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Abstract

A bidirectional transformation is a pair of mappings between source and
view data objects, one in each direction. When the view is modified, the
source is updated accordingly with respect to some laws. Over the years, a
lot of effort has been made to offer better language support for programming
such transformations. In particular, a technique known as bidirectionalization
is able to analyze and transform unidirectional programs written in general
purpose languages, and “bidirectionalize” them.

Among others, an approach termed semantic bidirectionalization pro-
posed by Voigtländer stands out in terms of user-friendliness. A unidirec-
tional program can be written using arbitrary language constructs, as long
as the function it represents is polymorphic and the language constructs re-
spect parametricity. The free theorems that follow from the polymorphic
type of the program allow a kind of forensic examination of the transforma-
tion, determining its effect without examining its implementation. This is
convenient, as the programmer is not restricted to using a particular syntax;
but it does require the transformation to be polymorphic.

In this paper, we lift this polymorphism requirement to improve the appli-
cability of semantic bidirectionalization. Concretely, we provide a type class
PackM γ αµ, which intuitively reads “a concrete datatype γ is abstracted
to a type α, and the ‘observations’ made by a transformation on values of
type γ are recorded by a monad µ”. With PackM , we turn monomorphic
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transformations into polymorphic ones that are ready to be bidirectionalized.
We demonstrate our technique with case studies of typical applications of
bidirectional transformation, namely text processing, XML query and graph
transformation, which were commonly considered beyond semantic bidirec-
tionalization because of their monomorphic nature.

Keywords: Bidirectional Transformation, Free Theorem, Type Class,
Haskell

1. Introduction

Bidirectionality is a fundamental aspect of computing: transforming data
from one format to another, and requiring a transformation in the opposite
direction that is in some sense an inverse. The most well-known instance
is the view-update problem [1, 2, 3, 4, 5] from database design: a “view”
represents a database computed from a source by a query, and the problem
comes when translating an update of the view back to a “corresponding”
update on the source.

Let’s consider a (simplified version of an) XML example taken from
http://www.w3.org/TR/xquery-use-cases/: a source (in Figure 1) can
be transformed by query Q1 (in Figure 2) to produce a view (Figure 3).
Here the query Q1 is the “forward transformation”, and a corresponding
“backward” transformation maps an updated view back to the source. For
example, one may change the title “TCP/IP Illustrated” to “TCP/IP Illus-
trated (second edition)” in the view and expect the source to be updated
accordingly. Things are more interesting with the year of publication: this
attribute’s value is observed by the query in producing the view, so what-
ever changes to it shall not alter the existing observations, to ensure that
the view change can be reflected by a source change. For example, we can
change the year for the first book to 2000, but not to any value that is less
than 1992. The backward transformation is required to correctly register the
former valid change, but to reject the latter invalid one.

By dint of hard effort, one can construct separately the forward trans-
formation from source to view together with the corresponding backward
transformation. However, this is a significant duplication of work, because
the two transformations are closely related. Moreover, it is prone to er-
ror, because they do really have to correspond with each other to be bidi-
rectional. And, even worse, it introduces a maintenance issue, because
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<bib>

<book year="1994">
<title>TCP/IP Illustrated</title>
<author>Stevens W.</author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

<book year="1992">
<title>Advanced Programming in the Unix environment</title>
<author>Stevens W.</author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

<book year="2000">
<title>Data on the Web</title>
<author>Abiteboul Serge</author>
<author>Buneman Peter</author>
<author>Suciu Dan</author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>

</bib>

Figure 1: An XML Source

changes to one transformation entail matching changes to the other. There-
fore, a lot of work has gone into ways to reduce this duplication and the
problems it causes; in particular, there has been a recent rise in linguis-
tic (mostly functional) approaches to streamlining bidirectional transforma-
tions [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]—this is very much a
current problem.

Using terminologies advocated by the lens framework [7] that traces back
to database research: the forward function is commonly known as get having
type S → V , and the backward one as put having type S → V → S . The
idea is that put , in addition to an updated view, takes the original source
as an input, so that get does not have to be bijective to have a backward
semantics. As a result, put is often partial even for total and surjective
get . The correctness of the pair of functions is governed by the following
definitional properties [20] (In this paper, we write e = e′ with the assumption
that neither e nor e′ is undefined.):

Consistency get s′ = v if put s v = s′

Acceptability put s (get s) = s
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<bib>

{

for $b in doc("http://example.com/bib.xml")/bib/book

where $b/publisher = "Addison-Wesley" and $b/@year > 1991

return <book year="{ $b/@year }">{ $b/title }</book>

}

</bib>

Figure 2: Query Q1

<bib>

<book year="1994">
<title>TCP/IP Illustrated</title>

</book>

<book year="1992">
<title>Advanced Programming in the Unix environment</title>

</book>

</bib>

Figure 3: Result of Applying Q1 to the Source in Figure 1

Here consistency (also known as the PutGet law [7]) roughly corresponds to
right-invertibility, basically ensuring that all updates on a view are captured
by the updated source (the change of year to values less than 1992 in the
above example violates this law), and acceptability (also known as the Get-
Put law [7]) roughly corresponds to left-invertibility, prohibiting changes to
the source if no update has been made on the view. Bidirectional transfor-
mations satisfying the above two laws are sometimes called well-behaved [7].
In addition to these definitional properties, some desirable laws such as com-
posability and undoability are also discussed in the literature [1, 4, 5].

The paradigm of bidirectional programming is about constructing get in
a bidirectional language and expecting a corresponding put to be created
automatically. Very often, such languages are defined as a collection of com-
binators which can be read in two ways [6, 7, 9, 11, 13, 14, 17, 21]: forward
and backward. A disadvantage of the combinator-based approach is that
transformations have to be encoded in a somewhat inconvenient program-
ming style.

Other than constructing special purpose bidirectional languages, an alter-
native is to mechanically transform existing unidirectional programs to ob-
tain a backward counterpart, a technique known as bidirectionalization [12].
Different flavors of bidirectionalization have been proposed: syntactic [12],
semantic [15, 19], and a combination of the two [16]. Syntactic bidirection-
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alization inspects a get definition written in a somehow restricted syntactic
representation and synthesizes a definition for the backward version. Seman-
tic, or extensional, bidirectionalization on the other hand treats polymorphic
get as an opaque semantic object, applying the function independently to a
collection of unique identifiers, and the free theorem [22] arising from para-
metricity [23] states that whatever happens to those identifiers happens in
the same way to any other inputs—this information is sufficient to construct
the backward transformation. (We will give more details of the technique
in Section 2.) This is convenient, in the sense that the programmer is not
confined to a certain syntactic representation; but it does require that the
transformation is polymorphic.

This polymorphism requirement has prevented the use of semantic bidi-
rectionalization in many applications such as text processing, XML query
and graph transformation, where the transformations are predominantly
monomorphic. Consider query Q1 we have seen earlier on (Figure 2). The
attribute value of year and content of publisher are compared to constant
values, which instantiates their types to monomorphic ones, and the cre-
ation of new element book is also beyond the reach of the existing techniques
of semantic bidirectionalization [15, 16, 24, 19] based on the standard free
theorems [22].

In this paper, we propose a novel bidirectionalization approach that cir-
cumvents the polymorphism restriction, and allows us to program and bidi-
rectionalize monomorphic transformations in a convenient manner. At the
heart of the technique is a type class PackM that provides a solution to
the problems of creation of constants and comparison with constant values.
More concretely, the constant values are “created” into equivalent, and yet
abstract in type, values, which do not instantiate the type variables when
used in comparison. And, through methods of PackM , such comparisons are
recorded during runtime, and are checked before the backward execution, so
that free theorems for correct bidirectionalization can be established.

The rest of the paper is organized as follows. In Section 2, we firstly
review the concept of semantic bidirectionalization [15], and in Section 3,
we describe our proposal and the handling of monomorphic transformations.
In Section 4, we prove the correctness (consistency and acceptability) of our
approach, based on the free theorems concerning type constructor classes [25].
In Section 5, we discuss two extensions of our approach, namely a datatype-
generic implementation and finer handling of duplicates. In Section 6, we
discuss three typical application scenarios of bidirectional transformation,
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including the XML example mentioned in this section, and show how they
are handled by our technique. In Section 7, we review additional issues of
bidirectionalization. In Section 8, we discuss related work, and conclude in
Section 9.

A prototype implementation of our system and additional examples are
available as the bff-mono package in Hackage, which also contains more
examples. In addition to the optimized implementation that the package
provides, it also includes a file CodesInPaper.hs containing all the code
shown in the paper (with some renaming), for curious readers.

A preliminary version of this paper appeared as [26], under the title “Bidi-
rectionalization for Free with Runtime Recording—Or, a Light-Weight Ap-
proach to the View-Update Problem”.

2. The Essence of Semantic Bidirectionalization

As a preparation, we firstly introduce the basic idea of semantic bidirec-
tionalization [15]. Consider that we are given a polymorphic function of type
∀α. [α] → [α]. Parametricity [23] asserts that the function can only drop or
reorganize its input list elements, without inspecting them or constructing
new ones. In other words, an element in a view must come directly from an
element in the source, and this correspondence enables an update to a view
element to be translated into an update to its origin in the source, which
forms the basis of a backward transformation.

2.1. Construction of Backward Transformation

We present a simple implementation of semantic bidirectionalization that
captures the core idea found in the original paper [15], which will be ex-
panded in Section 3. We assume basic knowledge of Haskell with some GHC
extensions and its standard libraries, and may use functions from Prelude

without explanation. We use rank-2 polymorphism; thus the language option
Rank2Types is required to run the code in this section.

Consider an arbitrary polymorphic function of type ∀α. [α] → [α], for
example tail . We know from the type that the function can only reorganize
or drop its input list elements, and an element in a view must have a unique
corresponding element in the source as its origin. However, it is not possible
to conclude the behavior of the function by observing the source-view pair.
For example, given a source "aab" and its view "ab", it is not clear which
"a"-element in the source corresponds to the "a"-element in the view.
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A way to distinguish potentially equal elements is to identify them with
their unique locations. We use the following datatype Loc to represent
location-aware data.

data Loc α = Loc {body :: α, location :: Int}

For example, the source "aab" may have a location-aware version as [Loc ’a’ 1,
Loc ’a’ 2,Loc ’b’ 3]. If we apply the same polymorphic function to it, we
get [Loc ’a’ 2,Loc ’b’ 3], with a clear correspondence.

Suppose that the view "ab" is updated to "cd". Matching it to the
location-aware view [Loc ’a’ 2,Loc ’b’ 3], we can know that location-2 and
location-3 are updated to ’c’ and ’d’ respectively. We represent such an
update as a list of pairs of location and the new value assigned to the location.

type Update α = [(Int , α)]

For the above case, we obtain an update [(2, ’c’), (3, ’d’)]. Applying the
update to the location-aware source and then extracting the bodys, gives us
an updated source "acd".

The application of the update can be easily implemented in Haskell, as
the following function update.

update :: Update α→ Loc α→ Loc α
update upd (Loc x i) = maybe (Loc x i) (λy.Loc y i) (lookup i upd)

And the matching of the location-aware view and the updated view to pro-
duce the update is defined as follows.

matchViewsSimple :: Eq α⇒ [Loc α]→ [α]→ Update α
matchViewsSimple vx v =

if length vx == length v then
minimize vx $ makeUpdSimple $ zip vx v

else
error "Shape Mismatch"
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Here, makeUpdSimple is an auxiliary function defined as

makeUpdSimple :: Eq α⇒ [(Loc α, α)]→ Update α
makeUpdSimple = foldr f []

where
f (Loc i, y)u =

case lookup i u of
Nothing → (i, y) : u
Just y′ | y == y′ → u

| otherwise → error "Inconsistent Update"

A number of checks are performed by matchViewsSimple to ensure that the
updates to the view do not cause inconsistency: the updates to the view
shall not change the list length, and if a source element appears more than
once in the view, the multiple occurrences of the same element need to be
updated consistently (that’s why the Eq context is needed). Note that for
simplicity we assume that the user-defined equality (==) actually implements
semantic equality (=) for elements. For example, consider a forward function
f [x] = [x, x] of type ∀α. [α] → [α]. Suppose an initial source "a", and
thus a view "aa". Then, updating the view to "ab" will be rejected by
matchViewsSimple, whereas updating to "bb" will be accepted. Note that
we also use a function minimize to remove the redundant parts from an
update, which is defined as follows.

minimize :: Eq α⇒ [Loc α]→ Update α→ Update α
minimize vx u = u \\ [(i, x) | Loc x i← vx ]

Here, (\\), imported from Data.List, computes the difference of two lists. It
is worth remarking that the application of minimize is optional, as identical
updates will not change the behavior of the backward transformation. But
having this minimality property of updates simplifies the proofs for correct-
ness that will be discussed in Section 4.

With the ground prepared, the higher-order function that takes a forward
function and produces a backward counter-part can be realized as follows.

bwd :: (∀α. [α]→ [α])→ (∀γ. Eq γ ⇒ [γ]→ [γ]→ [γ])
bwd h = λs v. let sx = zipWith Loc s [1..]

vx = h sx
upd = matchViewsSimple vx v

in map (body ◦ update upd) sx
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This version of bwd is specific to list-to-list transformations, which is con-
veniently used to illustrate the basic idea of semantic bidirectionalization.
The technique generalizes to arbitrary Traversable datatypes such as rose
trees [15, 8].

2.2. Limitations of the Polymorphism Requirement

Things become more complicated if the forward function is not fully poly-
morphic. For example, consider the function nub :: ∀α. Eq α ⇒ [α] → [α]
that removes duplicates from a list based on a given equality comparison
operator. Now similar to the case of query Q1 we have seen before, the
forward transformation is able to observe equality among elements, and the
free theorems on fully polymorphic functions are no longer applicable. In
Voigtländer’s original paper [15], the problem is solved by a more sophisti-
cated location-assigning scheme tailored to each observer function. In the
case of nub, where equality is used, we need to make sure that the locations
fully reflect equality among elements: locations are equal if and only if the
elements are equal, and no update is allowed to break this condition. This
challenge with non-fully polymorphic forward functions is more comprehen-
sively studied by Wang and Najd [19].

As we will see in the next section, Voigtländer’s original technique of
creating specialized location-assigning systems to mimic the actual source
is not enough to handle functions that are able to construct new elements
at runtime. Together with a user-defined comparison operation, an element
now can be compared to arbitrary newly-constructed elements. In this case
the location must be equal to the element itself to preserve the comparison
structure, ruling out any meaningful update. Nevertheless, semantic bidirec-
tionalization remains particularly attractive because it offers the possibility
of programming forward transformations in a general-purpose language that
is expressive enough for practical applications.

3. Our Bidirectionalization with Runtime Recording

In this section, we present our improved semantic bidirectionalization
framework in Haskell. For illustration, we use a toy example based on rose
trees:

data Tree α = Node α [Tree α]
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We assume that Tree is an instance of Functor with an appropriate imple-
mentation of fmap. To run the code in this section, we need the follow-
ing language options: ExistentialQuantification, FlexibleInstances,
FlexibleContexts, MultiParamTypeClasses and FunctionalDependencies

in addition to RankNTypes.1

Example 1 (Links). Query “Links”: Collect all outermost subtrees with "a"

as root label, and arrange them under a new root labeled "results".

For example, if we apply Links to the source

src links = Node "root" [Node "a" [Node "text" []],
Node "p" [Node "a" [Node "text2" []]]]

we get the following view.

view links = Node "results" [Node "a" [Node "text" []],
Node "a" [Node "text2" []]]

Although being very simple, query Links is representative in the sense that
its execution involves comparing source labels with constants, and the con-
struction of new labels. A direct implementation of the query is as follows.

linksmono :: Tree String → Tree String
linksmono t = Node "results" (linkssmono t)

linkssmono :: Tree String → [Tree String ]
linkssmono (Node n ts) =

if n == "a" then [Node n ts ]
else concatMap linkssmono ts

However, this function is monomorphic, and hence it is not subject to the
existing bidirectionalization technique.

3.1. First Try: Making Monomorphic Queries Polymorphic?

The reasons for linksmono to be monomorphic are the equality comparison
of tree labels with the constant "a" and the construction of the constant
"results". A technique to prevent this type instantiation is to avoid the

1Actually, only rank-2 polymorphism is required for a language with type classes. Note
that Rank2Types becomes obsolete from GHC 7.8.1.
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direct use of constants, and instead construct new labels from them. The
following type class PackTrial can be used for this purpose.

class PackTrial γ α | α→ γ where
new :: γ → α
eq :: Eq γ ⇒ α→ α→ Bool

Function new abstracts a constant to an abstract type, and function eq
compares abstract labels for equality. With them, we can implement Links
as a polymorphic function.

linkspoly :: ∀α. PackTrial String α⇒ Tree α→ Tree α
linkspoly t = Node (new "results") (linksspoly t)

linksspoly :: ∀α. PackTrial String α⇒ Tree α→ [Tree α]
linksspoly (Node n ts) =

if eq n (new "a") then [Node n ts ]
else concatMap linksspoly ts

Thanks to the functional dependency α → γ, Haskell can infer the type γ
from the use of eq :: (Eq γ,PackTrial γ α)⇒ α→ α→ Bool .

Problem solved? Not really. Due to the uses of new together with eq ,
which are able to construct new abstract values and compare them with arbi-
trary labels, the free theorems of the type ∀α.PackTrial String α⇒ Tree α→
Tree α are no longer strong enough to support the original bidirectionaliza-
tion. Concretely, since the forward transformation is able to construct new
labels and use them in observer functions such as equality comparisons, it
is no longer possible, without inspecting the actual implementation of the
forward function, to predict what changes may affect the observations, and
therefore need to be rejected. For example in linksspoly above, due to the
comparison eq n (new "a") it is not possible to assign a suitable location to
n to model linksspoly ’s behavior with arbitrary new ly created values. And
consequently, we lose the ability to guard against invalid updates that alter
n to a value no longer equal to (new "a"), leading to the violation of the
consistency law. In this case, no update can be safely accepted, reducing
semantic bidirectionalization to a useless state.

3.2. Tracking Observations Using a Monad

As we have seen, with the existing bidirectionalization technique, it is
necessary to reject all updates when label construction is used, because of
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the fear that the update may affect the control (or, computation path) of
the forward function. On the other hand, this requirement is certainly over-
conservative: for a given query such as Links, not all the updates can affect
its control. For example, updating "a" to any other strings in view links affects
the control, but updating "text" to other strings (including "a") does not.

Our idea is to use a monad to keep track of what observations are per-
formed in the execution of a forward transformation. Then, we can employ a
more targeted update-checking strategy by rejecting only those that do affect
the observations.

Specifically, we extend type class PackTrial to PackM by including a
monad parameter. We also separate the construction of new labels into a
different class Pack .

class (Pack γ α,Monad µ)⇒ PackM γ αµ | α→ γ where
liftO :: Eq β ⇒ ([γ]→ β)→ ([α]→ µβ)

class Pack γ α where
new :: γ → α

In this new design, we no longer deal with specific observer functions such as
eq ; instead function liftO lifts any observer function [γ] → β on a concrete
datatype γ to a monadic one [α] → µβ on an abstract datatype α. The
context Eq β is needed because we will compare the observation results to
check the validity of updates. For convenience, we also introduce a specific
instance of liftO that operates on binary observer functions.

liftO2 p x y = liftO (λ[x, y].p x y) [x, y]

As a result, forward functions in our setting have the following type.

∀α.∀µ. PackM γ αµ⇒ Tree α→ µ (Tree α)

The type is polymorphic in α which is suitable for semantic bidirectional-
ization. And importantly, the type is polymorphic also in µ so that the
monad cannot be manipulated directly in the definitions of the forward func-
tions, which guarantees the integrity of the observation results recorded in
the monad.
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3.3. Forward Execution

In our new setting, the query Links can be defined as follows.

links :: ∀α.∀µ. PackM String αµ⇒ Tree α→ µ (Tree α)
links t = do as ← linkss t

return $ Node (new "results") as

linkss :: ∀α.∀µ. PackM String αµ⇒ Tree α→ µ [Tree α]
linkss (Node n ts) =

do b← liftO2 (==)n (new "a")
if b then return [Node n ts ]
else concatMapM linkss ts

where concatMapM hx = do ys ← mapM hx
return (concat ys)

As we can see, the above is a straightforward adaptation of the definition of
linkspoly .

To execute links , we need to instantiate the monad and provide instances
of its type class context. For forward execution, which does not require the
recording of observations, the identity monad I is used.2

newtype I α = I {runI :: α}

We omit the instance declaration of Monad I because it is standard. Simi-
larly, we prepare the following identity functor N .

newtype N α = N {runN :: α}

Accordingly, we prepare the following instances of Pack and PackM .

instance Pack γ (N γ) where
new = N

instance PackM γ (N γ) I where
liftO p x = I (p $ map runN x)

In the above, N γ is used instead of γ to satisfy the functional dependency
required by PackM , together with another instance of PackM which will be
introduced later. One might notice that we can use I instead of N . This is

2We do not use Identity in Haskell for brevity of the proofs.
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true. We use the different type N to distinguish abstraction of data (N) and
abstraction of computation (I).

Then, we can construct a function fwd for forward execution as below.

fwd :: (∀α.∀µ. PackM γ αµ⇒ Tree α→ µ (Tree α))
→ Tree γ → Tree γ

fwd h = λs.let I v = h (fmap N s) in fmap runN v

Example 2 (linksF ). We can instantiate links for forward execution as fol-
lows.

linksF :: Tree String → Tree String
linksF = fwd links

We can apply linksF directly to sources as in linksF src links = view links .

3.4. Backward Execution

In this section, we discuss the construction of backward transformations.

3.4.1. An Overview

Similar to before we attach locations to polymorphic labels, with the
following type.

data Loc α = Loc {body :: α, location :: Maybe Int}

Unlike what we saw in Section 2, the location part of the type is optional
(represented by the Maybe type): a label newly constructed by new does
not have a corresponding source label, and is therefore not updatable. For
brevity, we write x@i for Loc x (Just i) and x@# for Loc xNothing .

Let’s assume that a monadic infrastructure is prepared (we will see how
this is done in Section 3.4.3). Applying links to srcx links , a location-aware
version of src links defined as

srcx links = Node ("root"@1) [
Node ("a"@2) [Node ("text"@3) []],
Node ("p"@4) [Node ("a"@5) [Node ("text2"@6) []]]]

gives us a location-aware version viewx links of view links

viewx links = Node ("results"@#) [
Node ("a"@2) [Node ("text"@3) []],
Node ("a"@5) [Node ("text2"@6) []]]
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together with the following observation history recorded in the monad.

Observation Argument-1 Argument-2 Result
== "root"@1 "a"@# False
== "a"@2 "a"@# True
== "p"@4 "a"@# False
== "a"@5 "a"@# True

Entries in the above table represent the observations made during the ex-
ecution of links , which contribute to the control of the computation path.
No update is allowed to alter the results. For example, consider an update
[(3, "changed")], which changes the label "text" in the view to "changed".
Since the label affected does not appear in the history, the update does
not change the table, and thus can be accepted. In contrast, an update
[(2, "b")] involves location 2 that appears in the history. We then need to
check whether the change, from "a" to "b", alters the observation result.

Observation Argument-1 Argument-2 Result
== "root"@1 "a"@# False
== "b"@2 "a"@# True
== "p"@4 "a"@# False
== "a"@5 "a"@# True

In this case, the comparison "b" == "a" returns False, which is different
from the result in the history. As a result, the observation table becomes
inconsistent, and the update needs to be rejected. This consistency check
of the history is key for the application of free theorems, and therefore the
correctness of our proposal, which will be discussed formally in Section 4.

In summary, updates are reflected in the following steps.

• Firstly, an observation history is constructed by applying the forward
function, instantiated with an appropriate monad, to the location-
aware source.

• Then, given an updated view, an update is constructed and checked
against the observation history obtained in the previous step.

• Finally, if the update passes the check, it is applied to the source.

In the following, we explain these steps in detail. For generality, we introduce
helper functions primarily with specifications, and defer concrete implemen-
tations to Section 5.1.
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3.4.2. Locations

As mentioned in Section 3.4.1, locations for labels that appear in a view
are optional. In particular, the labels that are newly constructed by function
new do not have obvious origins in the source, and therefore won’t have
locations. This is reflected in the instance declaration of Pack for backward
execution.

instance Pack γ (Loc γ) where
new x = Loc xNothing

Just like pointers, only one value can be assigned to a particular location.
This property is formally defined as follows.

Definition 1 (Location Consistency). Let γ be a label type. A tree t ::
Tree (Loc γ) is location consistent if, for any labels x@i and y@j in t such
that i 6= # and j 6= #,

i = j ⇒ x = y

holds.

We use the following function to assign locations to all source labels.

assignLocs :: Tree γ → Tree (Loc γ)

And it must satisfy the following conditions.

Condition (assignLocs). assignLocs must satisfy: For all s

• assignLocs s is location consistent, and

• fmap body (assignLocs s) = s.

This specification is rather loose and leaves room for different implemen-
tations of assignLocs . When Nothing (#) is assigned to a source element,
it simply means that the source element is not updatable through a view.3

Moreover, we can customize the treatment of duplicated elements in the
source. In the example in Section 3.4.1, we have chosen the following assign-
ment with running integers.

"root"@1, "a"@2, "text"@3, "p"@4, "a"@5, "text2"@6

3In an extreme case, we could use assignLocs = fmap new , which would be permitted
by the above specification. However, this definition would be useless in practice because
it disallows any updates.
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Another implementation is to assign the same locations to “identical” labels
as in the following.

"root"@1, "a"@2, "text"@3, "p"@4, "a"@2, "text2"@5

This assignment still guarantees location consistency as "a" = "a". The
difference is that now the two "a"s are considered duplicates, instead of
separate labels with the same value.

In this paper, we mainly consider the former strategy, and a datatype-
generic implementation of it can be found in Section 5.1. Nevertheless, we
will discuss the implication of the different choices in Section 5.2.

3.4.3. Observation History

The observation history is represented as a list of the following datatype.

data Result α = ∀β.Eq β ⇒ Result ([α]→ β) [α] β

Roughly speaking, a value Result p [x1, . . . , xn] r corresponds to a line in the
observation table shown in Section 3.4.1, as below.

Observation Argument-1 . . . Argument-n Result
p x1 . . . xn r

The actual type of the observation outcome is existentially quantified, so that
results of different observers can be more easily kept together. Note that
using a universally-quantified constructor is a Haskell idiom to represent an
existentially-quantified datatype.

The consistency of a history entry can be easily checked.

check :: Result α→ Bool
check (Result p xs r) = p xs == r

And we can check whether a history remains consistent after an update.

checkHist :: (α→ α)→ [Result α]→ Bool
checkHist uh = all (check ◦ u′)h

where u′ (Result p xs r) = Result p (map u xs) r
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A “Writer” monad W is responsible for gathering histories4

newtype W αβ = W (β, [Result α])
instance Monad (W α) where

return x = W (x, [])
W (x, h1) >>= f = let W (y, h2) = f x in W (y, h1 ++ h2)

which allows us to define the following instance of PackM for backward
executions.

instance PackM γ (Loc γ) (W (Loc γ)) where
liftO p x = W (p′ x, [Result p′ x (p′ x)])

where p′ = p ◦map body

3.4.4. Updates

The application of updates remains straightforward. The only change
from Section 2 is that we now deal with optional locations.

update :: Update γ → Loc γ → Loc γ
update upd (Loc xNothing) = Loc xNothing
update upd (Loc x (Just i)) =

maybe (Loc x (Just i)) (λy.Loc y (Just i)) (lookup i upd)

The above definition satisfies the following conditions, which will be used in
the proofs in Section 4.

Condition (update). update satisfies the following conditions. For any x,

• update []x = x, and

• update upd (new x) = new x.

Updates are extracted by comparing a location-aware view and an up-
dated view with a function of the following type.

matchViews :: Eq γ ⇒ Tree (Loc γ)→ Tree γ → Update γ

The definition of matchViews is similar to matchViewsSimple in Section 2,
except that matchViews needs to recognize labels without locations and re-
ject any changes to them. We postpone the definition of matchViews to
Section 5.1 where we present a datatype-generic version of it. We require
matchViews to satisfy the following conditions.

4We do not use Writer in Haskell instead of W for brevity of the proofs.
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Condition (matchViews). matchViews must satisfy:

• Correctness. for any v′ and location-consistent vx , if matchViews vx v′

succeeds and results in upd , then fmap (body◦update upd) vx = v′ holds.

• Minimality. for any v and location-consistent vx such that fmap body vx =
v, matchViews vx v = [] holds.

3.4.5. Putting Everything Together

With all the ground prepared, we are now ready to set up the backward
execution.

bwd :: (∀α.∀µ.PackM γ αµ⇒ Tree α→ µ (Tree α))
→ (Eq γ ⇒ Tree γ → Tree γ → Tree γ)

bwd h = λs v. let sx = assignLocs s
W (vx , hist) = h sx
upd = matchViews vx v

in if checkHist (update upd) hist then
fmap (body ◦ update upd) sx

else
error "Inconsistent History"

Example 3 (links). We can instantiate links for backward execution as
follows.

linksB :: Tree String → Tree String → Tree String
linksB = bwd links

Suppose that view links is updated to the following tree.

view ′ = Node "results" [Node "a" [Node "changed" []],
Node "a" [Node "text2" []]]

Then, linksB src links view ′ results in the following updated source.

Node "root" [Node "a" [Node "changed" []],
Node "p" [Node "a" [Node "text2" []]]]

On the other hand, an update to the view view ′′

view ′′ = Node "results" [Node "b" [Node "text" []],
Node "a" [Node "text2" []]]

is rejected for the reason discussed in Section 3.4.1.
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4. Correctness

In this section, we prove the correctness of our approach. That is, we
prove that a forward transformation and the derived backward transforma-
tion satisfy the consistency and acceptability properties of Section 1.

We rewrite the laws in our setting. Let h be a function of type ∀α.∀µ.PackM γ αµ⇒
Tree α → µ (Tree α). We prove that the following laws hold for any sources
s and s′, and view v.

Acceptability bwd h s (fwd h s) = s
Consistency fwd h s′ = v if bwd h s v = s′

Throughout the section, we fix the function h.
Following the original work [15], we make use of free theorems [22, 25,

27, 28] in the proofs. We assume that a polymorphic function h that we
bidirectionalize is total, and sources and views do not contain any undefined
values. We also implicitly use the fact that our backward transformation can
be made total through the explicit handling of exceptions (e.g., by Maybe).
Thus, we can interpret types as sets and functions as set-theoretic functions.
This totality assumption is reasonable in the context of bidirectional trans-
formation.

4.1. Free Theorem

Roughly speaking, free theorems are theorems obtained for free as corol-
laries of relational parametricity [23], which states that, for a closed term
f of type τ , (f, f) belongs to a certain relational interpretation of τ . A
simple example of a free theorem is that f of type ∀α.[α] → [α] satisfies
map g ◦ f = f ◦map g for any function g of type σ → τ .

We start by introducing some notations. We write R :: σ1 ↔ σ2 if R is a
relation between σ1 and σ2. For relations R :: σ1 ↔ σ2 and R′ :: τ1 ↔ τ2, we
write R → R′ :: (σ1 → τ1) ↔ (σ2 → τ2) for the relation {(f, g) | ∀(x, y) ∈
R. (f x, g y) ∈ R′}. For a polymorphic term f of type ∀α.τ and a type σ, we
write fσ for the instantiation of f to σ, which has type τ [σ/α]. For simplicity,
we sometimes omit the subscript and simply write f for fσ if σ is clear from
the context or irrelevant.

We introduce a relational interpretation JτKρ of types, where ρ is a map-
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ping from type variables to relations, as follows.

JαKρ = ρ(α)

JBKρ = {(e, e) | e :: B} if B is a base type

Jτ1→τ2Kρ = Jτ1Kρ → Jτ2Kρ
J∀α.τKρ =

{
(u, v)

∣∣∣∀R :: σ1↔σ2. (uσ1 , vσ2) ∈ JτKρ[α 7→R]

}
Here, ρ[α 7→ R] is an extension of ρ with α 7→ R. If ρ = ∅, we sometimes
write JτK instead of JτK∅. We abuse the notation to write J∀α.τK as ∀R.F
where F is the interpretation JτK{α 7→R}. For example, we write ∀R.∀S.R →
S for J∀α.∀β.α→ βK. For a base type B, we also write B for JBK.

The relational interpretation can be extended to the list type [ · ] and the
rose-tree type Tree, as follows.

J[τ ]Kρ = [JτKρ] JTree τKρ = Tree JτKρ
Here, we write [S] for the smallest relation satisfying

([], []) ∈ [S], and
(a1 : x1, a2 : x2) ∈ [S]⇔ (a1, a2) ∈ S ∧ (x1, x2) ∈ [S],

and write TreeR for the smallest relation satisfying

(Node x1 ts1,Node x2 ts2) ∈ TreeR ⇔ (x1, x2) ∈ R, (ts1, ts2) ∈ [TreeR].

Intuitively, [R] relates two lists with the same length of which each pair
of the elements in a same position are related by R, and similarly TreeR
relates two trees with the same shape of which each pair of labels in the same
position are related by R.

Then, parametricity states that, for a term f of a closed type τ , (f, f) is
in JτK.

Free theorems are theorems obtained by instantiating parametricity. For
example, for f :: ∀α.[α] → [α], we must have (f, f) ∈ ∀R.[R] → [R]. Thus,
for any R : σ1 ↔ σ2, (fσ1 , fσ2) ∈ [R] → [R] holds. That is, if we take
R = {(x, g x) | x :: σ1} for any g :: σ1 → σ2, we obtain map g ◦f = f ◦map g.

Voigtländer [25] extends parametricity to a type system with type con-
structors. A key notion in his result is relational action.

Definition 2 (Relational Action [25]). For type constructors κ1 and κ2, F
is called a relational action between κ1 and κ2, denoted by F : κ1 ↔ κ2,
if F maps any relation R : τ1 ↔ τ2 for every closed type τ1 and τ2 to
F R : κ1 τ1 ↔ κ2 τ2.
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Accordingly, the relational interpretation is extended as:

JκKρ = ρ(κ)

Jτ1 τ2K = Jτ1K Jτ2K
J∀κ.τK =

{
(u, v)

∣∣∣∀F : κ1 ↔ κ2. (uκ1 , vκ2) ∈ JτKρ[κ7→F ]

}
Parametricity holds also on this relational interpretation [28, 27]. Here, κ,
κ1 and κ2 are type constructors of kind ∗ → ∗, and thus the quantified F is
a relational action.

Voigtländer [25] handles a function with type-class constraints as a higher-
order function that takes the methods of the type classes as inputs. For
example, a function f :: Monad µ⇒ τ can be seen as a function f ′ :: (∀α.α→
µα) → (∀α.∀β. µα → (α → µβ) → µβ) → τ with f ′ = λreturn.λ(>>=).f ,
and an instance fκ of f can be seen as f ′ returnκ (>>=)κ. Just as he packed the
conditions posed by the above interpretation of Monad by Monad -action, we
introduce a similar notion of PackM -action for PackM .

Definition 3 (PackM -action). For relations L :: σ1 ↔ σ2 and U :: τ1 ↔ τ2
and a relational action F :: κ1 ↔ κ2, a triple (L,U ,F) is called a PackM -
action if all the following conditions hold.

• (σi, τi, κi) is an instance of PackM for i = 1, 2,

• (returnκ1 , returnκ2) ∈ ∀R.R → F R,

• ((>>=)κ1 , (>>=)κ2) ∈ ∀R.∀S. F R → ((R→F S)→F S),

• (newσ1,τ1 , newσ2,τ2) ∈ L → U , and

• (liftOσ1,τ1,κ1,β1 , liftOσ2,τ2,κ2,β2) ∈ ([L] → S) → [U ] → F S for all S ::
β1 ↔ β2 satisfying ((==)β1 , (==)β2) ∈ S → S → Bool .

Intuitively, a PackM -action is a property that is “preserved” under PackM -
methods.

Now, we are ready to state a free theorem for a function h of the type
∀α.∀µ. PackM γ αµ⇒ Tree α→ µ (Tree α).

Theorem 1 (A Free Theorem). Let γ be a type and L be the relation
{(e, e) | e :: γ}. Suppose h be a function of type ∀α.∀µ. PackM γ αµ ⇒
Tree α→ µ (Tree α). Let (τ1, κ1) and (τ2, κ2) be pairs of types and type con-
structors such that (γ, τ1, κ1) and (γ, τ2, κ2) are instances of PackM . Then,
for every PackM -action (L,U :: τ1 ↔ τ2,F :: κ1 ↔ κ2), we have (hτ1,κ1 , hτ2,κ2) ∈
Tree U → F (Tree U).
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4.2. Preservation of Location Consistency

First of all, we prove that a tree vx constructed in bwd is location consis-
tent. This is used to apply the properties on matchViews .

Lemma 1 (Location-Consistency of vx ). SupposeW (vx , ) = h (assignLocs s)
for a tree s. Then, vx is location consistent.

Proof Sketch. Let s be a source and E be the set of labels in assignLocs s.
Recall that assignLocs s is assumed to be location-consistent. Then, it follows
that vx is location-consistent if all the labels e = x@i in vx with i 6= # are
also in E.

Let U and F be a relation and a relational action.

U = {(x@i, x@i) | i 6= #⇒ x@i ∈ E}
F R = {(W (x, ),W (y, )) | (x, y) ∈ R}

Then, we can prove that (L,U ,F) is a PackM -action (see Appendix A.1),
and (h, h) ∈ Tree U → F (Tree U) from Theorem 1 where L = {(e, e) | e :: γ}.
Since (assignLocs s, assignLocs s) ∈ Tree U , we have (vx , vx ) ∈ Tree U . Thus,
vx is location consistent.

4.3. Proof of Acceptability

The overall structure of our (calculational-style) proof of acceptability is
as follows.

bwd h s (fwd h s)

= { Unfolding bwd }
if checkHist (update upd) hist then

fmap (body ◦ update upd) sx else . . .

= { (*) — see below }
if True then fmap (body ◦ id) sx else . . .

= { Reduction }
fmap body sx

= { Property of assignLocs }
s

At (*), we use two properties: one is upd = [], and the other is checkHist (update []) hist =
True. To show them, it suffices to use the following lemma together with the
properties on matchViews (with Lemma 1) and update.
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Lemma 2. Let sx be assignLocs s. Suppose W (vx , hist) = h sx and I v =
h (fmap N s). Then, we have fmap body vx = fmap runN v and checkHist id hist =
True.

Proof Sketch. Let U :: N γ ↔ Loc γ and F :: I ↔ W (Loc γ) be a relation
and a relational action defined by:

U = {(x, y) | runN x = body y}
F R = {(I x,W (y, w)) | (x, y) ∈ R ∧ checkHist id w}

We can show that (L,U ,F) is a PackM -action where L = {(e, e) | e :: γ}
(see Appendix A.2). Then, we have (h, h) ∈ Tree U → F (Tree U) by Theo-
rem 1; that is, for any x and y with fmap runN x = fmap body y, we obtain
fmap runN v = fmap body vx and checkHist id hist = True where I v = hx
and W (vx , hist) = h y. Taking x = fmap N s and y = assignLocs s, we
obtain the lemma.

4.4. Proof of Consistency

The proof is a bit more complicated but has a similar structure. The
overall structure of our proof is as follows.

fwd h (bwd h s v) (assuming bwd h s v succeeds)

= { Unfolding bwd , and bwd succeeded }
fwd h (fmap (body ◦ update upd) sx )

= { (*) — see below }
fmap (body ◦ (update upd)) vx

= { Property of matchViews and Lemma 1}
v

At (*), we used the following lemma.

Lemma 3. Let sx be assignLocs s, and s′ be fmap (body ◦update upd) sx . Let
v′, vx and hist be those obtained from I v′ = h (fmap N s′) and W (vx , hist) =
h sx . Suppose we have checkHist (update upd) hist = True. Then

fmap runN v′ = fmap (body ◦ update upd) vx

holds.
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Proof Sketch. Let U :: N γ ↔ Loc γ and F :: I ↔ W (Loc γ) be a relation
and a relational action defined by:

U = {(x, y) | runN x = body (update upd y)}
F R = {(I x,W (y, w)) | checkHist (update upd)w ⇒ (x, y) ∈ R}

We can show that (L,U ,F) is a PackM -action where L = {(e, e) | e :: γ}
(see Appendix A.3). Then, we can prove the lemma straightforwardly from
Theorem 1.

Remark. It is assumed in the proofs that the functions passed to liftO are
total. But as a matter of fact, we break the rule ourselves in defining liftO2
as liftO2 p x y = liftO (λ[x, y].p x y) [x, y]. This discrepancy arises as a result
of the use of a list parameter to model different arities of a series of functions.
The definition of liftO is meant to cover a family of functions of types liftOn ::
(PackM γ αµ,Eq β) ⇒ (γn → β) → (αn → µβ) of arity n. If we consider
this more refined type, which the instances of PackM respect as a matter
of fact, the use of liftO only concerns total functions. Our proofs can be
easily lifted to the refined type. Thus, the partial function fed to liftO in the
definition of liftO2 does not pose any problem on correctness.

5. Extensions

In this section, we extend the core idea presented in Section 3 and address
some practical concerns.

5.1. Going Generic

So far, we have demonstrated our idea for a specific type, namely Tree.
It is not difficult to generalize the solution to be datatype-generic.

Actually, this generalization has already been done in the previous work [15,
8]; we borrow the ideas and adapt them for our new setup. More concretely,
we use the datatype-generic function traverse from Data.Traversable to
define assignLocs and matchViews , and change the type declarations of fwd
and bwd accordingly.

traverse :: (Traversable κ,Applicative θ)⇒ (α→ θ β)→ κα→ θ (κβ)
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We use traverse to define two functions: one collects data from structures
(contents), and the other decorates structures with given data (fill) respec-
tively. 5

contents :: Traversable κ⇒ κα→ [α]
contents = getConst ◦ traverse (λx.Const [x])

fill :: Traversable κ⇒ κβ → [α]→ κα
fill t l = evalState (traverse next t) l

where next = do (a : x)← Control .Monad .State.get
Control .Monad .State.put x
return a

Here, Const and getConst are from Control.Applicative. We qualified the
state monad operations get and put with Control .Monad .State to distinguish
them from the get and put as bidirectional transformations. Intuitively,
contents extracts all the elements of a structure as a list, and fill replaces
the elements of a structure by those of a given list.

In a polymorphic setting where the separation between structure κ and
data α is made clear in the type, instances of Traversable are straightforward
to define, in fact they are systematically derivable [30]. In our case, where
transformations are monomorphic, one has to decide where the line is drawn.
As a rule of thumb, values that are intended for updating shall be made into
atomic data, which is separated from the rest of the structure in the type.
For example, in the Links example, we abstract the trees of strings into the
polymorphic type Tree. As a result, the string labels are subject to updating,
but not the tree structure.

The systematically derived instances of Traversable satisfy certain laws [29].
We have

FillContents fill (fmap f t) (contents t) = t
ContentsFill contents (fill t xs) = xs if length xs = length (contents t)

for any f and t (see Appendix A.4 for a proof), which is needed to establish
the correctness of the generic algorithm. Note that every Traversable instance
is also an instance of Functor .

5In GHC, the function contents is called toList , which is defined in Data.Foldable.
(Every Traversable instance is also an instance of Foldable). We use the name contents to
emphasize its role of extracting contents from a structure, following [29].
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We then redefine assignLocs in this new setting.

assignLocs :: Traversable κ⇒ κ γ → κ (Loc γ)
assignLocs t = fill t (assignLocsList $ contents t)

where assignLocsList l = zipWith (λx i. Loc x (Just i)) l [1..]

Using FillContents and ContentsFill, we can prove that the conditions
we posed on assignLocs in Section 3.4 hold (see Appendix A.5 for a proof).

We also redefine matchViews , which performs element-wise comparisons
after a shape-equality check.

matchViews :: (Traversable κ,Eq (κ ()),Eq γ)⇒ κ (Loc γ)→ κ γ → Update γ
matchViews vx v = if fmap ignore vx == fmap ignore v then

let lx = contents vx
l = contents v

in minimize lx $ makeUpd $ zip lx l
else

error "Shape Mismatch"

Here, ignore is a function defined by ignore = (), which ignores its input but
leaves a place-holder. Function makeUpd , which is defined below, constructs
an update from two views, making sure that elements without locations are
not changed, and location consistency is not violated.

makeUpd :: Eq γ ⇒ [(Loc γ, γ)]→ Update γ
makeUpd = foldr f []

where
f (Loc xNothing , y)u | x == y = u

| otherwise = error "Update of Constant"

f (Loc (Just i), y)u =
case lookup i u of

Nothing → (i, y) : u
Just y′ | y == y′ → u

| otherwise → error "Inconsistent Update"

Again, the conditions we pose on matchViews hold (see Appendix A.6).
Accordingly, the types of fwd and bwd are updated.

fwd :: (Traversable κ1,Traversable κ2)⇒
(∀α.∀µ. PackM γ αµ⇒ κ1 α→ µ (κ2 α))→ κ1 γ → κ2 γ

bwd :: (Traversable κ1,Traversable κ2)⇒
(∀α.∀µ. PackM γ αµ⇒ κ1 α→ µ (κ2 α))
→ ((Eq γ,Eq (κ2 ()))⇒ κ1 γ → κ2 γ → κ1 γ)
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No change is required in the definitions of fwd and bwd .
It is worth noting that there exist GHC language options DeriveFunctors

and DeriveTraversables that allow instances of Functor and Traversable
to be automatically derived, which comes in handy for bidirectionalizing
transformations on user-defined datatypes.

5.2. Finer Control of Duplication

It is usually expected that in any reasonable system, duplicates shall be
updated consistently to the same value. In theory, there is little controversy
about this statement; yet in practice, given two equal values it is less obvious
whether they are actual duplicates, or merely being incidentally equal.

5.2.1. Interpretation of Equality

In our system, updates are controlled by source locations: only values
with locations can be updated, and those that share the same locations are
updated simultaneously. In Section 3.4.2, we have taken a conservative ap-
proach in location assignment by considering all source elements as indepen-
dent data regardless of their values. This decision makes a lot of sense. For
example, consider our example Q1 in Figure 2. Suppose that there are books
published in the same year in the source, we don’t want to have all of them
changed just because one is changed.

On the other hand, it is also clear that our choice is not the only meaning-
ful one. In the original work on semantic bidirectionalization [15], when the
system is extended to non-fully polymorphic forward functions such as those
of type ∀α.Eq α⇒ [α]→ [α], they use a strategy of considering elements as
duplicates, as long as they are equal. The idea to handle the above function
is to provide a specialized version of assignLocs that assigns locations that
reflect the presence of Eq (i.e., equal elements get the same location so that
for every two elements x@i and y@j (i 6= # and j 6= #) the condition that
x = y if and only if i = j holds). Any updates that violate this condition are
rejected. For example, the version of assignLocs assigns locations for "abba"
as [’a’@1, ’b’@2, ’b’@2, ’a’@1]. Consider function nub in Data.List that
removes duplicated elements from a list, where nub "abba" results in "ab".
Let nubB be the corresponding backward transformation of nub obtained in
the above-mentioned manner. Then nubB "abba" "cb" results in "cbbc", as
the two ’a’s are considered duplicates, and the changing of one changes the
other.
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In our system, this behavior of nubB can easily be mimicked by giving an
appropriate definition of assignLocs that assigns the same locations to equal
values. In general, we can express variations of interpretations of duplication
by changing the definition of assignLocs ; for example, for a source "aaa",
we can express the situation that the first two ’a’s are actual duplicates
but the third one is accidentally equal to the first two by assigning the loca-
tions as [’a’@1, ’a’@1, ’a’@2]. However, allowing user-defined assignLocs
unnecessarily exposes implementation details that we wish to hide.

5.2.2. Dynamic Management of Duplication

Our solution is to use an interface function that builds duplication in-
formation dynamically. Inspired by the “merge” combinator in [7], we add
the following method eqSync to PackM γ αµ to turn equal elements into
duplicates.

eqSync :: Eq γ ⇒ α→ α→ µBool

Intuitively, eqSync is essentially the same as liftO2 (==), but with the ad-
ditional behavior of recording the two arguments as duplicates when they
are equal. As a result, a forward execution creates a witness of equiva-
lence classes in terms of locations (for example, Union-Find tree), and an
equivalence relation (==e) can be induced from such a witness e. Then, our
backward transformation propagates updates to one location to all those that
are equivalent to it.

Concretely, we extend the monad for backward evaluation to include the
equivalence-class witnesses. (The name SW means the composition of the
“State” monad and the “Writer” monad.)

newtype SW αβ = SW {runSW :: Equiv → ((β, [Result α]),Equiv)}
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The datatype is actually an instance of Monad as follows.6

instance Monad (SW α) where
return x = SW $ λe.((x, []), e)
SW g >>= f = SW $ λe. let ((x, h1), e

′) = g e
((y, h2), e

′′) = runSW (f x) e′

in ((y, h1 ++ h2), e
′′)

Here, Equiv is a datatype to express witnesses of equivalence, which we leave
abstract in this paper. We assume the following interface of the abstract
type. 7

empty :: Equiv
equate :: Int → Int → Equiv → Equiv
equal :: Int → Int → Equiv → Bool

In the above, empty is the empty witness, which means that no two locations
are considered equivalent unless they are equal. Function equate adds two
locations as equivalence to a witness, and equal decides the equivalence be-
tween two locations with respect to a given witness. Often, we write i ==e j
for equal i j e.

In the forward execution, eqSync is not different from liftO2 (==):

instance PackM γ (N γ) I where
liftO p x = I (p $ map runN x) -- kept unchanged
eqSync = liftO2 (==)

In the backward execution, eqSync records the two compared elements as
duplicates if they are equal, by adding their locations to the witness. Note

6Actually, using a state monad State ([Result α],Equiv) instead of SW suffices for our
purpose, and then we do not need this explicit Monad -instance declaration. We used SW
here so that we can keep the existing code as much as possible. Also, monad transformers
can be used to write WriterT [Result α] (State Equiv) instead of SW . We avoid the use of
monad transformers here because it complicates our theoretical development unnecessarily.

7For efficiency, we should use a version of equal of type Int → Int → Equiv →
(Bool ,Equiv) if we use a Union-Find tree to implement Equiv . However, we put more
weight on presentation simplicity here.
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that equal elements don’t necessarily have equal locations.

instance PackM γ (Loc γ) (SW (Loc γ)) where
liftO p x = SW $ λe.((p′ x, [Result p′ x (p′ x)]), e)

where p′ = p ◦map body
eqSync x y | body x == body y, Just i← location x, Just j ← location y =

SW $ λe. let p [x, y] = body x == body y
in ((True, [Result p [x, y] True]), equate i j e)

| otherwise = liftO2 (==)x y

Note that only elements with locations can be synchronized in the above
definition. This is not a restriction in real terms, since elements without
locations cannot be updated anyway, and enforced by the observation-history
check, any other elements that are compared equal with elements without
locations are not updatable either.

The definition of bwd is adapted to match the new monad, as follows.

bwd h = λs v. let sx = assignLocs s
((vx , hist), equiv) = runSW (h sx ) empty
upd = matchViews equiv vx v

in if checkHist (update equiv upd) hist then
fmap (body ◦ update equiv upd) sx

else
error "Inconsistent History"

Additionally, we have to replace the calls to lookup in update and matchViews
(more precisely, makeUpd) with lookupBy (==equiv) so that equivalent (not
just equal) locations are updated to the same values; this is the reason why
matchViews and update take an extra argument equiv .

Let us go back to the example of function nub from the beginning of this
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subsection, which can be defined for bidirectional execution as follows.

nubM :: (Eq γ,PackM γ αµ)⇒ [α]→ µ [α]
nubM [] = return []
nubM (x : xs) = do r ← deleteAllM x xs

xs ′ ← nubM r
return (x : xs ′)

deleteAllM :: (Eq γ,PackM γ αµ)⇒ α→ [α]→ µ [α]
deleteAllM x [] = return []
deleteAllM x (y : ys) = do b← eqSync x y

r ← deleteAllM x ys
return (if b then r else y : r)

We use a helper function deleteAllM to remove all the elements from xs that
are equal to x, and at the same time, through the use of eqSync, record that
x and the deleted elements are duplicates. As a result, the corresponding
backward transformation, bwd nubM , behaves in the way described in the
beginning of this subsection.

5.2.3. Correctness

We now look at how the adding of eqSync affects the correctness discus-
sion in Section 4. One notion that has to be changed is location consistency,
where the equality operator = used to compare locations needs to be replaced
with ==e; we call this version of the definition location consistency with re-
spect to e. Consequently, the proof of Lemma 1 has to be adapted to take
into account the fact that the witness of equivalence, which location consis-
tency now depends on, changes at runtime. In contrast, Lemmas 2 and 3 can
be easily extended to admit eqSync because they can only refer to the final
value of the witness when the execution finishes (i.e., equiv in bwd). Note
that every ==equiv can be emulated by giving an appropriate assignLocs .

In the following, we prove the eqSync-supported version of Lemma 1.
Concretely, we prove the following lemma.

Lemma 4 (Location-Consistency of vx with eqSync). Suppose that we have
((vx , ), equiv) = runSW (h (assignLocs s)) empty for a tree s. Then, vx is
location consistent with respect to equiv .

Proof Sketch. The basic idea of the proof follows that of Lemma 1. Let s be
a source and E be the set of elements in assignLocs s. We say E is location-
consistent with respect to e if, for any two elements x@i in y@j (with i 6= #
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and j 6= #), i ==e j implies x = y. Then, it follows that vx is location
consistent with respect to e if all the elements x@i in vx (with i 6= #) are
also in E and E is location consistent with respect to e. We write LE(e) if
E is location consistent with respect to e.

Let U and F be a relation and a relational action.

U = {(x@i, x@i) | i 6= #⇒ x@i ∈ E}

F R =

(SW f1, SW f2)

∣∣∣∣∣∣
∀e1, e2.LE(e1) ∧ LE(e2)⇒

(x1, x2) ∈ R ∧ LE(e′1) ∧ LE(e′2)
where ((xi, ), e′i) = fi ei (i = 1, 2)


Then, we can prove that (L,U ,F) is a PackM -action and the rest of the
proof is similar to Lemma 1’s.

6. Putting the System to Use

In this section, we look at how our system can be used in some of the most
common applications of bidirectional transformation, namely text process-
ing, XML query and graph transformation. We demonstrate with examples,
showing how the examples can be programmed in our system, and how up-
dates can be checked and executed.

6.1. Text Processing

Consider the scenario of processing text represented as strings. The con-
crete task is to extract words from the text along with the number of occur-
rences of each word. For example, for text "a b a a c", the expected result
is [("a", 3), ("b", 1), ("c", 1)].

6.1.1. A Datatype for the Source

We start by representing the source data (in this case a string) in a
structured format so that the distinction between structure and data is made
clear. In this case, we are interested in updating individual words, which
suggests the encoding of the text as a list of elements with the element type
instantiated as String .

Note that the polymorphic nature of the list data type is important here:
it provides a clear separation between the structural container and the pay-
load data. This separation is needed for our bidirectionalization technique to
apply, as payload data are subject to updating, whereas structures are not.
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As a result, a monomorphic data type declaration like the following will not
work

data ListS = Nil | Cons String ListS

because one can no longer draw a line between data and structure.
The function that converts the raw text string into the list representation

is
words :: String → [String ]

Here, the type parameter is instantiated.

6.1.2. The Forward Transformation

As a reference implementation, we firstly program the example without
considering bidirectionalization.

countWords :: [String ]→ [(String , Int)]
countWords [] = []
countWords (w : ws) = let (c,ws ′) = deleteAndCount wws

in (w, c+ 1) : countWords ws ′

deleteAndCount :: String → [String ]→ (Int , [String ])
deleteAndCount x [] = (0, [])
deleteAndCount x (w : ws) = let (c,ws ′) = deleteAndCount xws

in if x == w then (c+ 1,ws ′) else (c, w : ws ′)

We now turn the above functions into ones that have the right types involv-
ing PackM , which are suitable for bidirectional execution. This is a rather
straightforward rewrite: we convert the definitions into a Monad ic style and
lift the comparison operator ==, as follows.

countWordsM :: PackM String αµ⇒ [α]→ µ [(α, Int)]
countWordsM [] = return []
countWordsM (w : ws) = do (c,ws ′)← deleteAndCountM wws

r ← countWordsM ws ′

return $ (w, c+ 1) : r

deleteAndCountM :: PackM String αµ⇒ α→ [α]→ µ (Int , [α])
deleteAndCountM x [] = return (0, [])
deleteAndCountM x (w : ws) =

do (c,ws ′)← deleteAndCountM xws
b← eqSync xw
return (if b then (c+ 1,ws ′) else (c, w : ws ′))
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["Old", "MacDonald", "had", "a", "farm", "E-I-E-I-O",
"And", "on", "the", "farm", "he", "had", "a", "cow", "E-I-E-I-O",
"With", "a", "moo", "moo", "here", "and", "a", "moo", "moo", "there",
"Here", "a", "moo", "there", "a", "moo", "everywhere", "a", "moo", "moo",
"Old", "MacDonald", "had", "a", "farm", "E-I-E-I-O"]

Figure 4: A List of Words

Note that we have chosen to use eqSync as the lifted version of == to capture
the intention of considering equal elements duplicates, and having changes
to one propagate to all, as discussed in Section 5.2.

We are almost done here. A small remaining technicality is that the
view type [(α, Int)] needs to be an instance of Traversable for our generic
implementation to work. The standard workaround is to wrap it up into a
newtype.

newtype CountList α = CountList {runCountList :: [(α, Int)]}

Then, we can simply derive a Traversable instance for it using GHC.
Accordingly, the forward and backward transformations of countWords

perform wrapping and unwrapping of the constructor.

countWordsF :: [String ]→ [(String , Int)]
countWordsF ws =

runCountList $ fwd (liftM CountList ◦ countWordsM ) ws

countWordsB :: [String ]→ [(String , Int)]→ [String ]
countWordsB ws cs =

bwd (liftM CountList ◦ countWordsM ) ws (CountList cs)

Here, liftM :: Monad µ⇒ (α→ β)→ (µα→ µβ) from Control.Monad lifts
a function to a monad.

6.1.3. Permitted Updates

We now can try to apply our transformations. Let us consider the list of
words shown in Figure 4. Applying countWordsF to the list produces the
list in Figure 5. The intended updates are to change the spelling of indi-
vidual words and have all the occurrences updated uniformly in the source.
For example, we may update "cow" to "lamb" and "moo" to "bar". But
such updates are not supposed to alter the observation made during the for-
ward execution, for example updating "Here" to "here" will be rejected.
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[("Old", 2), ("MacDonald", 2), ("had", 3), ("a", 8), ("farm", 3),
("E-I-E-I-O", 3), ("And", 1), ("on", 1), ("that", 1), ("he", 1),
("cow", 1), ("With", 1), ("moo", 8), ("here", 1), ("and", 1),
("there", 2), ("Here", 1), ("everywhere", 1)]

Figure 5: Result of Applying countWordsF to the List in Figure 4

Structure changes are also ruled out as expected: it is made clear in the def-
inition of CountList that the list structure together with the integer counts
is considered to be the structure here.

6.2. XML Query

Next, we revisit our motivating example of XML querying, and show how
we can bidirectionalize the query Q1 shown in Figure 2. Recall that, if we
apply Q1 to the XML source in Figure 1 we get the XML view in Figure 3.

6.2.1. A Datatype for XML

As always, we firstly need to decide on a datatype to describe the source
data. Here, we use the rose-tree datatype defined in Section 3, and instantiate
the element type to the following labels.

data L = A String | E String | T String deriving Eq

Here, A, E and T stand for “attribute”, “element” (in terms of XML) and
“text” (attribute values and character data). We omit other features of XML
that are not expressed by this datatype, such as namespaces.

For example, an XML fragment

<book year="1994"><title>Text</title></book>

is represented as

Node (E "book") [Node (A "year") [Node (T "1994") []],
Node (E "title") [Node (T "Text") []]]

The following function label is handy when we write programs that ma-
nipulate the rose trees.

label (Node l ) = l
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6.2.2. Programming the Forward Transformation

We have seen in the previous subsection the rather straightforward adap-
tation of an ordinary program into one ready for bidirectional execution.
Here, we do not try to repeat the process; instead we directly implement Q1
as a function of type ∀α.∀µ.PackM Lαµ ⇒ Tree α → µ (Tree α). A stan-
dard way to write XML transformations in a functional language is to use
“filters” [31]. In [31], the filters (if we simplify and customize them to our
rose trees) are of type Tree L → [Tree L], which will be made polymorphic
in our setting as

PackM Lαµ⇒ Tree α→ ListT µ (Tree α).

where monad transformer ListT in Control.Monad.List is defined by:

newtype ListT µα = ListT {runListT :: µ [α]}

which has an implementation for the method lift :: µα → ListT µα in
Control.Monad.Trans. In addition, we will make use of the fact that ListT µ
is an instance of MonadPlus in Control.Monad. Specifically, we use function
mzero :: MonadPlus κ ⇒ κα to represent computation failure. Note that µ
of ListT µ must be commutative, and otherwise, ListT µ is not necessarily
a monad. In the following discussion, µ of ListT µ will be instantiated by
the monads I and W (Loc γ) (or, SW (Loc γ)), where they all are commuta-
tive because we do not care the order of observation histories (and that of
equivalence witnesses).

A simple example of a filter is keep that keeps its input.

keep :: PackM Lαµ⇒ Tree α→ ListT µ (Tree α)
keep = return

Another simple example is children that returns the children of a node, de-
fined as follows.

children :: PackM Lαµ⇒ Tree α→ ListT µ (Tree α)
children (Node ts) = ListT (return ts)

Also, a useful example is ofLabel l t that returns t if the root of t has label l,
and fails otherwise.

ofLabel :: PackM Lαµ⇒ α→ Tree α→ ListT µ (Tree α)
ofLabel l t = do guardM $ lift $ liftO2 (==) (label t) l

return t
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Here, guardM is a function that is similar to guard in Control.Monad except
that guardM takes a monadic argument. It fails if its argument is False and
does nothing otherwise.

guardM :: MonadPlus κ⇒ κBool → κ ()
guardM x = x >>= (λb.if b then return () else mzero)

Filters are composable [31]. For example, with the following operator />

(/>) :: PackM Lαµ⇒ (Tree α→ ListT µ (Tree α))
→ (Tree α→ ListT µ (Tree α))
→ (Tree α→ ListT µ (Tree α))

f /> g = f >=> children >=> g

where (>=>) is Kleisli-composition operator in Control.Monad defined by
(f >=> g)x = f x >>= g, we can make a filter keep /> ofLabel (new $ E "book")
that extracts book elements from the children of its input, and a filter
keep /> keep /> keep that extracts the grandchildren of its input.

Now we are ready to implement Q1 in Figure 6. The code is mostly declar-
ative though complicated; the complication largely comes from the encoding
of XML queries in a functional language, not from the bidirectionalization
effort. An auxiliary function gather gathers results: for example children y
produces one child at a time, and gather (children y) collects the children in
a list.

6.2.3. Permitted Updates

Given that q1 has the right type, we can easily bidirectionalize it with
fwd and bwd . It is not difficult to see that fwd q1 implements Q1, although
there is a subtle difference that Q1 reads an input XML document from a
certain URL while q1 takes the input as a parameter.

Let us discuss what kind of updates will be permitted by bwd q1 . Consider
the view in Figure 3. There are the following kinds of in-place updates:

• Changing bib-tags to other tags.

• Changing book-tags to other tags.

• Changing year to other attributes.

• Changing the values of year-attributes.
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q1 :: PackM Lαµ⇒ Tree α→ µ (Tree α)
q1 t = pick $ do bs ← gather $ (keep /> (tag "book" >=> h)) t

return $Node (new $ E "bib") bs
where
h b = do y ← (keep /> attr "year" /> keep) b

t← (keep /> tag "title") b
p← (keep /> tag "publisher" /> keep) b
guardM $ lift $ liftO2 gtInt (label y) (new $ T "1991")
guardM $ lift $ liftO2 (==) (label p) (new $ T "Addison-Wesley")
return $Node (new $ E "book") [Node (new $A "year") [y], t]

gtInt (T l1) (T l2) = (read l1 :: Int) > (read l2 :: Int)

tag s = ofLabel (new $ E s)
attr s = ofLabel (new $A s)

gather :: Monad µ⇒ ListT µα→ ListT µ [α]
gather (ListT m) = ListT $ do {x← m; return [x]}
pick :: Monad µ⇒ ListT µα→ µα
pick (ListT x) = do {a← x; return $ head a}

Figure 6: Query Q1 in Our Framework

• Changing title-tags to other tags.

• Changing title-texts under titles.

The first three updates should be rejected because these elements and
attributes are those introduced by the query q1 instead of coming from the
original source. As expected, bwd q1 rejects the three updates; more pre-
cisely, an error "Update of Constant" is raised by matchViews .

The fourth update, which is the most interesting case among the six, is
conditionally accepted by bwd q1 ; more precisely, we can change the value
to any (string representation of) numbers as long as the number is greater
than 1991. This behavior is quite natural because if we change the year to
one that is no greater than 1991, say 1990, then the book will disappear from
the view, which violates the consistency law.

The fifth-update is rejected for a similar reason. Note that the query
extracted titles by (keep /> tag "title") b. Thus, if we allow changing
title-tags to other tags, the consistency law will be violated.

The last update is unconditionally accepted by bwd q1 because q1 does
not inspect titles.
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Figure 7: A source and its corresponding view graphs.

6.3. Graph Transformation

The last example we look at is graph transformation, which is at heart of
many model-based software engineering applications.

We take an example from [32], which is a friend list in an edge-labeled
graph format (see Figure 7-(a)). And, suppose that we want to apply trans-
formation that renames mem to member and friend to knows, and flattens
contact (see the resulting graph in Figure 7-(b)).

6.3.1. A Datatype for Graph

There are many ways to represent and manipulate graphs in functional
languages [33, 34, 35, 36, 37]. But since our focus in the paper is bidirec-
tionalization, we choose the simplest representation, namely a list of edges,
as below.

newtype Graph α = Graph [(Int , α, Int)]

Here, we assume that nodes are represented by integers. The representation
makes clear that the edge labels are the intended update targets. As an ex-
ample, the graph in Figure 7-(a) can be written as Graph [(0, "members", 1),
(1, "mem", 2), (1, "mem", 8), (2, "name", 3), (2, "contact", 5), (2, "friend", 8), (3, "Matsuda", 4),
(5, "phone", 6), (6, "+81-90-XXXX-YYYY", 7), (8, "friend", 2), (8, "name", 9), (9, "Wang", 10),
(8, "contact", 11), (11, "mail", 12), (12, "wmeng@...", 13)]. We assume that
a graph need not be simple; i.e., there can be multiple edges that have the
same source, destination and label. Also, we consider the edges are un-
ordered.
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6.3.2. Programming the Forward Transformation

Graph transformation in general is an area of research by itself [38, 33,
39, 40, 34, 35, 36, 37]. But for our simple example, we can program it rather
easily as follows, with the understanding that a different implementation will
also work as long as it has the right type.

m2m :: PackM String αµ⇒ Graph α→ µ (Graph α)
m2m = rename "mem" "member">=>

rename "friend" "knows">=>
contract "contact"

Here, rename is a renaming function defined by using mapM as below.

rename :: PackM String αµ⇒ String → String → Graph α→ µ (Graph α)
rename x y (Graph es) =

do r ← mapM (λ(s, e, d).
do b← liftO2 (==) e (new x)

return (if b then (s, new y, d) else (s, e, d))) es
return $ Graph r

The definition of contract , which contracts edges of a given label, is a bit
more complicated. The need of handling cycles and sharings in graphs plays
a part here. Since nodes connected by the contracted edge will be unified,
and such contracted edges may be cyclic or may share nodes, we have to
compute the reflexive symmetric transitive closure to know which nodes will
be unified by the contraction. This problem is unique to graphs as simple
hoisting of nodes is sufficient for trees.

contract :: PackM String αµ⇒ String → Graph α→ µ (Graph α)
contract x (Graph es) =

do let nodes = nub $ concatMap (λ(s, , d).[s, d]) es
conts ← concatMapM (λ(s, e, d).

do b← liftO2 (==) e (new x)
return (if b then [(s, d)] else [])) es

let rstCls = mkSymTransClosure (conts ++ [(z, z) | z ← nodes ])
let repr z = minimum [y | (z′, y) ∈ rstCls , z′ == z]
es ′ ← concatMapM (λ(s, e, d).

do b← liftO2 (==) e (new x)
return (if b then [] else [(repr s, e, repr d)])) es

return $ Graph es ′
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In the definition, we reuse the function concatMapM from Section 3.3. In-
tuitively function contract firstly computes the set of the nodes that will be
unified by the removal of the x-labeled edges (repr is the computed unifier),
and then actually removes the x-labeled edges with the node unification by
repr . The function mkSymTransClosure computes the symmetric transitive
closure of a given relation represented by a list of pairs. We omit its definition
for brevity, as it is a pure function which is not affected by the bidirection-
alization. Also, note that the execution of contract may create duplicated
edges with the same starting/ending nodes and labels. This duplication may
be removed by using a nub like operation, as discussed in Section 5.2. We
omit this step for simplicity.

As a remark, the behavior of contract itself is controversial. For exam-
ple, in a certain model of graphs in which we identify graphs with infinite
trees, the contract operation may convert a finite graph to an infinite one
and does not terminate in such a case without careful treatment [41, 42].
Our framework is applicable even to such model of graphs, as long as the
parametricity and the totality assumption, including the termination of a
graph transformation, are kept (Section 4).

6.3.3. Permitted Updates

Since m2m has the right type, we bidirectionalize it directly with fwd and
bwd . As mentioned previously, the only permitted updates are to the edge
labels.

Consider the view in Figure 7-(b). Then, we have that

• Labels member and knows are not updatable because they are intro-
duced by m2m.

• For other labels, updates that change a label to any values other than
mem, friend and contact are permitted.

7. Discussion on Bidirectional Properties

We have discussed in this paper the definitional properties of bidirectional
transformations, namely the acceptability and consistency laws. There are
other laws that are mentioned in the literature, which can either be variants
of the definitional properties, or additional optional ones.
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7.1. Desirable Laws

Two of the desirable but optional laws are undoability and composabil-
ity [12, 1, 4, 5], which are variants of PutPut [7].8

Composability put s v = s′ ∧ put s′ v′ = s′′ ⇒ put s v′ = s′′

Undoability put s v = s′ ⇒ put s′ (get s) = s

Intuitively composability says that subsequent updates can be combined, and
undoability says that an update can be undone through the view. These laws
are useful properties especially when updates on the view and source sides
are conducted by different systems [43, 4]: for example, composability allows
us to schedule updates on the view separately from those on the source [43].
Without proofs, we state that our derived bidirectional transformations sat-
isfy both the composability and undoability laws. The justification of this
claim comes from the fact that semantic bidirectionalization can be seen as
a form of constant-complement bidirectionalization [1, 8], in which the four
laws, i.e., acceptability, consistency, composability and undoability, hold.
Specifically, the structure of the source and the observation history serve as
the constant complement in our framework.

The desirable laws are sometimes considered too restrictive [44, 7] because
a framework that supports structure changes (insertion and deletion of ele-
ments) of views is unlikely to be able to satisfy them (for example, consider
a forward transformation map fst and source [("A", 2)], and consider what
happens if we change a view from ["A"] to [] and then insert "A" again).
In [16, 24], where semantic bidirectionalization is combined with another
bidirectionalization technique [12] aiming at structure updates, the compos-
ability and undoability laws are sacrificed. Further studies on the desirable
laws in the presence of insertions and deletions can be found in [43, 5, 45].

There is another law discussed by Hegner [4, 5] which, with the four laws,
ensures that information not present in the view cannot be accessed.

Uniformity put s v = s′ ⇒ (∀s′′.get s′′ = get s⇒ ∃s′′′. put s′′ v = s′′′)

Intuitively, uniformity says that whether an update on the view is accepted
or not is independent of the source. Our framework does not satisfy this law.
For example, for f defined by

f [x, y] = liftO2 (==)x y >> return [x]

8If put is total, composability coincides with PutPut [7] and implies undoability.
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whether an update is accepted depends on the equality between x and y.

7.2. Weaker Consistency Laws for Duplication

The handling of duplication as seen in Section 5.2, represented by function
nub, focuses on the scenario that duplicates of source elements are removed by
the forward transformation, which leaves no duplicates in the view. Things
become more complicated when this assumption does not hold because dis-
crepancies arise when some but not all duplicated elements are updated.

It is potentially useful to allow such updates which leads to temporary
discrepancies among duplicates. For example, one may want to change one
element of a duplication group, and propagate the update to all [11, 13]. We
have seen this behavior with source duplication, but also for views here. In
such a situation, the consistency law is deliberately breaking, as the updated
source is supposed to produce the “corrected” view in which the temporary
discrepancies is resolved. In response, weaker versions of the consistency law
have been proposed [11, 13, 10].

Weak-PutGet [10] put s v = s′ ⇒ put s (get s′) = s′

PutGetPut [11, 13] put s v = s′ ⇒ put s′ (get s′) = s′

GetPutGet [11, 13] put s (get s) = s′ ⇒ get s′ = get s

Note that PutGetPut is a corollary of the acceptability law; and it is only
meaningful when the acceptability law is weakened too, such as GetPutGet
above. The above laws are not closed under function composition (see Ap-
pendix B), and thus do not work well with combinator-based techniques for
constructing bidirectional transformations. Intuitively, this is because even
if we know that (x1, x2) and (x2, x3) are duplicates, it is difficult to know by
local reasoning that (x1, x3) are also duplicates.

Our technique based on bidirectionalization does not suffer the same dif-
ficulty because duplication handling is done globally by assignLocs (and
eqSync). The only change required is to matchViews . A new version of
matchViews relaxes the requirement that updated duplicates in the view
must all be changed to the same value. Instead it tries to identify changes
and propagate the changes to the unchanged members of duplication groups.
This is done by replacing the line in the definition of matchViews

minimize lx $ makeUpd $ zip lx l

with
makeUpd $ filter hasChanged $ zip lx l
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Here, hasChanged is defined as follows.

hasChanged (Loc x , y) = not (x == y)

The excluding of unchanged elements in constructing the update avoids some
conflicts. For example, consider a function dup [x] = return [x, x] and its
derived backward function dupB = bwd dup. Executing both dupB [0] [1, 0]
and dupB [0] [0, 1] result in [1] (instead of an error previously), because the
changes from 0 to 1 is propagated to the unchanged duplicates. On the other
hand, executing dupB [0] [1, 2] still fails because more than one elements of
a duplication group are updated to different values. It is not difficult to see
that this version of our system satisfies the weakened laws above.

8. Related Work

Another way of bidirectionalizing programs is through syntactically trans-
forming forward-function definitions [12], termed as syntactic bidirectional-
ization in [15], in contrast to the semantic approach that does not inspect the
program definitions. The syntactic approach has the advantage of deriving
more efficient and effective (in the sense of allowing certain shape updates)
backward transformations. For example, the technique in [12] can derive a
backward zip that accepts arbitrary updates on the view, including insertion
and deletion of elements. On the downside, since syntactic bidirectional-
ization inspects the definition of a program, the resulting backward trans-
formation depends on the syntactic structure of the forward transformation,
which is fragile and less predictable. Moreover, the ability of permitting more
updates comes partly at the cost of the expressiveness of the forward trans-
formation. It is usually much harder to develop programs that are suitable
for syntactic bidirectionalization than that for semantic bidirectionalization.

Instead of trying to bidirectionalize unidirectional programs, one can try
to program directly in a “bidirectional” language, in which the resulting pro-
grams are bidirectional by construction. Such bidirectional languages are
usually combinator based [6, 7, 11, 13, 14, 17], and the programmer builds a
bidirectional transformation by combining smaller ones with special combi-
nators. Some combinator languages can be implemented as libraries [11, 13],
which is rather light-weight, while some languages [6, 9, 7, 17] need richer
type systems, which are not available in most general-purpose languages, to
be effective. It is usually easy to extend the languages by adding or removing
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combinators for specific domains [6, 14, 17], and typically users of the bidi-
rectional languages have better control of the behaviors of the programs by
not relying on a black-box bidirectionalization system; but one does have to
program in an unusual style, limited by the expressiveness of the languages.

The use of runtime recording of the forward execution path for the back-
ward execution is not new [7, 12, 3]. The lens framework [7] provides a
combinator ccond that performs conditional branching in the forward execu-
tion, and in the backward execution, the recorded history prohibits updates
that may cause the execution to take a different branch. This treatment of
branching is more explicit in [12], where branching information is recorded
in a complement, which is kept constant to guarantee the bidirectional laws.

Fegaras [3] extends Voigtländer [15]’s original technique for updating
XML views over relational databases. In addition to locations, his framework
also records the “join”ing structure of a query at runtime. The recorded in-
formation is used to reflect changes on one copy of duplicated view elements
caused by joins to establish the consistency law. For example, a change on
such a copy can be handled by changing data on key columns used in the
joins and then inserting new tuples. His framework also supports insertions
and deletions on a view, leveraging on the fact that queries are written in a
specific query language, and the sources are relational data.

Both ours and the original work on semantic bidirectionalization [15] fo-
cus on in-place updates. Reflecting in-place updates is a non-trivial problem
given complex forward transformations [10]. This limitation of updates can
be relaxed to some extent by combining semantic and syntactic bidirection-
alization [16, 24]. We expect that a similar extension is also applicable to
our proposal.

We omit the issue of performance in this paper and opt for simple declara-
tive definitions. It is obvious that some traversals in our implementation may
be fused and more involved data structures can be used instead of lists. Per-
haps more importantly, we expect semantic bidirectionalization in general,
to fit the requirement for incremental computation [18] of updates because
it essentially maps update operations on the view to those on the source.

9. Conclusion

In this paper, we have extended semantic bidirectionalization to handle
monomorphic transformations, by programming them in a polymorphic way
through a type class PackM . Specifically, we have replaced monomorphic
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values in the definition of a transformation with polymorphic elements that
are newly constructed from those values. A history of the program execution
is recorded at runtime, which can be checked to reinstate the applicability
of free theorems in the presence of newly constructed polymorphic elements.
We have proved that the transformations produced by our bidirectionaliza-
tion system satisfy the bidirectional properties, i.e., the acceptability and
consistency laws. The practicality of our system has been demonstrated by
three case studies: text processing, XML query, and graph transformation.

In the future, we plan to extend our work with more operations on ab-
stracted values. For example string concatenation is used by many XML
transformations, but is at the moment not a method in PackM . Moreover,
we plan to support structural changes on views (i.e., insertion or deletion of
subtrees), which is currently prohibited. One possible solution would be to
abstract containers such as Tree in addition to elements in the making of the
polymorphic functions. Alternatively, we could try to combine our seman-
tic bidirectionalization with other bidirectional transformation techniques on
“shapes” [24]. On the practical side, it is useful is to support abstraction of
multiple element types. For example, we would like to update both Int and
String values in a view of type [(Int , String)]. Theoretically, it is straightfor-
ward to extend our technique to such cases by preparing n different variants
of fill and contents for containers with n element types. However practically
this also means n different fwd and bwd functions, which would clutter the
library interface.
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Appendix A. Proofs

Appendix A.1. Supplement to Proof Sketch of Lemma 1

We will prove that, for U :: Loc γ ↔ Loc γ and F :: W (Loc γ) ↔
W (Loc γ) defined by

U = {(x@i, x@i) | i 6= #⇒ x@i ∈ E}
F R = {(W (x, ),W (y, )) | (x, y) ∈ R}

and for the diagonal relation L :: γ ↔ γ, (L,U ,F) is a PackM -action.
We write τ for Loc γ and κ for W (Loc γ).

Case: return. We will prove (returnκ, returnκ) ∈ ∀R.R → F R.
Let R be a relation and (x, y) be a pair such that (x, y) ∈ R. In this

case, we have returnκ x = W (x, []) and returnκ y = W (y, []). Thus, by the
definition of F , we have (returnκ x, returnκ y) ∈ F R.

Case: (>>=). We will prove ((>>=)κ, (>>=)κ) ∈ ∀R.∀S. F R → (R → F S) →
F S.

Let R and S be relations. Let (m1,m2) be a pair such that (m1,m2) ∈
F R, and (f1, f2) be a pair such that (f1, f2) ∈ R → F S. We will show
(m1 >>=κ f1,m2 >>=κ f2) ∈ F S. Unfolding the definition of >>=, we rewrite
(m1>>=κf1,m2>>=κf2) as (W (y1, h11++h12),W (y2, h21++h22)) whereW (x1, h11) =
m1, W (y1, h12) = f1 x1, W (x2, h21) = m2 and W (y2, h22) = f2 x2. By
(m1,m2) ∈ F R, we have (x1, x2) ∈ R. Thus, by (f1, f2) ∈ R → F S, we
have (W (y1, h12),W (y2, h22)) ∈ F S. As a consequence, by the definition of
F , we have (W (y1, h11 ++ h12),W (y2, h21 ++ h22)) ∈ F S.
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Case: new. We will prove (newγ,τ , newγ,τ ) ∈ L → U . Since new only intro-
duces a location-aware element of the form x@#, the statement is trivially
true by the definition of U .

Case: liftO. We will prove (liftOγ,τ,κ,β1 , liftOγ,τ,κ,β2) ∈ ([L] → S) → [U ] →
F S for all S :: β1 ↔ β2 such that ((==)β1 , (==)β2) ∈ S → S → Bool .

Let S :: β1 ↔ β2 be a relation satisfying ((==)β1 , (==)β2) ∈ S → S →
Bool . Let (p1, p2) be a pair of functions such that (p1, p2) ∈ [L] → S and
(x1, x2) be a pair of lists such that (x1, x2) ∈ [U ]. Then, we can write
liftO pi xi as W (p′i xi, ) where p′i = pi ◦ map body (i = 1, 2). It is worth
noting that (x1, x2) ∈ [U ] implies (map body x1,map body x2) ∈ [L], and thus
(p′1 x1, p

′
2 x2) ∈ S. Then, we have (W (p′1 x1, ),W (p′2 x2, )) ∈ F S.

Appendix A.2. Supplement to Proof Sketch of Lemma 2

We will prove that for U :: N γ ↔ Loc γ and F :: I ↔ W (Loc γ) defined
by

U = {(x, y) | runN x = body y}
F R = {(I x,W (y, w)) | (x, y) ∈ R ∧ checkHist id w}

(L,U ,F) is a PackM -action where L = {(e, e) | e :: γ}.
We write τ1 and τ2 for N γ and Loc γ, respectively, and κ1 and κ2 for I

and W (Loc γ).

Case: return. We will prove (returnκ1 , returnκ2) ∈ ∀R.R → F R.
Let R be a relation and (x1, x2) be a pair such that (x1, x2) ∈ R. In

this case, we have returnκ1 x1 = I x1 and returnκ2 x2 = W (x2, []). Since
checkHist u [] = True holds for any u, by the definition of F , we have
(returnκ1 x1, returnκ2 x2) ∈ F R.

Case: (>>=). We will prove ((>>=)κ1 , (>>=)κ2) ∈ ∀R.∀S.F R → (R → F S)→
F S.

Let R and S be relations. Let (m1,m2) be a pair such that (m1,m2) ∈
F R, and (f1, f2) be a pair such that (f1, f2) ∈ R → F S. We will show
(m1 >>=κ1 f1,m2 >>=κ2 f2) ∈ F S.

By unfolding the definition of (>>=)κ1 , we can rewrite (m1 >>=κ1 f1) as I y1
where I x1 = m1 and I y1 = f1 x1. Similarly, by unfolding the definition of
(>>=)κ2 , we can rewrite (m2 >>=κ2 f2) as W (y2, h21 ++h22) where W (x2, h21) =
m2 and W (y2, h22) = f2 x2. By (m1,m2) ∈ F R and the definition of F , we
have (x1, x2) ∈ R. Thus, we have (I y1,W (y2, h22)) ∈ F S. By the definition
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of F , we have checkHist id h2i = True for each i = 1, 2. Thus, according to
the definition of checkHist , we can conclude checkHist id (h21 ++h22) = True.
This implies (I y1,W (y2, h21 ++ h22)) ∈ F S.

Case: new. We will prove (newγ,τ1 , newγ,τ2) ∈ L → U . Let (x1, x2) ∈ L.
Since L is diagonal, we have x1 = x2. Then, we have newγ,τ1 x1 = N x1 and
newγ,τ2 x2 = Loc x2 Nothing . Since x1 = x2, we have (newγ,τ1 x1, newγ,τ2 x2) ∈
U .

Case: liftO. We will prove (liftOγ,τ1,κ1,β1 , liftOγ,τ2,κ2,β2) ∈ ([L] → S) →
[U ]→ F S for all S :: β1 ↔ β2 such that ((==)β1 , (==)β2) ∈ S → S → Bool .

Let S :: β1 ↔ β2 be a relation satisfying ((==)β1 , (==)β2) ∈ S → S →
Bool . Let (p1, p2) be a pair of functions such that (p1, p2) ∈ [L] → S and
(x1, x2) be a pair of lists such that (x1, x2) ∈ [U ]. By definition, we have
liftOγ,τ1,κ1,β1 p1 x1 = I (p1 $map runN x1). Also, we have liftOγ,τ2,κ2,β2 p2 x2 =
W (p′2 x2, [Result p′2 x2 (p′2 x2)]) where p′2 = p2◦map body . Since (x1, x2) ∈ [U ],
we have (map runN x1,map body x2) ∈ [L], and thus (p1$map runN x1, p

′
2 x2) ∈

S. By the definition of checkHist , we have checkHist id [Result p′2 x2 (p′2 x2)] =
True. Then, we obtain (liftOγ,τ1,κ1,β1 p1 x1, liftOγ,τ2,κ2,β2 p2 x2) ∈ F S.

Appendix A.3. Supplement to Proof Sketch of Lemma 3

We will prove that, for U :: N γ ↔ (Loc γ) and F :: I ↔ W (Loc γ)
defined by

U = {(x, y) | runN x = body (update upd y)}
F R = {(I x,W (y, w)) | checkHist (update upd)w ⇒ (x, y) ∈ R}

(L,U ,F) is a PackM -action where L = {(e, e) | e :: γ}.
We write τ1 and τ2 for N γ and Loc γ, respectively, and κ1 and κ2 for I

and W (Loc γ).

Case: return. We will prove (returnκ1 , returnκ2) ∈ ∀R.R → F R. We omit
the proof for this case because it is similar to the one in Appendix A.2.

Case: (>>=). We will prove ((>>=)κ1 , (>>=)κ2) ∈ ∀R.∀S.F R → (R → F S)→
F S.

Let R and S be relations. Let (m1,m2) be a pair such that (m1,m2) ∈
F R, and (f1, f2) be a pair such that (f1, f2) ∈ R → F S. We will show
(m1 >>=κ1 f1,m2 >>=κ2 f2) ∈ F S.

54



By unfolding the definition of (>>=)κ1 , we can rewrite (m1 >>=κ1 f1) as I y1
where I x1 = m1 and I y1 = (f1 x1). Similarly, by unfolding the definition of
(>>=)κ2 , we can rewrite (m2 >>=κ2 f2) as W (y2, h21 ++h22) where W (x2, h21) =
m2 and W (y2, h22) = f2 x2.

Assume checkHist (update upd) (h21++h22) = True. Then, we have checkHist (update upd)h2i =
True for each i = 1, 2 by the definition of checkHist . By checkHist (update upd)h21 =
True, we have (x1, x2) ∈ R. Since (f1, f2) ∈ R → F S and checkHist (update upd)h22 =
True, we have (y1, y2) ∈ S. Thus, we have (I y1,W (y2, h21 ++ h22)) ∈ F S.

Case: new. We will prove (newγ,τ1 , newγ,τ2) ∈ L → U . Let (x1, x2) ∈ L.
Since L is diagonal, we have x1 = x2. Then, we have newγ,τ1 x1 = N x1
and newγ,τ2 x2 = Loc x2 Nothing . By the required condition on update that
update upd (new x2) = new x2, and since x1 = x2, we have (newγ,τ1 x1, newγ,τ2 x2) ∈
U .

Case: liftO. We will prove (liftOγ,τ1,κ1,β1 , liftOγ,τ2,κ2,β2) ∈ ([L] → S) →
[U ]→ F S for all S :: β1 ↔ β2 such that ((==)β1 , (==)β2) ∈ S → S → Bool .

Let S :: β1 ↔ β2 be a relation satisfying ((==)β1 , (==)β2) ∈ S → S →
Bool . Let (p1, p2) be a pair of functions such that (p1, p2) ∈ [L] → S and
(x1, x2) be a pair of lists such that (x1, x2) ∈ [U ]. By definition, we have
liftOγ,τ1,κ1,β1 p1 x1 = I (p1 $map runN x1). Also, we have liftOγ,τ2,κ2,β2 p2 x2 =
W (p′2 x2, [Result p′2 x2 (p′2 x2)]) where p′2 = p2 ◦map body .

Assume checkHist (update upd) [Result p′2 x2 (p′2 x2)] = True. This implies
p′2 (map (update upd)x2) = p′2 x2. Since (x1, x2) ∈ [U ], we have (map runN x1,map (body◦
update upd)x2) ∈ [L], and thus (p1$map runN x1, p

′
2$map (update upd)x2) ∈

S. Thus, we have (p1 $ map runN x1, p
′
2 x2) ∈ S. As a consequence, we have

(liftOγ,τ1,κ1,β1 p1 x1, liftOγ,τ2,κ2,β2 p2 x2) ∈ F S.

Appendix A.4. Proofs of ContentsFill and FillContents

In [29], it is shown that the following theorem holds for the “lawful”
Traversable instances.

Definition 4 (Make Function [29]). For Traversable κ, a make function
make is a function of type ∀α. α→ · · · → α→ κα for which the conditions

fmap f $ make x1 . . . xn = make (f x1) . . . (f xn)

contents $ make x1 . . . xn = [x1, . . . , xn]

hold.
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Theorem 2 (Representation Theorem [29]). Let κ be a lawful Traversable
instance with its traverse function. For every t :: κ τ for any type τ , there are
a unique n, a unique n-ary make function make and unique values v1, . . . , vn
such that

t = make v1 . . . vn

and

traverse f (make x1 . . . xn) = pure make <*> f x1 <*> · · · <*> f xn.

hold.

Lemma 5. FillContents holds.

Proof. By Representation Theorem, we have t = make x1 . . . xn for some
x1, . . . , xn and some make function make. Then, it suffices to prove

fill (make y1 . . . yn) [x1, . . . , xn] = make x1 . . . xn

for any y1, . . . , yn to show FillContents. By unfolding the definition of fill ,
we can rewrite the left-hand side as

(LHS) = evalState (traverse next (make y1 . . . yn)) [x1, . . . , xn]

= evalState (pure make <*> next y1 <*> · · · <*> next yn) [x1, . . . , xn]

where next is the inner function used in fill . For simplicity, we assume that
State σ τ is just a type synonym to σ → (τ, σ). Then, we can rewrite the
definitions of pure, (<*>), evalState and next as follows.

pure x = λs.(x, s)
h <*> x = λs. let (g, s′) = h s

(y, s′′) = x s′

in (g y, s′′)
evalState h s = fst (h s)
next = λ(a : x).(a, x)

By the induction on k, we can show the following property.

pure h <*> next y1 <*> · · · <*> next yk =
λ(z1 : z2 : · · · : zk : r).(h z1 z2 . . . zk, r)
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Now we can further rewrite the original left-hand side as follows.

(LHS) = evalState (pure make <*> next y1 <*> · · · <*> next yn) [x1, . . . , xn]

= evalState (λ(z1 : · · · : zn : r).(make z1 . . . zn, r)) [x1, . . . , xn]

= fst ((λ(z1 : · · · : zn : r).(make z1 . . . zn, r)) [x1, . . . , xn])

= make x1 . . . xn = (RHS)

Then, the proof is done.

Lemma 6. ContentsFill holds.

Proof. By Representation Theorem, we have t = make x1 . . . xn for some
x1, . . . , xn and some make function make. Then, it suffices to prove

contents $ fill (make x1 . . . xn) [y1, . . . , yn] = [y1, . . . , yn]

holds for any y1, . . . , yn to show ContentsFill. Similar to the proof of Fill-
Contents, we have

fill (make x1 . . . xn) [y1, . . . , yn] = make y1 . . . yn.

Then, the above clearly holds.

Appendix A.5. Correctness of the Generic-Version of assignLocs

To prove that the generic-version of assignLocs satisfies the imposed con-
ditions, we firstly extend the notion of the location-consistency to any (“law-
ful”) Traversable datatypes.

Definition 5 (Location Consistency, Generic Version). For Traversable κ
satisfying Representation Theorem, t :: κ (Loc γ) is called location-consistent
if content t is.

Lemma 7. The Generic-Version of assignLocs is location-consistent.

Proof. Straightforward from the definition of assignLocs , ContentsFill and
the fact that assignLocsList is location-consistent.

Lemma 8. fmap body (assignLocs s) = s
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Proof. We prove the statement as follows.

(LHS) = { by definition }
fmap body (fill s (assignLocsList $ contents s))

= { free theorem on fill }
fill s (fmap body $ assignLocsList $ contents s)

= { fmap body (assignLocsList s) = s }
fill s (contents s)

= { FillContents }
s

Appendix A.6. Correctness and Minimality of the Generic-Version of matchViews

We firstly show the following invariant of makeUpd .

Lemma 9. If makeUpd z succeeds and results in upd , then map (body ◦
update upd) (map fst z) = map snd z.

Proof. By induction.

Lemma 10 (Correctness). For any v′ and the corresponding location-consistent
vx , if matchViews succeeds and results in upd , then fmap (body◦update upd) vx =
v′.

Proof. By FillContents, we can write vx = fill (fmap ignore vx ) (contents vx )
and v′ = fill (fmap ignore v ′) (contents v ′). By Lemma 9, we have map (body ◦
update upd) (contents vx ) = contents v′. By the free theorem on fill , we have

fmap h (fill t x) = fill t (map hx)

for any h, t and x such that length x = length (contents t). The success of
matchViews ensures that fmap ignore vx = fmap ignore v′. Thus, taking t
above as t = fmap ignore vx = fmap ignore v′ and h as h = body ◦update upd ,
we obtain fmap (body ◦ update upd) vx = v′.

Lemma 11 (Minimality). For any v and location-consistent vx such that
fmap body vx = v, matchViews vx v = [] holds.

Proof. In this case, it is easy to see that makeUpd always succeeds and
returns an update of the form [(i, x) | Loc x (Just i) ← contents vx ]. Then,
minimize (contents vx ) returns [] for the update.
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Appendix B. Examples showing Weaker Consistency Laws being
Non-compositional

We will show that the weaker consistency laws are not closed under com-
position.

We use the term a lens for a pair of forward and backward transfor-
mations [7]. Let us write the forward semantics of a lens l as JlKF and its
backward semantics as JlKB. Then, the composition combinator ◦ of lenses
is defined as follows [7].

Jl1 ◦ l2KF = Jl1KF ◦ Jl2KF
Jl1 ◦ l2KB a c′ = let b = Jl2KF a

b′ = Jl1KB b c
′

in Jl2KB a b
′

The definition of the composition combinator ◦ is standard [6, 7, 9, 11, 13,
14, 17, 21]. It is known that the combinator ◦ preserves the acceptability
and consistency laws.

We prepare two primitive lenses that represent duplicates in a source and
a view, and use them to show that the weaker laws are not closed under ◦.
The primitive dup duplicates its input [11, 13] and merge treats equal inputs
as duplicates [7].

JdupKF x = (x, x)
JdupKB x (x1, x2) | x1 == x2 = x1

| x == x1 = x2
| x == x2 = x1

JmergeKF (x, ) = x
JmergeKB (x, y) z | x == y = (z, z)

| otherwise = (z, y)

Note that dup satisfies the acceptability law, not the consistency law; but it
satisfies the weaker consistency laws, Weak-PutGet and PutGetPut. In
contrast, merge satisfies both the acceptability and consistency laws.

Let us consider the following compound lens.

h = merge ×merge ◦ dist ◦ second3 dup

Here, the primitive dist and the combinator second3 manipulate triples. The
primitive dist is the following bijection.

JdistKF (a, (b, c), d) = ((a, b), (c, d))
JdistKB ((a, b), (c, d)) = (a, (b, c), d)
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The lens second3 l applies l to the second component of a triple.

Jsecond3 lKF (a, b, c) = (a, JlKF b, c)
Jsecond3 lKB ( , b, ) (a, b′, c) = (a, JlKB b b

′, c)

The combinator × is also a standard bidirectional combinator; l1× l2 applies
l1 and l2 to each component of a pair [7].

Jl1 × l2KF (a, b) = (Jl1KF a, Jl2KF b)
Jl1 × l2KB (a, b) (a′, b′) = (Jl1KB a a

′, Jl2KB b b
′)

Let us consider a source (0, 0, 0). Applying JhKF, we obtain (0, 0). Con-
sider an updated view (1, 0). Applying JhKB to the original source and the
updated view, we obtain an updated source (1, 1, 0). Applying JhKF to the
updated source, we get (1, 1) (recall that JmergeKF returns the first compo-
nent of a pair). However, applying JhKB to the original source and the new
view (1, 1), we obtain (1, 1, 1), which violates Weak-PutGet.

This example itself does not violate PutGetPut because it satisfies the
acceptability law which implies PutGetPut. To prepare an example that
violates PutGetPut, we change the example a bit. Concretely, we replace
the backward semantics of merge as follows.

JmergeKB x = (x, x)

This version of JmergeKB still satisfies the consistency law, and thus all the
primitives in h satisfy PutGetPut. Let us consider a source (0, 0, 0). Apply-
ing JhKF, we obtain (0, 0). Consider an updated view (1, 0). Applying JhKB
to the original source and the updated view, we obtain an updated source
(1, 1, 0). Applying JhKF to the updated source, we get (1, 1). However, ap-
plying JhKB to the updated source (1, 1, 0) and the new view (1, 1), we obtain
(1, 1, 1), which violates PutGetPut.
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