate for a given code problem shows an improvement on average
of around 16.13 times (CodeContests), 3.12 times (APPS), and 1.98 times (HumanEval) over the
candidate with the lowest pass rate; it exhibits an overall improvement of 5.21 times (CodeContests),
1.40 times (APPS), and 0.59 times (HumanEval) against its mean performance among five candidates.
Looking deeper into the consistency of the error, we can find that generated code candidates are
more likely (at least 65.85%, 73.83%, and 90.00% in CodeContests, APPS, and HumanEval) to share
the same error type if all of them fail to pass the test cases. The most common error types they share
are IndexError (46.03% in CodeContests), IndexError (34.78% in APPS), and NameError (33.33% in
HumanEval) respectively, under temperature=0.

7.3 Future work
Achieving an optimal balance between determinism and creativity is crucial for enhancing LLMs’
effectiveness across a broad spectrum of applications. Too much determinism could stifle creativity,
leading to predictable and monotonous outputs, while excessive non-determinism might com-
promise the reliability and consistency necessary for applications requiring precise and accurate
results. To address these challenges and strike a balance between determinism and creativity, future
research could explore several promising directions:
Voting Mechanism: Implementing a voting mechanism wherein multiple candidates of the

model generate outputs, and a consensus approach should be used to select the most appropriate
output. This method can help mitigate the effects of non-determinism by leveraging the collective
decision-making process to choose outputs that are both creative and relevant to the task.
Repair Loop Driven by LLMs: Developing techniques for loop repair driven by LLMs can

offer a novel approach to addressing non-determinism. By automatically identifying and correcting
inconsistencies or errors in the generated code, such a system could enhance the reliability of
outputs without significantly compromising creativity. This approach would rely on the model’s
ability to learn from feedback loops, improving its performance over time.

Hybrid Models: Investigating hybrid models that combine deterministic and non-deterministic
components might offer a pathway to achieving the desired balance. Such models could leverage
the strengths of both approaches, using deterministic methods to ensure reliability and consistency
where needed, while allowing for creative freedom through non-deterministic processes in aspects
where innovation is prized.

Customizable Levels of Determinism: Developing LLMs that allow users to specify their
preferred level of determinism versus creativity could cater to a wide range of applications. This
customization could enable users to tune the model’s outputs according to the specific requirements
(e.g. domain-specific) of their task, whether that be generating highly creative content or producing
consistent and reliable code.

8 CONCLUSION
This work studies the non-determinism threat of code generation with ChatGPT. We perform
experiments on three widely studied code generation benchmarks and find that the correctness, test
outputs, as well as syntax and structure of code candidates generated from the same instruction,
vary significantly in different requests. We hope that this paper could raise awareness of the threat
of non-determinism in future code generation tasks when using large language models.

9 ACKNOWLEDGEMENT
This work was supported by the UKRI Centre for Doctoral Training in Safe and Trusted Artificial
Intelligence (EP/S023356/1).

, Vol. 1, No. 1, Article . Publication date: September 2024.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 25

REFERENCES
[1] https://152334h.github.io/blog/non-determinism-in-gpt-4/.
[2] https://chat.openai.com/chat.
[3] https://github.com/ShuyinOuyang/LLM-is-a-box-of-chocolate.
[4] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,

Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[5] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie
Cai, Michael Terry, Quoc Le, et al. 2021. Program synthesis with large language models. arXiv preprint arXiv:2108.07732
(2021).

[6] Y Bang, S Cahyawijaya, N Lee, W Dai, D Su, B Wilie, H Lovenia, Z Ji, T Yu, W Chung, et al. 2023. A multitask,
multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. arXiv.

[7] Bhavya Bhavya, Jinjun Xiong, and Chengxiang Zhai. 2022. Analogy generation by prompting large language models:
A case study of instructgpt. arXiv preprint arXiv:2210.04186 (2022).

[8] Alan W Biermann. 1978. The inference of regular LISP programs from examples. IEEE transactions on Systems, Man,
and Cybernetics 8, 8 (1978), 585–600.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[10] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat
Lee, Yuanzhi Li, Scott Lundberg, et al. 2023. Sparks of artificial general intelligence: Early experiments with gpt-4.
arXiv preprint arXiv:2303.12712 (2023).

[11] Subhashis Chatterjee, Deepjyoti Saha, Akhilesh Sharma, and Yogesh Verma. 2022. Reliability and optimal release time
analysis for multi up-gradation software with imperfect debugging and varied testing coverage under the effect of
random field environments. Annals of Operations Research (2022), 1–21.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code.(2021).
arXiv preprint arXiv:2107.03374 (2021).

[13] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang. 2023.
Large language models are edge-case fuzzers: Testing deep learning libraries via fuzzgpt. arXiv preprint arXiv:2304.02014
(2023).

[14] Li Dong and Mirella Lapata. 2016. Language to logical form with neural attention. arXiv preprint arXiv:1601.01280
(2016).

[15] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M Zhang. 2023.
Large Language Models for Software Engineering: Survey and Open Problems. arXiv preprint arXiv:2310.03533 (2023).

[16] Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally, Weijian Zheng, Meikang Qiu, and Haihua Chen. 2023. Investi-
gating code generation performance of ChatGPT with crowdsourcing social data. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC). IEEE, 876–885.

[17] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. Codebert: A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155 (2020).

[18] Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz, Philipp Christian
Petersen, Alexis Chevalier, and Julius Berner. 2023. Mathematical capabilities of chatgpt. arXiv preprint arXiv:2301.13867
(2023).

[19] Cordell Green. 1981. Application of theorem proving to problem solving. In Readings in Artificial Intelligence. Elsevier,
202–222.

[20] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. ACM Sigplan
Notices 46, 1 (2011), 317–330.

[21] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis. Foundations and Trends® in
Programming Languages 4, 1-2 (2017), 1–119.

[22] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,
Shengyu Fu, et al. 2020. Graphcodebert: Pre-training code representationswith data flow. arXiv preprint arXiv:2009.08366
(2020).

[23] Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen, and Xin Peng. 2024. Exploring the
potential of chatgpt in automated code refinement: An empirical study. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering. 1–13.

, Vol. 1, No. 1, Article . Publication date: September 2024.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

[24] Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy S Liang. 2018. A retrieve-and-edit framework for
predicting structured outputs. Advances in Neural Information Processing Systems 31 (2018).

[25] Hossein Hassani and Emmanuel Sirmal Silva. 2023. The role of ChatGPT in data science: how ai-assisted conversational
interfaces are revolutionizing the field. Big data and cognitive computing 7, 2 (2023), 62.

[26] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir
Puranik, Horace He, Dawn Song, et al. 2021. Measuring coding challenge competence with apps. arXiv preprint
arXiv:2105.09938 (2021).

[27] Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Steinhardt. 2020. Aligning
ai with shared human values. arXiv preprint arXiv:2008.02275 (2020).

[28] Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andres Codas, Mark Encarnación, Shuvendu Lahiri, Madanlal
Musuvathi, and Jianfeng Gao. 2022. Fault-aware neural code rankers. Advances in Neural Information Processing
Systems 35 (2022), 13419–13432.

[29] Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin Moran, andWing Lam. 2023. Chatgpt and software testing education:
Promises & perils. In 2023 IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 4130–4137.

[30] Andrej Kiviriga. 2023. Efficient Model Checking: The Power of Randomness. (2023).
[31] Kalpesh Krishna, Yapei Chang, John Wieting, and Mohit Iyyer. 2022. Rankgen: Improving text generation with large

ranking models. arXiv preprint arXiv:2205.09726 (2022).
[32] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S Liang. 2019. Spoc:

Search-based pseudocode to code. Advances in Neural Information Processing Systems 32 (2019).
[33] Emanuele La Malfa, Aleksandar Petrov, Simon Frieder, Christoph Weinhuber, Ryan Burnell, Anthony G Cohn, Nigel

Shadbolt, and Michael Wooldridge. 2023. The ARRT of Language-Models-as-a-Service: Overview of a New Paradigm
and its Challenges. arXiv preprint arXiv:2309.16573 (2023).

[34] Mina Lee, Percy Liang, and Qian Yang. 2022. Coauthor: Designing a human-ai collaborative writing dataset for
exploring language model capabilities. In Proceedings of the 2022 CHI conference on human factors in computing systems.
1–19.

[35] Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu. 2023. Codeeditor: Learning to edit source code
with pre-trained models. ACM Transactions on Software Engineering and Methodology 32, 6 (2023), 1–22.

[36] Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. 2023. Skcoder: A sketch-based approach for automatic
code generation. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2124–2135.

[37] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling,
Felix Gimeno, Agustin Dal Lago, et al. 2022. Competition-level code generation with alphacode. Science 378, 6624
(2022), 1092–1097.

[38] Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai Wang, and Cuiyun Gao. 2023. Cctest:
Testing and repairing code completion systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 1238–1250.

[39] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. 2023.
Code as policies: Language model programs for embodied control. In 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 9493–9500.

[40] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew Senior, Fumin Wang, and Phil
Blunsom. 2016. Latent predictor networks for code generation. arXiv preprint arXiv:1603.06744 (2016).

[41] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation. arXiv preprint arXiv:2305.01210 (2023).

[42] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation. Advances in Neural Information Processing
Systems 36 (2024).

[43] Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li, Mengshen He,
Zhengliang Liu, et al. 2023. Summary of chatgpt/gpt-4 research and perspective towards the future of large language
models. arXiv preprint arXiv:2304.01852 (2023).

[44] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li, Xuan-Bach D Le, and David Lo.
2023. Refining ChatGPT-generated code: Characterizing and mitigating code quality issues. ACM Transactions on
Software Engineering and Methodology (2023).

[45] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain,
Daxin Jiang, Duyu Tang, et al. 2021. Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

[46] Zohar Manna and Richard J Waldinger. 1971. Toward automatic program synthesis. Commun. ACM 14, 3 (1971),
151–165.

, Vol. 1, No. 1, Article . Publication date: September 2024.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

An Empirical Study of the Non-determinism of ChatGPT in Code Generation 27

[47] Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino, Rocco Oliveto, and
Gabriele Bavota. 2023. On the robustness of code generation techniques: An empirical study on github copilot. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2149–2160.

[48] Patrick E McKight and Julius Najab. 2010. Kruskal-wallis test. The corsini encyclopedia of psychology (2010), 1–1.
[49] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini encyclopedia of psychology (2010), 1–1.
[50] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher DManning, and Chelsea Finn. 2023. Detectgpt: Zero-shot

machine-generated text detection using probability curvature. arXiv preprint arXiv:2301.11305 (2023).
[51] Prabhat Nagarajan, Garrett Warnell, and Peter Stone. 2018. Deterministic implementations for reproducibility in deep

reinforcement learning. arXiv preprint arXiv:1809.05676 (2018).
[52] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[53] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and

Nachiappan Nagappan. 2020. Problems and opportunities in training deep learning software systems: An analysis of
variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering. 771–783.

[54] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gulwani. 2022.
Synchromesh: Reliable code generation from pre-trained language models. arXiv preprint arXiv:2201.11227 (2022).

[55] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. 2023. From Sparse to Soft Mixtures of Experts.
arXiv preprint arXiv:2308.00951 (2023).

[56] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language understanding by
generative pre-training. (2018).

[57] David E Shaw, William R Swartout, and C Cordell Green. 1975. Inferring LISP Programs From Examples.. In IJCAI,
Vol. 75. 260–267.

[58] David Canfield Smith. 1975. Pygmalion: a creative programming environment. Stanford University.
[59] Ioana Baldini Soares, Dennis Wei, Karthikeyan Natesan Ramamurthy, Moninder Singh, and Mikhail Yurochkin. 2022.

Your fairness may vary: pretrained language model fairness in toxic text classification. In Annual Meeting of the
Association for Computational Linguistics.

[60] Phillip D Summers. 1977. A methodology for LISP program construction from examples. Journal of the ACM (JACM)
24, 1 (1977), 161–175.

[61] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A grammar-based structural cnn decoder
for code generation. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 7055–7062.

[62] Nigar M Shafiq Surameery and Mohammed Y Shakor. 2023. Use chat gpt to solve programming bugs. International
Journal of Information Technology & Computer Engineering (IJITC) ISSN: 2455-5290 3, 01 (2023), 17–22.

[63] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intellicode compose: Code generation
using transformer. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1433–1443.

[64] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs. experience: Evaluating the usability
of code generation tools powered by large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[65] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2024. Software testing with large
language models: Survey, landscape, and vision. IEEE Transactions on Software Engineering (2024).

[66] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a dual task of code summarization. Advances
in neural information processing systems 32 (2019).

[67] Xiongfei Wu, Liangyu Qin, Bing Yu, Xiaofei Xie, Lei Ma, Yinxing Xue, Yang Liu, and Jianjun Zhao. 2020. How are
deep learning models similar? an empirical study on clone analysis of deep learning software. In Proceedings of the
28th International Conference on Program Comprehension. 172–183.

[68] Frank F Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-ide code generation from natural language: Promise and
challenges. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 2 (2022), 1–47.

[69] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. Evaluating the Code Quality of AI-Assisted Code
Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv preprint
arXiv:2304.10778 (2023).

[70] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-purpose code generation. arXiv
preprint arXiv:1704.01696 (2017).

[71] Pengcheng Yin and Graham Neubig. 2018. Tranx: A transition-based neural abstract syntax parser for semantic
parsing and code generation. arXiv preprint arXiv:1810.02720 (2018).

[72] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang, and Tao
Xie. 2024. Codereval: A benchmark of pragmatic code generation with generative pre-trained models. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering. 1–12.

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://arxiv.org/abs/2303.08774

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

[73] Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, YongjiWang,Weizhu Chen, and Jian-Guang Lou.
2022. CERT: Continual Pre-training on Sketches for Library-oriented Code Generation. arXiv preprint arXiv:2206.06888
(2022).

, Vol. 1, No. 1, Article . Publication date: September 2024.

	Abstract
	1 Introduction
	2 Method
	3 Experimental Design
	3.1 Research Questions
	3.2 Code Generation Benchmarks
	3.3 Configuration of ChatGPT
	3.4 Non-determinism Measurement

	4 Results and Findings
	4.1 RQ1: Non-determinism of ChatGPT with Three Types of Similarities under default setting
	4.2 RQ2: Influence of Temperature
	4.3 RQ3: Non-determinism Comparison with Top Candidates in the Same Prediction
	4.4 RQ4: Coding Tasks Features and Non-determinism Degree
	4.5 RQ5: GPT-4 vs. GPT-3.5
	4.6 RQ6: Influence of Prompt Engineering Strategies on the Non-determinism

	5 Threats to Validity
	6 Related Work
	6.1 Code Generation
	6.2 Language Model for Code generation
	6.3 Non-determinism Handling in the Literature

	7 Discussion
	7.1 Implications for Software Developers and Researchers
	7.2 Trade-off of non-determinism
	7.3 Future work

	8 Conclusion
	9 Acknowledgement
	References

