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Abstract

Invertibility is a fundamental concept in computer science, with various manifestations in software
development (serializer/deserializer, parser/printer, redo/undo, compressor/decompressor, and so
on). Full invertibility necessarily requires bijectivity, but the direct approach of composing bijective
functions to develop invertible programs is too restrictive to be useful. In this paper, we take a different
approach by focusing on partially-invertible functions—functions that become invertible if some of
their arguments are fixed. The simplest example of such is addition, which becomes invertible when
fixing one of the operands. More involved examples include entropy-based compression methods (e.g.,
Huffman coding), which carry the occurrence frequency of input symbols (in certain formats such as
Huffman tree), and fixing this frequency information makes the compression methods invertible.

We develop a language SPARCL for programming such functions in a natural way, where partial-
invertibility is the norm and bijectivity is a special case, hence gaining significant expressiveness
without compromising correctness. The challenge in designing such a language is to allow ordinary
programming (the “partially” part) to interact with the invertible part freely, and yet guarantee
invertibility by construction. The language SPARCL is linear-typed, and has a type constructor to
distinguish data that are subject to invertible computation and those that are not. We present the
syntax, type system, and semantics of the language, and prove that SPARCL correctly guarantees
invertibility for its programs. We demonstrate the expressiveness of SPARCL with examples including
tree rebuilding from preorder and inorder traversals, Huffman coding, arithmetic coding, and LZ77
compression.

Key Words: reversible computation, linear types

1 Introduction

Invertible computation, also known as reversible computation in physics and more hardware-
oriented contexts, is a fundamental concept in computing. It involves computations that
run both forwards and backwards so that the forward/backward semantics form a bijec-
tion. (In this paper, we do not concern ourselves with the totality of functions. We call
a function a bijection if it is bijective on its actual domain and range, instead of its
formal domain and codomain.) Early studies of invertible computation arise from the
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effort to reduce heat dissipation caused by information-loss in the traditional (unidirec-
tional) computation model (Landauer 1961). More modern interpretations of the problem
include software concerns that are not necessarily connected to the physical realization.
Examples of such include developing pairs of programs that are each other’s inverses:
serializer and deserializer (Kennedy and Vytiniotis 2012), parser and printer (Rendel
and Ostermann 2010; Matsuda and Wang 2013, 2018), compressor and decompres-
sor (Srivastava et al. 2011), and also auxiliary processes in other program transformations
such as bidirectionalization (Matsuda et al. 2007).

Invertible (reversible) programming languages are languages that offer primitive support
to invertible computations. Examples include Janus (Yokoyama et al. 2008; Lutz 1986),
Frank’s R (Frank 1997), Ψ-Lisp (Baker 1992), RFun (Yokoyama et al. 2011), Π/Πo (James
and Sabry 2012) and Inv (Mu et al. 2004). The basic idea of these programming languages
is to support deterministic forward and backward computation by local inversion: if a
forward execution issues (invertible) commands c1, c2, and c3 in this order, a backward
execution issues corresponding inverse commands in the reverse order, as c−1

3 , c−1
2 , and c−1

1 .
This design has a strong connection to the underlying physical reversibility, and is known
to be able to achieve reversible Turing completeness (Bennett 1973); i.e., all computable
bijections can be defined.

However, this requirement of local invertibility does not always match how high-level
programs are naturally expressed. As a concrete example, let us see the following toy
program that computes the difference of two adjacent elements in a list, where the first
element in the input list is kept in the output. For example, we have subs [1, 2, 5, 2, 3] =
[1, 1, 3,−3, 1].

subs :: [Int]→ [Int]

subs xs = goSubs 0 xs

goSubs :: Int→ [Int]→ [Int]

goSubs [ ] = [ ]

goSubs n (x : xs) = (x − n) : goSubs x xs

Despite being simple, these kind of transformations are nevertheless useful. For example,
a function similar to subs can be found in the pre-processing step of image compression
algorithms such as those used for PNG.1 Another example is the encoding of bags (multisets)
of integers, where subs can be used to convert sorted lists to lists of integers without any
constraints (Kennedy and Vytiniotis 2012).

The function subs is invertible. We can define its inverse as below.

subs−1 :: [Int]→ [Int]

subs−1 ys = goSubs′ 0 ys

goSubs′ :: Int→ [Int]→ [Int]

goSubs′ [ ] = [ ]

goSubs′ n (y : ys) = let x = y + n in x : goSubs′ x ys

However, subs cannot be expressed directly in existing reversible programming languages.
The problem is that, though subs is perfectly invertible, its sub-component goSubs is not

1 https://www.w3.org/TR/2003/REC-PNG-20031110/

https://www.w3.org/TR/2003/REC-PNG-20031110/
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(its first argument is discarded in the empty-list case, and thus the function is not injective).
Similar problems are also common in adaptive compression algorithms, where the model
(such as a Huffman tree or a dictionary) grows in the same way in both compression and
decompression, and the encoding process itself is only invertible after fixing the model at
the point.

In the neighboring research area of program inversion, which studies program transfor-
mation techniques that derive f−1 from f ’s defintion, functions like goSubs are identified
as partially invertible. Note that this notion of partiality is inspired by partial evaluation,
and partial inversion (Romanenko 1991; Nishida et al. 2005; Almendros-Jiménez and Vidal
2006) allows static (or fixed) parameters whose values are known in inversion and therefore
not required to be invertible (for example the first argument of goSubs). (To avoid poten-
tial confusion, in this paper, we avoid the use of “partial” when referring to totality, and
use the phrase “not-necessarily-total” instead.) However, program inversion by itself does
not readily give rise to a design of invertible programming language. Like most program
transformations, program inversion may fail, and often for reasons that are not obvious
to users. Indeed, the method by Nishida et al. (2005) fails for subs, and for some other
methods (Almendros-Jiménez and Vidal 2006; Kirkeby and Glück 2019, 2020), success
depends on the (heuristic) processing order of the expressions.

In this paper, we propose a novel programming language SPARCL2 that for the first
time addresses the practical needs of partially invertible programs. The core idea of our
proposal is based on a language design that allows invertible and conventional unidirectional
computations, which are distinguished by types, to coexist and interact in a single definition.
Specifically, inspired by Matsuda and Wang (2018), our type system contains a special type
constructor (−)• (pronounced as “invertible”), where A• represents A-typed values that are
subject to invertible computation. However, having invertible types like A• only solves half
of the problem. For the applications we consider, exemplified by subs, the unidirectional
parts (the first argument of goSubs) may depend on the invertible part (the second argument
of goSubs), which complicates the design. (This is the very reason why Nishida et al.
(2005)’s partial inversion fails for subs. In other words, a binding-time analysis (Gomard
and Jones 1991) is not enough (Almendros-Jiménez and Vidal 2006).) This interaction
demands conversion from invertible values of type A• to ordinary ones of type A, which
only becomes feasible when we leverage the fact that such values can be seen as static
(in the sense of partial inversion (Almendros-Jiménez and Vidal 2006)) if the values are
already known in both forward and backward directions. The nature of reversibility suggests
linearity or relevance (Walker 2004), as discarding of inputs is intrinsically irreversible.
In fact, reversible functional programming languages (Baker 1992; Yokoyama et al. 2011;
Matsuda and Wang 2013; James and Sabry 2012; Mu et al. 2004) commonly assume a form
of linearity or relevance, and in SPARCL this assumption is made explicit by a linear type
system based on λ q

→ (the core system of Linear Haskell (Bernardy et al. 2018)).
As a teaser, an invertible version of subs in SPARCL is show in Fig. 1.3 In SPARCL,

invertible functions from A to B are represented as functions of type A• ⊸ B•, where ⊸ is

2 The name stands for “a system for partially-reversible computation with linear types”.
3 We use a Haskell-like syntax in this paper for readability, although our prototype implementation (https:
//github.com/kztk-m/sparcl) uses simple non-indentation-sensitive syntax that requires more keywords
for parsing.

https://github.com/kztk-m/sparcl
https://github.com/kztk-m/sparcl
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subs : (List Int)• ⊸ (List Int)•

subs xs = goSubs 0 xs

goSubs : Int→ (List Int)• ⊸ (List Int)•

goSubs Nil• =Nil• with null
goSubs n (Cons x xs)• =

let (x, r)• = pin x (λx′.goSubs x′ xs) in -- x′ : Int is a static version of x : Int•.
Cons• (sub n x) r with not ◦ null

sub : Int→ Int• ⊸ Int•

sub n = lift (λx.x − n) (λx.x + n)

Fig. 1: Invertible subs in SPARCL

the constructor for linear functions. Partial invertibility is conveniently expressed by taking
additional parameters as in Int→ Int• ⊸ Int• and Int→ (List Int)• ⊸ (List Int)•. The pin :
A• ⊸ (A → B•)⊸ (A ⊗ B)• operator converts invertible objects into unidirectional ones. It
captures a snapshot of its invertible argument and uses the snapshot as a static value in the
body to create a safe local scope for the recursive call. Both the invertible argument and
evaluation result of the body are returned as the output to preserve invertibility. The with
conditions associated with the branches can be seen as postconditions which will be used
for invertible case-branching. We leave the detailed discussion of the language constructs to
later sections, but would like to highlight the fact that looking beyond the surface syntax,
the definition is identical in structure to how subs is defined in a conventional language:
goSubs has the same recursive pattern with two cases for empty and non-empty lists. This
close resemblance to the conventional programming style is what we strive for in the design
of SPARCL.

What SPARCL brings to the table is bijectivity guaranteed by construction (potentially
with partially-invertible functions as auxiliary functions). We can run SPARCL programs
in both directions, for example as below, and it is guaranteed that fwd e v results in v′ if
and only if bwd e v′ results in v (fwd and bwd are primitives for forward and backward
executions).

> fwd subs [1, 2, 5, 2, 3]
[1, 1, 3,−3, 1]
> bwd subs [1, 1, 3,−3, 1]
[1, 2, 5, 2, 3]

This guarantee of bijectivity is clearly different from the case of (functional) logic
programming languages such as Prolog and Curry. Those languages relies on (lazy) generate-
and-test (Antoy et al. 2000) to find inputs corresponding to a given output, a technique that
may be adopted in the context of inverse computation (Abramov et al. 2006). However,
the generate-and-test strategy has the undesirable consequence of making reversible pro-
gramming less apparent: it is unclear to programmers whether they are writing bijective
programs that may be executed deterministically. Moreover, lazy generation of inputs may
cause unpredictable overhead, whereas in reversible languages (Yokoyama et al. 2008; Lutz
1986; Frank 1997; Baker 1992; Yokoyama et al. 2011; James and Sabry 2012; Mu et al.
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2004) including SPARCL, the forward and backward executions of a program take the same
steps.

One might notice from the type of pin that SPARCL is a higher-order language, in the
sense that it contains the simply-typed λ -calculus (more precisely, the simple multiplicity
fragment of λ q

→ (Bernardy et al. 2018)) as a subsystem. Thus, we can, for example, write an
invertible map function in SPARCL as below.

mapR : (a• ⊸ b•)→ (List a)• → (List b)•

mapR f Nil• =Nil• with null
mapR f (Cons x xs)• = Cons• ( f x) (mapR f xs) with not ◦ null

Ideally, we want to program invertible functions by using higher-order functions. But it
is not possible. It is known that there is no higher-order invertible languages where ⊸
always denotes (not-necessarily-total) bijections. In contrast, there is no issue on having
first-order invertible languages as demonstrated by existing reversible languages (see, e.g.,
RFun (Yokoyama et al. 2011)). Thus, the challenge of designing a higher-order invertible
languages lies in finding a sweet spot such that a certain class of functions denote (not-
necessarily-total) bijections and programmers can use higher-order functions to abstract
computation patterns. Partial invertibility plays an important role here, as functions can be
used as static inputs or outputs without violating invertibility. Though this idea has already
been considered in the literature (Almendros-Jiménez and Vidal 2006; Jacobsen et al. 2018;
Mogensen 2008) while with restrictions (specifically, no closures), and the advantage is
inherited from Matsuda and Wang (2018) from which SPARCL is inspired, we claim that
SPARCL is the first invertible programming language that achieved a proper design for
higher-order programming.

In summary, our main contributions are:

• We design SPARCL, a novel higher-order invertible programming language that
captures the notion of partial invertibility. It is the first language that handles both
clear separation and close integration of unidirectional and invertible computations,
enabling new ways of structuring invertible programs. We formally specify the syntax,
type system and semantics of its core system named λ PI

→ (Section 3).
• We state and prove several properties about λ PI

→ (Section 3.6), including subject
reduction, bijectivity, and reversible Turing completeness (Bennett 1973). We do not
state the progress property directly, which is implied by our definitional (Reynolds
1998) interpreter written in Agda4 (Section 4).

• We demonstrate the utility of SPARCL with nontrivial examples: tree rebuilding
from inorder and preoder traversals (Mu and Bird 2003), and simplified versions of
compression algorithms including Huffman coding, arithmetic coding and LZ77 (Ziv
and Lempel 1977) (Section 5).

In addition, a prototype implementation of SPARCL is available from https://github.
com/kztk-m/sparcl, which also contains more examples. All the artifacts are linked from
the SPARCL web page (https://bx-lang.github.io/EXHIBIT/sparcl.html).

4 Available from https://github.com/kztk-m/sparcl-agda

https://github.com/kztk-m/sparcl
https://github.com/kztk-m/sparcl
https://bx-lang.github.io/EXHIBIT/sparcl.html
https://github.com/kztk-m/sparcl-agda
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A preliminary version of this paper appeared in ICFP20 (Matsuda and Wang 2020)
with the same title. The major changes include a description of our Agda implementa-
tion in Section 4, and the arithmetic coding and LZ77 examples in Sections 5.3 and 5.4.
Moreover, the related work section (Section 6) is updated to include work published after
the preliminary version (Matsuda and Wang 2020).

2 Overview

In this section, we informally introduce the essential constructs of SPARCL and demonstrate
their use with small examples.

2.1 Linear-Typed Programming

Linearity (or weaker relevance) is commonly adopted in reversible functional lan-
guages (Baker 1992; Yokoyama et al. 2011; Matsuda and Wang 2013; James and Sabry
2012; Mu et al. 2004) to exclude non injective functions such as constant functions. SPARCL

is no exception (we will revisit its importance in Section 2.3) and adopts a linear type system
based on λ q

→ (the core system of Linear Haskell (Bernardy et al. 2018)). A feature of the
type system is its function type A →p B, where the arrow is annotated by the argument’s
multiplicity (1 or ω). Here, A →1 B denotes linear functions that use the input exactly once,
while A →ω B denotes unrestricted functions that have no restriction on the use of its input.
The following are some examples of linear and unrestricted functions.

id : a →1 a
id x = x

double : Int→ω Int

double x = x + x
const : a →1 b →ω a
const x y = x

Observe that the double used x twice and const discards y; hence, the corresponding arrows
must be annotated by ω . The purpose of the type system is to ensure bijectivity. But having
linearity alone is not sufficient. We will come back to this point after showing invertible
programming in SPARCL. Readers who are familiar with linear-type systems that have the
exponential operator ! (Wadler 1993) may view A →ω B as !A ⊸ B.

A small deviation from the (simply-typed fragment of) λ q
→ is that SPARCL is equipped

with rank-1 polymorphism with qualified typing (Jones 1995) and type inference (Matsuda
2020). For example, the system infers the following types for the following functions.

id : a →p a
id x = x

const : a →p b → a
const x y = x

app : (p ≤ q)⇒ (a →p b)→r a →q b
app f x = f x

In first two examples, p is arbitrary (i.e., 1 or ω); in the last example, the predicate p ≤ q
states an ordering of multiplicity, where 1 ≤ ω .5 This predicate states that if an argument
is linear then it cannot be passed to an unrestricted function, as an unrestricted function
may use its argument arbitrary many times. A more in-depth discussion of the surface type
system is beyond the scope of this paper, but note that unlike the implementation of Linear

5 For curious readers, we note that the inequality predicate is sufficient for typing our core system (Section 3)
where constructors have linear types (Matsuda 2020).
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Haskell as in GHC 9.0.X6 which checks linearity only when type signatures are given
explicitly, SPARCL can infer linear types thanks to the use of qualified typing.

For simplicity, we sometimes write ⊸ for →1 and simply → for →ω when showing
programming examples in SPARCL.

2.2 Multiplication

One of the simplest examples of partially-invertible programs is multiplication (Nishida
et al. 2005). Suppose that we have a datatype of natural numbers defined as below.

data Nat= Z | S Nat

In SPARCL, constructors have linear types: Z : Nat and S : Nat⊸Nat.
We define multiplication in term of addition, which is also partially-invertible.7

add : Nat→Nat• ⊸Nat•

add Z y = y
add (S x) y = S• (add x y)

As mentioned in the introduction, we use the type constructor (−)• to distinguish data that
are subject to invertible computation (such as Nat•) and those that are not (such as Nat):
when the latter is fixed, a partially invertible function is turned into a (not-necessarily-total)
bijection, for example, add n : Nat• ⊸Nat•. (For those who read the paper with colors, the
arguments of (−)• are highlighted in dark red.) Values of (−)•-types are constructed by
lifted constructors such as S• : Nat• ⊸Nat•. In the forward direction, S• applies S to the
input, and in the backward direction, it strips one S (and the evaluation gets stuck if Z is
found). In general, since constructors by nature are always bijective (though not necessarily
total in the backward direction), every constructor C : σ1 ⊸ . . .⊸ σn ⊸ τ automatically
give rise to a corresponding lifted version C• : σ1

• ⊸ . . .⊸ σn
• ⊸ τ•.

A partially invertible multiplication function can be defined by using add as below.8

mul : Nat→Nat• ⊸Nat•

mul z Z• = Z• with isZ
mul z (S x)• = add z (mul z x) with not ◦ isZ

An interesting feature in the mul program is the invertible pattern matching (Yokoyama et al.
2008) indicated by patterns Z• and (S x)• (here, we annotate patterns instead of constructors).
Invertible pattern matching is a branching mechanism that executes bidirectionally: the
forward direction basically performs the standard pattern matching, the backward direction
employs an additional with clause to determine the branch to be taken. For example,
mul n : Nat• ⊸Nat•, in the forward direction values are matched against the forms Z and
S x; in the backward direction, the with conditions are checked upon an output of the

6 The GHC 9.6.2 user manual: "Linear and multiplicity-polymorphic arrows are always declared, never
inferred." (https://downloads.haskell.org/ghc/9.6.2/docs/users_guide/exts/linear_types.
html#linear-types-references)

7 This type is an instance of the most general type Nat→p Nat
• →q Nat

• of add; recall that there is no problem
in using unrestricted inputs only once. We want to avoid overly polymorphic functions for simplicity of
presentation.

8 Nishida et al. (2005) discusses a slightly more complicated but efficient version.

https://downloads.haskell.org/ghc/9.6.2/docs/users_guide/exts/linear_types.html#linear-types-references
https://downloads.haskell.org/ghc/9.6.2/docs/users_guide/exts/linear_types.html#linear-types-references
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function mul n: if isZ : Nat→Bool returns True, the first branch is chosen, otherwise the
second branch is chosen. When the second branch is taken, the backward computation of
add n is performed, which essentially subtracts n, followed by recursively applying the
backward computation of mul n to the result. As the last step, the final result is enclosed
with S and returned. In other words, the backward behavior of mul n recursively tries to
subtract n, and returns the count of successful subtractions.

In SPARCL, with conditions are provided by programmers and expected to be exclusive;
the conditions are enforced at run-time: the with conditions are asserted to be postconditions
on the branches’ values. Specifically, the branch’s with condition is a positive assertion
while all the other branches’ ones are negative assertions. Thus, the forward computation
fails when the branch’s with condition is not satisfied, or any of the other with conditions is
also satisfied. This exclusiveness enables the backward computation to uniquely identify
the branch (Yokoyama et al. 2008; Lutz 1986). Sometimes we may omit the with condition
of the last branch, as it can be inferred as the negation of the conjunction of all the others.
For example, in the definition of goSubs the second branch’s with condition is not ◦ null.
One could use sophisticated types such as refinement types to infer with-conditions and
even statically enforce exclusiveness instead of assertion checking. However, we stick to
simple types in this paper as our primal goal is to establish the basic design of SPARCL.

An astute reader may wonder what bijection mul Z defines, as zero times n is zero for
any n. In fact, it defines a non-total bijection that in the forward direction the domain of the
function contains only Z, i.e., the trivial bijection between {Z} and {Z}.

2.3 Why Linearity Itself is Insufficient but Still Matters

The primal role of linearity is to prohibit values from being discarded or copied, and SPARCL

is no exception. However, linearity itself is insufficient for partially-invertible programming.
To start with, it is clear that ⊸ is not equivalent to not-necessarily-total bijections.

For example, the function λx.x (λy.y) : ((σ ⊸ σ)⊸ (σ ⊸ σ))⊸ σ ⊸ σ returns λy.y for
both λx.x (λ z.z) and λx.x. Theoretically, this comes from the fact that the category of (not-
necessarily-total) bijections is not (monoidal) closed. Thus, as discussed above, the challenge
is to find a sweet spot where a certain class of functions denote (not-necessarily-total)
bijections.

It is known that a linear calculus concerning tensor products (⊗) and linear functions (⊸)

(even with exponentials (!)) can be modelled in the Int-construction (Joyal et al. 1996) of the
category of not-necessarily-total bijections (Abramsky 2005; Abramsky et al. 2002). Here,
roughly speaking, first-order functions on base types can be understood as not-necessarily-
total bijections. However, it is also known that such a system cannot be easily extended to
include sum-types nor invertible pattern matching (Abramsky 2005, Section 7).

Moreover, linearity does not express partiality as in partially-invertible computations.
For example, without the (−)• types, function add can have type Nat⊸Nat⊸Nat (note
the linear use of the first argument), which does not specify which parameter is a fixed
one. It even has type Nat⊗Nat⊸Nat after uncurrying though addition is clearly not fully
invertible. These are the reasons why we separate the invertible world and the unidirectional
world by using (−)•, inspired by staged languages (Moggi 1998; Davies and Pfenning
2001; Nielson and Nielson 1992). Readers familiar with staged languages may see A• as
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residual code of type A, which will be executed forwards or backwards at the second stage
to output or input A-typed values.

On the other hand, (−)• does not replace the need for linearity either. Without linearity,
(−)•-typed values may be discarded or duplicated, which may lead to non-bijectivity. Unlike
discarding, the exclusion of duplication is debatable as the inverse of duplication can be
given as equality check (Glück and Kawabe 2003). So it is our design choice to exclude
duplication (contraction) in addition to discarding (weakening) to avoid unpredictable
failures that may be caused by the equality checks. Without contraction, users are still able
to implement duplication for datatypes with decidable equality (see Section 5.1.3). However,
this design requires duplication (and the potential of failing) to be made explicit, which
improves the predictability of the system. Having explicit duplication is not uncommon in
this context (Yokoyama et al. 2011; Mu et al. 2004).

Another design choice we made is to admit types like (A ⊸ B)• and (A•)• to simplify the
formalization; otherwise, kinds will be needed to distinguish types that can be used in (−)•

from general types, and subkinding to allow running and importing bijections (Sections 2.4
and 2.5). Such types are not very useful though, as function- or invertible-typed values
cannot be inspected during invertible computations.

2.4 Running Reversible Computation

SPARCL provides primitive functions to execute invertible functions in either directions:
fwd : (A• ⊸ B•)→ A → B and bwd : (A• ⊸ B•)→ B → A. For example, we have:

> fwd (add (S Z)) (S Z) -- (1 +) 1
S (S Z) -- = 2
> bwd (add (S Z)) (S (S Z)) -- (1 +)−1 2
S Z -- = 1
> fwd (mul (S (S Z))) (S (S (S Z))) -- (2 ×) 3
S (S (S (S (S (S Z))))) -- = 6
> bwd (mul (S (S Z))) (S (S (S (S (S (S Z)))))) -- (2 ×)−1 6
S (S (S Z)) -- = 3

Of course, the forward and backward computations may not be total. For example, the
following expression (legitimately) fails.

> bwd (mul (S (S Z))) (S (S (S Z))) -- (2 ×)−1 3
Runtime Error:...

The guarantee SPARCL offers is that derived bijections are total with respect to the functions’
actual domains and ranges; i.e., fwd e v results in u, then bwd e u results in v, and vice
versa (Section 3.6.2).

Linearity plays a role here. Linear calculi are considered resource-aware in the sense that
linear variables will be lost once used. In our case, resources are A•-typed values, as A•

represents (a part of) an input or (a part of) an output of a bijection being constructed, which
must be retained throughout the computation. This is why the first argument of fwd/bwd is
unrestricted rather than linear. Very roughly speaking, an expression that can be passed to
an unrestricted function cannot contain linear variables, or “resources”. Thus, a function of



415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10

type A• ⊸ B• passed to fwd/bwd cannot use any resources other than one value of type A•

to produce one value of type B•. In other words, all and only information from A• is retained
in B•, guaranteeing bijectivity. As a result, SPARCL’s type system effectively rejects code
like bwd (λx.Z•) and bwd

(
λx.if fwd (λ ()•.x) () then Z• else Z•) as x’s multiplicity is ω

in both cases. In the former case, x is discarded and multiplicity in our system is either 1 or
ω . In the latter case, x appears in the first argument of fwd, which is unrestricted.

2.5 Importing Existing Invertible Functions

Bijectivity is not uncommon in computer science or mathematics, and there already exist
many established algorithms that are bijective. Examples include nontrivial results in number
theory or category theory, and manipulation of primitive or sophisticated data structures
such as Burrows-Wheeler transformations on suffix arrays.

Instead of (re)writing them in SPARCL, the language provides a mechanism to directly
import existing bijections (as a pair of functions) to construct valid SPARCL programs:
lift : (A → B)→ (B → A)→ A• ⊸ B• converts a pair of functions into a function on (−)•-
typed values, expecting that the pair of functions form mutual inverses. For example, by lift,
we can define addInt as below

addInt : Int→ Int• ⊸ Int•

addInt n = lift (λx.x + n) (λx.x − n)

The use of lift allows one to create primitive bijections to be composed by the various
constructs in SPARCL. Another interesting use of lift is to implement in-language inversion.

invert : (A• ⊸ B•)→ (B• ⊸ A•)

invert h = lift (bwd h) (fwd h)

2.6 Composing Partially-Invertible Functions

Partially-invertible functions in SPARCL expect arguments of both (−)• and non-(−)• types,
which sometimes makes the calling of such functions interesting. This phenomenon is partic-
ularly noticeable in recursive calls where values of type A• may need to be fed into function
calls expecting values of type A. In this case, it becomes necessary to convert A•-typed val-
ues to A-typed one. To avoid the risk of violating invertibility, such conversions are carefully
managed in SPARCL through a special function pin : A• ⊸ (A → B•)⊸ (A ⊗ B)•, inspired
by the depGame function in Kennedy and Vytiniotis (2012) and reversible updates (Axelsen
et al. 2007) in reversible imperative languages (Lutz 1986; Yokoyama et al. 2008; Glück and
Yokoyama 2016; Frank 1997). The function pin creates a static snapshot of its first argument
(A•) and uses the snapshot (A) in its second argument. Bijectivity of a function involving pin
is guaranteed as the original A• value is retained in the output (A ⊗ B)• together with the
evaluation result of the second argument (B•). For example, λ (x, y)•.pin x (λx′.add x′ y),
which defines the mapping between (n, m) and (n, n + m), is bijective. We will define the
function pin and formally state the correctness property in Section 3.

Let us revisit the example in Section 1. The partially-invertible version of goSubs can be
implemented via pin as below.
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subs : (List Int)• ⊸ (List Int)•

subs xs = goSubs 0 xs

goSubs : Int→ (List Int)• ⊸ (List Int)•

goSubs Nil• =Nil• with null
goSubs n (Cons x xs)• =

let (x, r)• = pin x (λx′.goSub x′ xs) in
Cons• (sub n x) r with not ◦ null

sub : Int→ Int• ⊸ Int•

sub n = lift (λx.x − n) (λx.x + n)

(a) partially-invertible version

subsF : (List Int)• ⊸ (List Int)•

subsF xs = let (0, r)• = goSubsF 0• xs in r

goSubsF : Int• ⊸ (List Int)• ⊸ (Int⊗ List Int)•

goSubsF n Nil• = (n,Nil•)• with null ◦ snd
goSubsF n (Cons x xs)• =

let (x, r)• = goSubsF x xs in
let (n, x′)• = subF (n, x)• in
(n,Cons• x′ r)• with not ◦ null ◦ snd

subF : (Int⊗ Int)• ⊸ Int⊗ Int•

subF = lift (λ (n, x).(n, x − n)) (λ (n, x).(n, x + n))

(b) fully-invertible version

Fig. 2: Side-by-side comparison of partially-invertible (a) and fully-invertible (b) versions
of subs

goSubs : Int→ (List Int)• ⊸ (List Int)•

goSubs Nil• =Nil• with null
goSubs n (Cons x xs)• = (case pin x (λx′.goSubs x′xs) of

(x, r)• → Cons• (sub n x) r with λ .True) with not ◦ null

Here, we used pin to convert x : Int• to x′ : Int in order to pass it to the recursive call of
goSubs. In the backward direction, goSubs n executes as follows.9

bwd (goSubs 0) [1, 1, 3,−3, 1]
= { Cons branch is taken; Cons (sub 0 x) r = [1, 1, 3,−3, 1] =⇒ x = 1, r = [1, 3,−3, 1]. }
Cons 1 (bwd (goSubs 1) [1, 3,−3, 1])

= { Cons branch is taken; Cons (sub 1 x) r = [1, 3,−3, 1] =⇒ x = 2, r = [3,−3, 1]. }
Cons 1 (Cons 2 (bwd (goSubs 2) [3,−3, 1]))

= { Cons branch is taken; Cons (sub 2 x) r = [3,−3, 1] =⇒ x = 5, r = [−3, 1]. }
Cons 1 (Cons 2 (Cons 5 (bwd (goSubs 5) [−3, 1])))

= . . .

= Cons 1 (Cons 2 (Cons 5 (Cons 2 (Cons 3 (bwd (goSubs 3) [])))))
= {Nil branch is taken. }
Cons 1 (Cons 2 (Cons 5 (Cons 2 (Cons 3 Nil))))) = [1, 2, 5, 2, 3]

Note that the first arguments of (recursive) calls of goSubs (which are static) have the same
values (1, 2, 5, 2, and 3) in both forward/backward executions, distinguishing their uses
from those of the invertible arguments. As one can see, goSubs n behaves exactly like the
hand-written goSubs′ in subs−1 which is reproduced below.

goSubs′ [ ] = [ ]

goSubs′ n (y : ys) = let x = y + n in x : goSubs′ x ys

The use of pin commonly results in an invertible case with a single branch, as we see in
goSubs above. We capture this pattern with an invertible let as a shorthand notation, which
enables us to write let p• = e1 in e2 for case e1 of {p• → e2 with λ .True}. The definition
of goSubs shown in Section 1 uses this shorthand notation, which is reproduced in Fig. 2a.

9 This execution trace is (overly) simplified for illustration purpose. See Section 3.5 for the actual operational
semantics.
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We would like to emphasise that partial invertibility, as supported in SPARCL, is key
to concise function definitions. In Fig. 2, we show side-by-side two versions of the same
program written in the same language: the one on the left allows partial invertibility whereas
the one on the right requires all functions (include the intermediate ones) to be fully-
invertible (note the different types in the two versions of goSubs and sub). As a result,
goSubsF is much harder to define and the code becomes fragile and error-prone. This
advantage of SPARCL, which is already evident in this small example, becomes decisive
when dealing with larger programs, especially those requiring complex manipulation of
static values (for example, Huffman Coding in Section 5.2).

We end this section with a theoretical remark. One might wonder why (−)• is not a
monad. This intuitively comes from the fact that the first and second stages are in different
languages (the standard one and an invertible one, respectively) with different semantics.
More formally, (−)•, which brings a type in the second stage into the first stage, forms a
functor, but the functor is not endo. Recall that A• represents residual code in an invertible
system of type A; that is, A• and its component A belong to different categories (though we
have not formally described them).10 One then might wonder whether (−)• is a relative
monad (Altenkirch et al. 2010). To form a relative monad, one needs to find a functor that
has the same domain and codomain as (the functor corresponding to) (−)•. It is unclear
whether there exists such a functor other than (−)• itself; in this case, the relative monad
operations do not provide any additional expressive power.

2.7 Implementations

We have implemented a proof-of-concept interpreter for SPARCL including the linear type
system, which is available from https://github.com/kztk-m/sparcl. The implemen-
tation adds two small but useful extensions to what is presented in this paper. First, the
implementation allows non-linear constructors, such as MkUn : a →Un a which serves as !
and helps us to write a function that returns both linear and unrestricted results. Misusing
such constructors in invertible pattern matching is guarded against by the type system
(otherwise it may lead to discarding or copying of invertible values). Second, the imple-
mentation uses the first-match principle for both forward and backward computations. That
is, both patterns and with conditions are examined from top to bottom. Recall also that
the implementation uses a non-indentation-sensitive syntax for simplicity as mentioned in
Section 1.

It is worth noting that the implementation uses Matsuda (2020)’s type inference to infer
linear types effectively without requiring any annotations. Hence, the type annotations in
this paper are more for documentation purposes.

As part of our effort to prove type safety (subject reduction and progress), we also
produced a parallel implementation in Agda to serve as proofs (Section 3.6), available from
https://github.com/kztk-m/sparcl-agda.

10 For curious readers, we note our conjecture that (−)• corresponds to the Yoneda embedding for the CPO-
enriched category of (strict) bijections, analogous to Moggi (1998), although denotational semantics is outside
the scope of this paper.

https://github.com/kztk-m/sparcl
https://github.com/kztk-m/sparcl-agda
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3 Core System: λ PI
→

This section introduces λ PI
→ , the core system that SPARCL is built on. Our design mixes ideas

of linear-typed programming and meta-programming. As mentioned in Section 2.1, the
language is based on (the simple multiplicity fragment of) λ q

→ (Bernardy et al. 2018), and,
as mentioned in Section 2.3, it is also two-staged (Moggi 1998; Nielson and Nielson 1992)
with different meta and object languages. Specifically, the meta stage is a usual call-by-value
language (i.e., unidirectional) and the object stage is an invertible language. By having the
two stages, partial invertibility is made explicit in this formalization.

In what follows, we use a number of notational conventions. A vector notation t denotes a
sequence such as t1, . . . , tn or t1; . . . ; tn, where each ti can be of any syntactic category and
the delimiter (such as “,” and “;”) can differ depending on the context; we also refer to the
length of the sequence by |t|. In addition, we may refer to an element in the sequence t as ti. A
simultaneous substitution of x1, . . . , xn in t with s1, . . . , sn is denoted as t[s1/x1, . . . , sn/xn],
which may also be written as t[s/x].

3.1 Central Concept: Bijections at the Heart

The surface language of SPARCL is designed for programming partially invertible functions,
which are turned into bijections (by fixing the static arguments) for execution. This fact is
highlighted in the core system λ PI

→ where we have a primitive bijection type A ⇌ B, which
is inhabited by bijections constructed from functions of type A• ⊸ B•. Technically, having
a dedicated bijection type facilitates reasoning. For example, we may now straightforwardly
state that “values of a bijection type A ⇌ B are bijections between A and B” (Corollary 3.4).

Accordingly, the fwd and bwd functions for execution in SPARCL are divided into
application operators ▷ and ◁ that apply bijection-typed values and an unlift opera-
tor for constructing bijections from functions of type A• ⊸ B•. For example, we have
unlift (add (S Z)) : Nat⇌Nat (where add : Nat→Nat• ⊸Nat• is defined in Section 2),
and the bijection can be executed as unlift (add (S Z)) ▷ S Z resulting in S (S Z) and
unlift (add (S Z)) ◁ S (S Z) resulting in S Z. In fact, the operators fwd and bwd are now
derived in λ PI

→ , as fwd = λω h.λω x.unlift h ▷ x and bwd = λω h.λω x.unlift h ◁ x.
Here, ω of λω indicates that the bound variable can be used arbitrary many. In contrast,

λ1 indicates that the bound variable must be used linearly. Hence, for example, λ1x.Z and
λ1x.(x, x) are ill-typed, while λ1x.x, λω x.Z and λω x.(x, x) are well-typed. Similarly, we
also annotate (unidirectional) cases with the multiplicity of the variables bound by pattern
matching. Thus, for example, case1 S Z of {S x → (x, x)} and λ1x.caseω x of{S y → Z} are
ill-typed.

3.2 Syntax

The syntax of λ PI
→ is given as below.

Expressions: e ::= x | λπ x.e | e1 e2 | C e | caseπ e0 of {p → e}
| C• e | case e0 of {p• → e with e′}
| pin e1 e2 | unlift e | e1 ▷ e2 | e1 ◁ e2

Patterns: p ::= C x
Multiplicities: π ::= 1 | ω
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There are three lines for the various constructs of expressions. The ones in the first line are
standard except the annotations in λ and case that determine the multiplicity of the variables
introduced by the binders: π = 1 means that the bound variable is linear, and π = ω means
there is no restriction. These annotations are omitted in the surface language as they are
inferred. The second and third lines consist of constructs that deal with invertibility. As
mentioned above, unlift e, e1 ▷ e2, and e1 ◁ e2 handles bijections which can be used to
encode fwd and bwd in SPARCL. We have already seen lifted constructors, invertible case,
and pin in Section 2. For simplicity, we assume that pin, C and C• are fully-applied. Lifted
constructor expressions C• e and invertible cases are basic invertible primitives in λ PI

→ . They
are enough to make our system reversible Turing complete (Bennett 1973) (Theorem 3.5);
i.e., all bijections can be implemented in the language. For simplicity, we assume that
patterns are non-overlapping both for unidirectional and invertible cases. We do not include
lift, which imports external code into SPARCL, as it is by definition unsafe. Instead, we will
discuss it separately in Section 3.7.

Different from conventional reversible/invertible programming languages, the constructs
unlift (together with ▷ and ◁) and pin support communication between the unidirectional
world and the invertible world. The unlift construct together with ▷ and ◁ runs invertible
computation in the unidirectional world. The pin operator is the key to partiality; it enables
us to temporarily convert a value in the invertible world into a value in the unidirectional
world.

3.3 Types

Types in λ PI
→ are defined as below.

A, B ::= α |T A | A →π B | A• | A ⇌ B

Here, α denotes a type variable, T denotes a type constructor, A →π B is a function type
annotated with the argument’s multiplicity π , (−)• marks invertibility, and A ⇌ B is a
bijection type.

Each type constructor T comes with a set of constructors C of type

C : A1 ⊸ A2 ⊸ · · ·⊸ An ⊸T α

with fv(Ai)∈ {α} for any i.11 Type variables α are only used for types of constructors in the
language. For example, the standard multiplicative product ⊗ and additive sum ⊕ (Wadler
1993) are represented by the following constructors.

(−,−) : α1 ⊸ α2 ⊸ α1 ⊗ α2 InL : α1 ⊸ (α1 ⊕ α2) InR : α2 ⊸ (α1 ⊕ α2)

We assume that the set of type constructors at least include ⊗ and Bool, where Bool has
the constructors True : Bool and False : Bool. Types can be recursive via constructors; for
example, we can have a list type List α with the following constructors.

Nil : List α Cons : α ⊸ List α ⊸ List α

11 For simplicity, we assume a constructor can only have linear fields. Extending our discussions to constructors
with unrestricted field is straightforward for the unidirectional part of the language. Such constructors cannot
appear as lifted constructors and patterns in invertible cases.
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We may write A ⊸ B for A1 ⊸ A2 ⊸ · · ·⊸ An ⊸ B (when n is zero, A ⊸ B is B). We shall
also instantiate constructors implicitly and write C : A′ ⊸T B when there is a constructor
C : A ⊸T α and A′

i = Ai[B/α] for each i. Thus we assume all types in our discussions are
closed.

Negative recursive types are allowed in our system, which, for example, enables us to
define general recursions without primitive fixpoint operators. Specifically, via F with the
constructor MkF : (F α → α)⊸ F α , we have a fixpoint operator as below.

fixπ ≜ λω f .λπ a.
(
λω x.λπ a. f (out x x) a

) (
MkF (λω x.λπ a. f (out x x) a)

)
a

where out ≜ λ1x.case1 x of {MkF t → t}

Here, out has type F C ⊸ F C →C for any C (in this case C = A →π B), and thus fixπ has
type ((A →π B)→ (A →π B))→ A →π B.

The most special type in the language is A•, which is the invertible version of A. More
specifically, the invertible type A• represents residual code in an invertible system that are
executed forwards and backwards at the second stage to output and input A-typed values.
Values of type A• must be treated linearly, and can only be manipulated by invertible
operations, such as lifted constructors, invertible pattern matching, and pin. To keep our
type system simple, or more specifically single-kinded, we allow types like (A ⊸ B)• and
(A•)•, while the category of (not-necessarily-total) bijections are not closed and λ PI

→ has no
third stage. These types do not pose any problem, as such components cannot be inspected
in invertible computation by any means (except in with conditions, which are unidirectional,
i.e., run at the first stage).

Note that we consider the primitive bijection types A ⇌ B as separate from (A → B)⊗
(B → A). This separation is purely for reasoning; in our theoretical development, we will
show that A ⇌ B denotes pairs of functions that are guaranteed to form (not-necessarily-
total) bijections (Corollary 3.4).

3.4 Typing Relation

A typing environment is a mapping from variables x to pairs of type A and its multiplicity π ,
meaning that x has type A and can be used π-many times. We write x1 :π1 A1, . . . , xn :πn Bn

instead of {x1 7→ (A1, π1), . . . , xn 7→ (Bn, πn)} for readability, and write ε for the empty
environment. Reflecting the two stages, we adopt a dual context system (Davies and
Pfenning 2001), which has unidirectional and invertible environments, denoted by Γ and Θ

respectively. This separation of the two is purely theoretical, for the purpose of facilitating
reasoning when we interpret A•-typed expressions that are closed in unidirectional variables
but may have free variables in Θ as bijections. In fact, our prototype implementation does
not distinguish the two environments. For all invertible environments Θ, without the loss of
generality we assume that the associated multiplicities must be 1, i.e., Θ(x) = (Ax, 1) for any
x ∈ dom(Θ). Thus, we shall sometimes omit multiplicities for Θ. This assumption is actually
an invariant in our system since any variables introduced in Θ must have multiplicity 1. We
make this explicit in order to simplify the theoretical discussions. Moreover, we assume
that the domains of Γ and Θ are disjoint.
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Typing Rules for Expressions Γ; Θ ⊢ e : A and Patterns p : A ▷π Γ

ωΓ + x :1 A; ωΘ ⊢ x : A T-VAR

Γ, x :π A; Θ ⊢ e : B
Γ; Θ ⊢ λπ x.e : A →π B

T-ABS
Γ1; Θ1 ⊢ e1 : A →π B Γ2; Θ2 ⊢ e2 : A

Γ1 + πΓ2; Θ1 + πΘ2 ⊢ e1 e2 : B T-APP

n = |e|= |A| C : A ⊸ T B {Γi; Θi ⊢ ei : Ai}i

ωΓ0 + Γ1 + · · ·+ Γn; Θ1 + · · ·+ Θn ⊢C e : T B
T-CON

Γ0; Θ0 ⊢ e0 : A {pi : A ▷π Γi Γ, Γi; Θ ⊢ ei : B}i

πΓ0 + Γ; πΘ0 + Θ ⊢ caseπ e0 of {p → e} : B
T-CASE

ωΓ; x : A ⊢ x : A• T-RVAR
n = |e|= |A| C : A ⊸ T B {Γi; Θi ⊢ ei : A•

i }i

ωΓ0 + Γ1 + · · ·+ Γn; Θ1 + · · ·+ Θn ⊢C• e : (T B)•
T-RCON

Γ0; Θ0 ⊢ e0 : A• {pi : A ▷1 Θi Γ; Θ, Θi ⊢ ei : B• Γ′; Θ′ ⊢ e′i : B →ω Bool}i

Γ0 + Γ + ωΓ′; Θ0 + Θ + ωΘ′ ⊢ case e0 of {p• → e with e′} : B• T-RCASE

Γ1; Θ1 ⊢ e1 : A•
Γ2; Θ2 ⊢ e2 : A →ω B•

Γ1 + Γ2; Θ1 + Θ2 ⊢ pin e1 e2 : (A ⊗ B)•
T-PIN

Γ; Θ ⊢ e : A• →1 B•

ωΓ; ωΘ ⊢ unlift e : A ⇌ B T-UNLIFT

Γ1; Θ1 ⊢ e1 : A ⇌ B Γ2; Θ2 ⊢ e2 : A
Γ1 + ωΓ2; Θ1 + ωΘ2 ⊢ e1 ▷ e2 : B T-FAPP

Γ1; Θ1 ⊢ e1 : A ⇌ B Γ2; Θ2 ⊢ e2 : B
Γ1 + ωΓ2; Θ1 + ωΘ2 ⊢ e1 ◁ e2 : A T-BAPP

C : A ⊸T B
C x : T B ▷π x :π A

Fig. 3: Typing rules for expressions and patterns

Given two unidirectional typing environments Γ1 and Γ2, we define the addition Γ1 + Γ2

as below.

(Γ1 + Γ2)(x) =

{
(A, ω) if Γ1(x) = (A, ) and Γ2(x) = (A, )

(A, π) if Γi(x) = (A, π) and x ̸∈ dom(Γ j) for some i ̸= j ∈ {1, 2}

If dom(Γ1) and dom(Γ2) are disjoint, we sometimes write Γ1, Γ2 instead of Γ1 + Γ2 to
emphasize the disjointness. A similar addition applies to invertible environments. But as only
multiplicity 1 is allowed in Θ, Θ1 + Θ2 = Θ implicitly implies dom(Θ1)∩ dom(Θ2) = /0.

We define multiplication of multiplicities as below.

1π = π1 = π ωπ = πω = ω

Given Γ = x1 :π1 A1, . . . , xn :πn An, we write πΓ for the environment x1 :ππ1 A1, . . . , xn :ππn

An. A similar notation applies to invertible environments. Again, ωΘ′ = Θ means that
Θ′ = ε . Notice that it can hold that Γ = Γ + Γ and Γ = ωΓ = 1Γ if Γ(x) = ( , ω) for all
x ∈ dom(Γ).

The typing relation Γ; Θ ⊢ e : A reads that under environments Γ and Θ, expression e has
type A (Fig. 3). The definition basically follows λ q

→ (Bernardy et al. 2018) except having
two environments for the two stages. Although multiplicities in Θ are always 1, some of
the typing rules refers to ωΘ (which implies Θ = ε) in the conclusion parts, to emphasize
that Γ and Θ are treated similarly by the rules. The idea underlying this type system is
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that, together with the operational semantics in Section 3.5, a term-in-context ε; Θ ⊢ e : A•

defines a piece of code representing a bijection between Θ and A, and hence ε; ε ⊢ e′ : A ⇌ B
defines a bijection between A and B (see Section 3.6). Our Agda implementation explained
in Section 4, which we mentioned in Sections 1 and 2.7, follows this idea with some
generalization. The typing rules in Fig. 3 are divided into three groups: the standard
ones inherited from λ q

→ (T-VAR, T-ABS, T-APP, T-CON, and T-CASE), the ones for the
invertible part (T-RVAR, T-RCON, and T-RCASE), and the ones for the interaction between
the two (T-PIN, T-UNLIFT, T-FAPP, and T-BAPP).

Intuitively, the multiplicity of a variable represents the usage of a resource to be associated
with the variable. Hence, multiplicities in Γ and Θ are synthesized rather than checked in
typing. This viewpoint is useful for understanding T-APP and T-CASE; it is natural that,
if an expression e is used π times, the multiplicities of variables in e are multiplied by π .
Discarding variables, or weakening, is performed in the rules T-VAR, T-RVAR, T-CON,
and T-RCON which can be leaves in a derivation tree. Note that weakening is not allowed
for Θ-variables as they are linear.

The typing rules for the invertible part would need additional explanation. In T-RVAR,
x has type A• if the invertible typing environment is the singleton mapping x : A. One
explanation for this is that Θ represents the typing environment for the object (i.e., invertible)
system. Another explanation is that we simply omit (−)• as all variables in Θ must have
types of the form A•. Rule T-RCON says that we can lift a constructor to the invertible world
leveraging the injective nature of the constructor. Rule T-RCASE says that the invertible case
is for pattern-matching on (−)•-typed data; the pattern matching is done in the invertible
world, and thus the bodies of the branches must also have (−)•-types. Recall that the with-
conditions (e′i) are used for deciding which branch is used in backward computation. The
type B →ω Bool indicates that they are conventional unrestricted functions, and ωΓ′ and
ωΘ′ in the conclusion part of the rule indicates that their uses are unconstrained. Notice that,
since the linearity comes only from the use of (−)•-typed values, there is little motivation
to use linear variables to define conventional functions in λ PI

→ . The operators pin, unlift,
▷, and ◁ are special in λ PI

→ . The operator pin is simply a fully-applied version of the one
in Section 2; so we do not repeat the explanation. Rules T-UNLIFT, T-FAPP, and T-BAPP

are inherited from the types of fwd and bwd in Section 2. Recall that ωΘ ensures Θ = ε ,
and thus the arguments of unlift and constructed bijections must be closed in terms of
invertible variables. It might look a little weird that e1 ▷ e2/e1 ◁ e2 uses e1 linearly; this is
not a problem because Θ1 in T-FAPP/T-BAPP must be empty for expressions that occur in
evaluation (Lemma 3.2).

3.5 Operational Semantics

The semantics of λ PI
→ consists of three evaluation relations: unidirectional, forward, and

backward. The unidirectional evaluation evaluates away the unidirectional constructs such
as λ -abstractions and applications, and the forward and backward evaluation specifies
bijections.

For example, let us consider an expression e = (λω f . f ( f y)) (λ1x.S• x). Due to λ -
abstractions and function applications, it is not immediately clear how we can interpret
the expression as a bijection. The unidirectional evaluation ⇓ is used to evaluate these
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unidirectional constructs away to make way for the forward and backward evaluation to
interpret the residual term. For the above expression, we have e ⇓ S• (S• y) where the
residual S• (S• y) is ready to be interpreted bijectively. The forward evaluation µ ⊢ E ⇒ v
evaluates a residual E under an environment µ to obtain a value v as usual. For example,
we have {y 7→ Z} ⊢ S• (S• y)⇒ S (S Z). The backward evaluation E ⇐ v ⊣ µ does the
opposite; it inversely evaluates E to find an environment µ for a given value v, so that the
corresponding forward evaluation of E returns the value for the environment. For example,
we have S• (S• y)⇐ S (S Z) ⊣ {y 7→ Z}.

This is the basic story, but computation can be more complicated in general. With
case and pin, the forward ⇒ and backward ⇐ evaluation depend on the unidirectional
evaluation ⇓; and with ▷ and ◁, the unidirectional evaluation ⇓ also depends on the forward
⇒ and backward ⇐ ones. Technically, the linear type system is also the key to the latter
type of dependency, which is an important difference from related work in bidirectional
programming (Matsuda and Wang 2018).

3.5.1 Values and Residuals

We first define a set of values v and a set of residuals E as below.

Values: v ::= λπ x.e | C v | E | ⟨x.E⟩
Residuals: E ::= x | C• E | case E0 of {p• → e with λω x.e′} | pin E1 (λω x2.e2)

The residuals are (−)•-typed expressions, which are subject to the forward and backward
evaluations. The syntax of residuals makes it clear that branch bodies in invertible cases
are not evaluated in the unidirectional evaluation; otherwise, recursive definitions involving
them usually diverge. A variable is also a value. Indeed, our evaluation targets expres-
sions/residuals that may be open in term of invertible variables. The value ⟨x.E⟩ represents a
bijection. Intuitively, ⟨x.E⟩ is a single-holed residual E where the hole is represented by the
variable x. The type system ensures that the x is the only free variable in E so that E is ready
to be interpreted as a bijection. Since ⟨x.E⟩ is not an expression defined so far, we extend
expressions to include this form as e ::= · · · | ⟨x.E⟩ together with the following typing rule:

Γ; Θ, x : A ⊢ E : B•

ωΓ; ωΘ ⊢ ⟨x.E⟩ : A ⇌ B
T-HOLED

It is crucially important that x is added to the invertible environment. Recall again that ωΘ

ensures Θ = ε . Also, since values are closed in terms of unidirectional variables, a value of
the form ⟨x.E⟩ cannot have any free variables.

3.5.2 Three Evaluation Relations: Unidirectional, Forward and Backward

The evaluation relations are shown in Fig. 4, which are defined by mutually-dependent
evaluation rules.

The unidirectional evaluation is rather standard, except that it treats invertible primitives
(such as lifted constructors, invertible cases, lift, and pin) as constructors. A subtlety is
that we assume dynamic α-renaming of invertible cases to avoid variable capturing. The
evaluation rules can evaluate open expressions by having x ⇓ x; recall that residuals can
contain variables. The unlift operator uses a fresh variable y in the evaluation to make a



829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

19

Unidirectional Evaluation e ⇓ v

λπ x.e ⇓ λπ x.e

e1 ⇓ λπ x.e e2 ⇓ v2 e[v2/x] ⇓ v

e1 e2 ⇓ v
e ⇓ v

C e ⇓C v

e0 ⇓ v0 piµ = v0 eiµ ⇓ v

caseπ e0 of {p → e} ⇓ v

x ⇓ x

e ⇓ E

C• e ⇓C• E

e0 ⇓ E0 e′ ⇓ λω x.e′′ α-renaming to make fv(p) fresh

case e0 of {p• → e with e′} ⇓ case E0 of {p• → e with λω x.e′′}

e1 ⇓ E1 e2 ⇓ λω x2.e′2
pin e1 e2 ⇓ pin E1 (λω x2.e′2) ⟨x.E⟩ ⇓ ⟨x.E⟩

e ⇓ λ1x.e′ e′[y/x] ⇓ E y: fresh

unlift e ⇓ ⟨y.E⟩

e1 ⇓ ⟨x.E⟩ e2 ⇓ v2 {x 7→ v2} ⊢ E ⇒ v

e1 ▷ e2 ⇓ v

e1 ⇓ ⟨x.E⟩ e2 ⇓ v2 E ⇐ v2 ⊣ {x 7→ v}
e1 ◁ e2 ⇓ v

Forward Evaluation µ ⊢ E ⇒ v

{x 7→ v} ⊢ x ⇒ v

µ ⊢ E ⇒ v⊎
µ ⊢C• E ⇒C v

µ1 ⊢ E1 ⇒ v1 e2[v1/x] ⇓ E2 µ2 ⊢ E2 ⇒ v2

µ1 ⊎ µ2 ⊢ pin E1 (λω x.e2)⇒ (v1, v2)

µ0 ⊢ E0 ⇒ piµi dom(µi) = fv(pi) ei ⇓ Ei µ ⊎ µi ⊢ Ei ⇒ v e′i[v/xi] ⇓True {e′j[v/x j] ⇓ False} j ̸=i

µ0 ⊎ µ ⊢ case E0 of {p• → e with λω x.e′}⇒ v

Backward Evaluation E ⇐ v ⊣ µ

x ⇐ v ⊣ {x 7→ v}
E ⇐ v ⊣ µ

C• E ⇐C v ⊣
⊎

µ

E1 ⇐ v1 ⊣ µ1 e2[v1/x] ⇓ E2 E2 ⇐ v2 ⊣ µ2

pin E1 (λω x.e2)⇐ (v1, v2) ⊣ µ1 ⊎ µ2

e′i[v/xi] ⇓True {e′j[v/x j] ⇓ False} j ̸=i ei ⇓ Ei Ei ⇐ v ⊣ µ ⊎ µi dom(µi) = fv(pi) E0 ⇐ piµi ⊣ µ0

case E0 of {p• → e with λω x.e′}⇐ v ⊣ µ0 ⊎ µ

Fig. 4: Evaluation relations: unidirectional, forward and backward.

single-holed residual ⟨y.E⟩ as a representation of bijection. Such single-holed residuals can
be used in the forward direction by e1 ▷ e2 and in the backward direction by e1 ◁ e2, by
triggering the corresponding evaluation.

The forward evaluation µ ⊢ E ⇒ v states that under environment µ , a residual E evaluates
to a value v, and the backward evaluation E ⇐ v ⊣ µ inversely evaluates E to return the
environment µ from a value v: the forward and backward evaluation relations form a
bijection. For variables and invertible constructors, both forward and backward evaluation
rules are rather straightforward. The rules for invertible case expression are designed to
ensure that every branch taken in one direction may and must be taken in the other direction
too. This is why we check the with conditions even in the forward evaluation: the condition
is considered as a post-condition that must exclusively hold after the evaluation of a branch.
The pin operator changes the behavior of the backward computation of the second argument
based on the result of the first argument; notice that v1, the parameter for the second
argument, is obtained as the evaluation result of the first argument in the forward evaluation,
and as the first component of the result pair in the backward evaluation. Notice that the
unidirectional evaluation ⇓ involved in the presented evaluation rules are performed in the
same way in both evaluation, which is the key to bijectivity of E.
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3.6 Metatheory

In this subsection, we present the key properties about λ PI
→ .

3.6.1 Subject Reduction

First, we show a substitution lemma for λ PI
→ . We only need to consider substitution for unidi-

rectional variables because substitution for invertible variables never happens in evaluation;
recall that we use environments (µ) in the forward and backward evaluation.

Lemma 3.1. Γ, x :π A; Θ ⊢ e : B and Γ′; Θ′ ⊢ e′ : A implies Γ + πΓ′; Θ + πΘ′ ⊢ e[e′/x] : B.
■

Note that the substitution is only valid when Θ + πΘ′ satisfy the assumption that invertible
variables have multiplicity 1. This assumption is guaranteed by typing of the constructs that
trigger substitution.

Then, by Lemma 3.1, we have the subject reduction properties as follows:

Lemma 3.2 (subject reduction). The following properties hold:

• Suppose ε; Θ ⊢ e : A and e ⇓ v. Then, ε; Θ ⊢ v : A holds.
• Suppose ε; Θ ⊢ E : A• and µ ⊢ E ⇒ v. Then, dom(Θ) = dom(µ) holds, and ε; ε ⊢

µ(x) : Θ(x) for all x ∈ dom(Θ) implies ε; ε ⊢ v : A.
• Suppose ε; Θ ⊢ E : A• and E ⇐ v ⊣ µ . Then, dom(Θ) = dom(µ) holds, and ε; ε ⊢ v :

A implies ε; ε ⊢ µ(x) : Θ(x) for all x ∈ dom(Θ).

Proof By (mutual) induction on the derivation steps of evaluation. ■

The statements correspond to the three evaluation relations in λ PI
→ . Note that the unidirec-

tional evaluation targets expressions that are closed in terms of unidirectional variables, but
may be open in terms of invertible variables, a property that is reflected in the first statement
above. The second and third statements are more standard, assuming closed expressions in
terms of both unidirectional and invertible variables. This assumption is actually an invari-
ant; even though open expressions and values are involved in the unidirectional evaluation,
the forward and backward evaluations always take and return closed values.

3.6.2 Bijectivity

Roughly speaking, correctness means that every value of type A ⇌ B forms a bijection.
Values of type A ⇌ B has the form ⟨x.E⟩. By Lemma 3.2 and T-HOLED, values that occur
in the evaluation of a well-typed term can be typed as ε; ε ⊢ ⟨x.E⟩ : A ⇌ B, which implies
ε; x : A ⊢ E : B•. Since values ⟨x.E⟩ can only be used by ▷ and ◁, bijectivity is represented
as: {x 7→ v} ⊢ E ⇒ v′ if and only if E ⇐ v′ ⊣ {x 7→ v}.12

12 Here, we consider syntactic (definitional) equality of values, but it is rather easy to extend the discussion to
observational equivalence.
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To do so, we prove the following more general correspondence between the forward
and backward evaluation relations, which is rather straightforward as the rules of the two
evaluations are designed to be symmetric.

Lemma 3.3 (bijectivity of residuals). µ ⊢ E ⇒ v if and only if E ⇐ v ⊣ µ .

Proof Each direction is proved by induction on a derivation of the corresponding evaluation.
Note that every unidirectional evaluation judgment e′ ⇓ v′ occurring in a derivation of one
direction also appears in the corresponding derivation of the other direction, and hence we
can treat the unidirectional evaluation as a block box in this proof. ■

Then, by Lemma 3.2, we have the following corollary stating that ⟨x.E⟩ : A ⇌ B actually
implements a bijection between A-typed values and B-typed values.

Corollary 3.4 (bijectivity of bijection values). Suppose ε; ε ⊢ ⟨x.E⟩ : A ⇌ B. Then, for
any v and u such that ε; ε ⊢ v : A and ε; ε ⊢ v′ : B, we have {x 7→ v} ⊢ E ⇒ v′ if and only if
E ⇐ v′ ⊣ {x 7→ v}. ■

3.6.3 Note on the Progress Property

Progress is another important property that, together with subjection reduction, proves the
absence of certain errors during evaluation. However, a standard progress property is usually
based on small-step semantics, and yet λ PI

→ has a big-step operational semantics, which
was chosen for its advantage in clarifying the input-output relationship of the forward and
backward evaluation, as demonstrated by Lemma 3.3. A standard small-step semantics,
which defines one-step evaluation as a relation between terms, is not suitable in this regard.
Abstract machines are also unsatisfactory, as they will obscure the correspondence between
the forward and backward evaluations.

We instead establish progress by directly showing that the evaluations do not get stuck
other than with branching-related errors. This is done as an Agda implementation (men-
tioned in Sections 1 and 2.7) of definitional (Reynolds 1998) interpreters, which use the
(sized) delay monad (Abel and Chapman 2014; Capretta 2005) and manipulate intrinsically-
typed (i.e., Church style) expressions, values and residuals. The interpreter uses sums,
products, and iso-recursive types instead of constructors. Also, instead of substitution, value
environments are used in the unidirectional evaluation to avoid the shifting of de Bruijn
terms. See Section 4 for details of the implementation. We note that, as a bonus track, the
Agda implementation comes with a formal proof of Lemma 3.3.

3.6.4 Reversible Turing Completeness

Reversible Turing completeness (Bennett 1973) is an important property that general-
purpose reversible languages are expected to have. Similar to the standard Turing
completeness, being reversible Turing complete for a language means that all bijections can
be expressed in the language (Bennett 1973).

It is unsurprising that λ PI
→ is reversible Turing complete, as it has recursion (via fixπ in

Section 3.3) and reversible branching (i.e., invertible case).
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Theorem 3.5. λ PI
→ is reversible Turing complete. ■

The proof is done by constructing a simulator for a given reversible Turing machine,
which is presented in Appendix 1. We follow the construction in Yokoyama et al. (2011)
except the last step, in which we use a general reversible looping operator as below.13

trace : ((a ⊕ x)• ⊸ (b ⊕ x)•)→ a• ⊸ b•

As its type suggests, trace h applies h to InL a repeatedly until it returns InL b; the function
loops while h returns a value of the form InR x. Intuitively, this behavior corresponds to
the reversible loop (Lutz 1986). In functional programming, loops are naturally encoded
as tail recursions, which, however, are known to be difficult to handle in the contexts of
program inversion (Nishida and Vidal 2011; Mogensen 2006; Matsuda et al. 2010; Glück
and Kawabe 2004). In fact, our implementation uses a non-trivial reversible programming
technique, namely Yokoyama et al. (2012)’s optimized version of Bennett (1973)’s encoding.
The higher-orderness of λ PI

→ (and SPARCL) helps here, as the effort is made once and for all.

3.7 Extension with The lift Operator

One feature we have not yet discussed is the lift operator that creates primitive bijections
from unidirectional programs, for example, sub as we have seen in Section 2.

Adding lift to λ PI
→ is rather easy. We extend expressions to include lift as e ::= · · · |

lift e1 e2 e3 together with the following typing rule.

Γ1; Θ1 ⊢ e1 : A →ω B Γ2; Θ2 ⊢ e2 : B →ω A Γ3; Θ3 ⊢ e3 : A•

ωΓ1 + ωΓ2 + Γ3; ωΘ1 + ωΘ2 + Θ3 ⊢ lift e1 e2 e3 : B• T-LIFT

Accordingly, we extend evaluation by adding residuals of the form
lift (λω x1.e1) (λω x2.e2) E3 together with the following forward and backward
evaluation rules (we omit the obvious unidirectional evaluation rule for obtaining residuals
of this form).

µ ⊢ E3 ⇒ v3 e1[v3/x1] ⇓ v
µ ⊢ lift (λω x1.e1) (λω x2.e2) E3 ⇒ v

e2[v/x2] ⇓ v3 E3 ⇐ v3 ⊣ µ

lift (λω x1.e1) (λω x2.e2) E3 ⇐ v ⊣ µ

The substitution lemma (Lemma 3.1) and the subject reduction properties (Lemma 3.2) are
also lifted to lift.

However lift is by nature unsafe, which requires an additional condition to ensure
correctness. Specifically, the bijectivity of A ⇌ B-typed values is only guaranteed if lift is
used for pairs of functions that actually form bijections. For example, the uses of lift to
construct sub in Section 2 are indeed safe. In Section 5.2.1, we will see another interesting
example showing the use of conditionally safe lifts (see unsafeNew in Section 5.2.1).

13 The operator is named after the trace operator (Joyal et al. 1996) in the category of bijections (Abramsky et al.
2002).
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4 Mechanized Proof in Agda

In this section, we provide an overview of our implementation of SPARCL in Adga which
serves as a witness of the subjection reduction and the progress properties. Also, the
implementation establish the invariant that the multiplicities of the variables in Θ are always
1. This is crucial for the correctness but non-trivial to establish in our setting, because
an expression and the value obtained as the evaluation result of the expression may have
different free invertible variables due to the unidirectional free variables in the expression.
The Agda implementation also comes with the proof of Lemma 3.3.

4.1 Differences in Formalization

We first spell out the differences in our Agda formalization from the system λ PI
→ described in

Section 3. As mentioned earlier, the implementation uses products, sums and iso-recursive
types instead of constructors, and uses environments instead of substitutions to avoid tedious
shifting of de Bruijn terms. In addition, the Agda version comes with a slight extension to
support ! in linear calculi.

We begin with the difference in types. The Agda version targets the following set of
types.

A, B ::= A →π B | () | A ⊗ B | A ⊕ B | !π A | α | µα.A | A• | A ⇌ B

As one can see, there are no user-defined types T A that come with constructors; instead,
we have the unit type (), product types A ⊗ B, sum types A ⊕ B, and (iso-) recursive types
µα.A. As for the extension mentioned earlier, there are also types of the form of !π A which
intuitively denote A-typed values together with the witness of π-many copyability of the
values.

The expressions are updated to match the types.

e ::= x | λπ x.e | e1 e2

| () | letπ () = e1 in e2 | (e1, e2) | letπ (x1, x2) = e1 in e2

| InL e | InR | caseπ e0 of {InL x1 → e1; InR x2 → e2}
| !π e | letπ !x = e1 in e2 | roll e | unroll e
| x• | ()• | let ()• = e1 in e2 | (e1, e2)

• | let (x1, x2)
• = e1 in e2

| InL• e | InR• e | case e0 of {(InL x)• → e1; (InR x)• → e2} with e′

| roll• e | unroll• e
| pin e1 e2 | unlift e | e1 ▷ e2 | e1 ▷ e2

Instead of constructors and pattern matching, this version includes the introduction and
elimination forms for each form of types except A•. And for types (), A ⊗ B, A ⊕ B and
µα.A, there are corresponding invertible versions. For example, we have the introduction
form (e1, e2) and the elimination form letπ (x1, x2) = e1 in e2 for the product types, and
their invertible counterparts (e1, e2)

•, and let (x1, x2)
• = e1 in e2. Here, π ensures that e1

is used π-many times and so as the variables x1 and x2, similarly to the π of caseπ in the
original calculus λ PI

→ (see T-CASE in Fig. 3). Note that both (unidirectional and invertible)
sorts of cases are only for sum types and have exactly two branches. For simplicity, the
invertible case has one with condition instead of two, as one is enough to select one of
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the two branches. Since we use intrinsically-typed terms, the syntax of terms must be
designed so that the typing relation becomes syntax-directed. Hence, we have two sorts of
variable expressions (not variables themselves) x and x•, which will be typed by T-VAR and
T-RVAR, respectively.

The typing rules for the expressions can be obtained straightforwardly from Fig. 3, except
for the newly introduced ones that manipulate !π A-typed values.

Γ; Θ ⊢ e : A
πΓ; πΘ ⊢ !π e : !π A

Γ1; Θ1 ⊢ e1 : !π1A Γ2, x :ππ1 A; Θ2 ⊢ e2 : B
πΓ1 + Γ2; πΘ1 + Θ2 ⊢ letπ !x = e1 in e2 : B

An intuition underlying the rules is that !π A is treated as a GADT (Many π A) with the
constructor MkMany : A ⊸π Many π A capturing the multiplicity π . As the constructor
discharges the multiplicity π when pattern matched, the latter rule says that the copyability
π1 is discharged by the binding, regardless of the use of the examined expression e1. For
example, we have x :1 (), y :ω A; ε ⊢ let1 !z = (let1 () = x in !ω y) in (z, z) : A ⊗ A where x is
used once in the expression but z can be used twice as the binding discharged the copyability
witnessed by !ω y.

The sets of values and residuals are also updated accordingly. Here, the main change is
the use of environments θ ::= {x1 7→ v1, . . . , xn 7→ vn}.

v ::= ⟨λπ x.e, θ⟩ | () | (v1, v2) | InL v | InR v | !π v | roll v | ⟨x.E⟩ | E

E ::= x• | ()• | let ()• = E1 in E2 | (E1, E2)
• | let (x1, x2)

• = E1 in E2

| InL• E | InR• E | case E0 of {⟨(InL x)• → e1, θ1⟩; ⟨(InR x)• → e2, θ2⟩} with v′

| roll• E | unroll• E
| pin E v

We intentionally used different metavariables θ and µ for environments: the former is used
in the unidirectional evaluation and may contain invertible free variables, while the latter is
used in the forward and backward evaluations. The typing relation Θ ⊢ θ : Γ must be aware
of such free invertible variables as below.

{x1, . . . , xn}= dom(θ) = dom(Γ) {πiΘi ⊢ θ(xi) : Ai where Γ(xi) = (Ai, πi)}i

π1Θ1 + · · ·+ πnΘn ⊢ θ : Γ

The typing rules for values and residuals (Θ ⊢ v : A and Θ ⊢ E : A•) are obtained straight-
forwardly from the rules for expressions (Fig. 3) with Γ = ε , except for the two new forms
of value and residual involving closures. One of the two is a function closure expression
⟨λxπ .e, θ⟩, which comes with the following typing rule.

Θenv ⊢ θ : Γ x :π A, Γ; Θbody ⊢ e : B

Θenv + Θbody ⊢ ⟨λxπ .e, θ⟩ : A →π B

The other is the invertible case residual, which has the following type rule.

Θ0 ⊢ E : (A1 ⊕ A2)
• {Θenv ⊢ θi : Γi Γi; x :1 Ai, Θbody ⊢ ei : C•}i ε ⊢ v′ : C →ω Bool

Θ0 + Θenv + Θbody ⊢ case E0 of {⟨(InL x)• → e1, θ1⟩; ⟨(InR x)• → e2, θ2⟩} with v′ : C•

Here, we write Bool for ()⊕ () for readability.
We omit the concrete representations of expressions, values, and residuals as they are

straightforward. A subtlety is that the Agda version adopts separate treatment of types and
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multiplicities: that is, Γ = {x1 :π1 A1, . . . , xn :πn An} is separated into Γt = {x1 : A1, . . . , xn :
An} and Γm = {x1 : π1, . . . , xn : πn}, so that complex manipulation of multiplicities happens
only for the latter. Also, Θ environments are separated into Θt and Θm in a similar way.

4.2 Evaluation Functions

The Agda implementations include two definitional (Reynolds 1998) interpreters for
intrinsically-typed terms: one is for the unidirectional evaluation ⇓ and the other is for
the forward and backward evaluations ⇒ and ⇐. More specifically, the former one takes
Θ′ ⊢ θ : Γ and Γ; Θ ⊢ e : A to produce a value Θ′ + Θ ⊢ v : A if terminates, and the latter
takes a residual Θ ⊢ E : A• to yield a not-necessarily-total bijection between µ : Θ and
⊢ v : A, where µ : Θ means ⊢ µ(x) : Θ(x) for any x.

In our Agda development, an environment-in-context Θ′ ⊢ θ : Γ, a term-in-context Γ; Θ ⊢
e : A, and a value-in-context Θ′ + Θ ⊢ v : A are represented by types ValEnv Γt Γm Θt Θ′

m,
Term Γt Γm Θt Θm A, and Value Θt (Θ

′
m +m Θm) A, respectively. Recall that we have

adopted the separate treatment of types and multiplicities. Hence, instead of having a
single Θ, we have Θt and Θm where the former typing environment is treated in the
usual way. Also, regarding the latter evaluation, a residual-in-context Θ ⊢ E : A•, a typed-
environment (for the forward/backward evaluation) µ : Θ, and a value-in-context ⊢ v : A are
represented by types Residual Θt Θm (A•), RValEnv Θt Θm, and Value [] /0 A, respectively.
The different representations ([] and /0) are used for the empty typing environment and the
empty multiplicity environment: the former type is just a list of types, while the latter is a
type indexed by the former.

Now, we are ready to give the signatures of the two evaluation functions.

eval : ∀{Θt Θ′
m Γt Γm Θm A} (i : Size)→ all-no-omega (Θ′

m +m Θm)

→ValEnv Γt Γm Θt Θ′
m → Term Γt Γm Θt Θm A

→ DELAY (Value Θt (Θ
′
m +m Θm) A) i

evalR : ∀{Θt Θm A} (i : Size)→ all-no-omega Θm → Residual Θt Θm (A•)
→ i ⊢F RValEnv Θt Θm ⇔Value [] /0 A

The predicate all-no-omega asserts that a given multiplicity environment does not contain
the multiplicity ω , respecting the assumption on the core system that the multiplicities
involved in Θ are always 1. This property is considered as an invariant, because we need
to have a witness of the property to call eval and evalR recursively. The type constructor
DELAY is a variant the (sized) delay monad (Abel and Chapman 2014; Capretta 2005),
where the bind operation is frozen (i.e., represented as a constructor). This deviation from
the original is useful for the proof of Lemma 3.3 (Section 4.3). The record type i ⊢F a ⇔ b
represents not-necessarily-total bijections and has two fields: Forward : a → DELAY b i and
Backward : b → DELAY a i.

The fact that we have implemented these two functions in Agda witnesses the subject
reduction and the progress property. For the two functions to be type correct, they must
use appropriate recursive calls for intrinsically-typed subterms, which is indeed what the
subject reduction requires. Also, Agda is a total language, meaning that we need to give
the definition for every possible structures—in other words, every typed term is subject
to evaluation. Note that, by DELAY , the evaluations are allowed to go into infinite loops,
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which is legitate for the progress property. We also use infinite loops to represent errors,
which are thrown only in the following situations.

• forward evaluation of invertible cases with imprecise with conditions, and
• backward evaluation of InL• E and InR• E that receive opposite values.

The fact that the interpreters are typechecked in Agda serves as a constructive proof that
there are no other kind of errors.

Caveat: sized types. As their signatures suggest, the definitions of eval and evalR rely on (a
variant of) the sized delay monad. However, the sized types are in fact an unsafe feature in
Agda 2.6.2, which may lead to contradictions in cases,14 and, as far as we are aware, the safe
treatment of sized types is still open in Agda. Nevetherless, we believe that our use of sized
types, mainly regarding sized delay monads, is safe as the use is rather standard (namely,
we use the finite sized types in the definitions of eval and evalR to ensure productivity, and
then use the infinite size when we discuss the property of the computation).

4.3 Bijectivity of the forward and backward evaluation

The statement of Lemma 3.3 is formalized in Agda as the signatures of the following
functions:

forward-backward :
∀{Θt Θm A}→ (ano : all-no-omega Θm)→ (E : Residual Θt Θm (A•))
→∀µ v
→ Forward (evalR ∞ ano E) µ −→ v → Backward (evalR ∞ ano E) v −→ µ

backward-forward :
∀{Θt Θm A}→ (ano : all-no-omega Θm)→ (E : Residual Θt Θm (A•))
→∀µ v
→ Backward (evalR ∞ ano E) v −→ µ → Forward (evalR ∞ ano E) µ −→ v

Here, m −→ v, which reads that m evaluates to v, is an inductively-defined predicate asserting
that m : DELAY a ∞ terminates and produces the final outcome v. This relation has a
similar role to Σ (m ⇓) (λm → extract w ≡ v), where _⇓ and extract are defined in the
module Codata.Sized.Delay in the Agda standard library, but the key difference is its
explicit bind structures. Thanks to the explicit bind structures, we can perform the proof
straightforwardly by induction on E and case analysis on Forward (evalR ∞ ano E) µ −→ v
or Backward (evalR ∞ ano E) v −→ µ , leveraging the fact that the forward/backward
evaluation “mirrors” the backward/forward evaluation also in the bind structures.

5 Larger Examples

In this section, we demonstrate the utility of SPARCL with four examples, in which partial
invertibility supported by SPARCL is the key for programming. The first one is rebuilding

14 See, e.g., https://github.com/agda/agda/issues/1201 and https://github.com/agda/agda/
issues/6002.

https://github.com/agda/agda/issues/1201
https://github.com/agda/agda/issues/6002
https://github.com/agda/agda/issues/6002
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trees from preorder and inorder traversals (Mu and Bird 2003), and the latter three are
simplified versions of compression algorithms (Salomon 2008), namely, the Huffman
coding, arithmetic coding, and LZ77 (Ziv and Lempel 1977).15

5.1 Rebuilding Trees from a Pre-Order and an In-Order Traversals

It is well-known that we can rebuild a node-labeled binary tree from its preorder and inorder
traversals, provided that all labels in the tree are distinct. That is, for binary trees of type

data Tree= L |N Int Tree Tree

the following Haskell function pi is bijective.

pi :: Tree→ ([Int], [Int])

pi t = (preorder t, inorder t)

preorder L = [ ]

preorder (N a l r) = a : preorder l ++ preorder r

inorder L = [ ]

inorder (N a l r) = inorder l ++ [a] ++ inorder r

For example, for binary trees

t1 =N 1 (N 2 (N 3 L L) L) L, t2 =N 1 (N 2 L (N 3 L L)) L,

t3 =N 1 (N 2 L L) (N 3 L L), t4 =N 1 L (N 2 (N 3 L L) L),

t5 =N 1 L (N 2 L (N 3 L L))

that share the preorder traversal [1, 2, 3], the inorder traversals distinguish them:

inorder t1 = [3, 2, 1], inorder t2 = [2, 3, 1],

inorder t3 = [2, 1, 3], inorder t4 = [1, 3, 2],

inorder t5 = [1, 2, 3].

The uniqueness of labels is key to the bijectivity of pi. It is clear that pi−1 returns L for
([ ], [ ]), so the non-trivial part is how pi−1 will do for a pair of non-empty lists. Let us write
(a : p, i) for the pair. Then, since i contains exactly one a, we can unambiguously split i
as i = i1 ++ [a] ++ i2. Then, by pi−1(take (length i1) p, i1), we can recover the left child l,
and, by pi−1(drop (length i1) p, i2), we can recover the right child r. After that, from a, l,
and r, we can construct the original input as N a l r. Notice that this inverse computation
already involves partial invertibility such as the splitting of the inorder traversal list based
on a, which is invertible for fixed a with the uniqueness assumption.

It is straightforward to implement the above procedure in SPARCL. However, such a
program is inefficient due to the cost of splitting. Program calculation is an established
technique for deriving efficient programs through equational reasoning (Gibbons 2002),
and in this case of tree-rebuilding, it is known that a linear-time inverse exists and can be
derived (Mu and Bird 2003).

15 They are included in the Examples directory in the prototype implementation repository (https://github.
com/kztk-m/sparcl/) as Pi.sparcl, Huff.sparcl, ArithmeticCoding.sparcl, and LZ77.sparcl
respectively.

https://github.com/kztk-m/sparcl/
https://github.com/kztk-m/sparcl/
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In the following, we demonstrate that program calculation works well in the setting of
SPARCL. Interestingly, thinking in terms of partial-invertibility not only produces a Sparcl
program, but actually improves the calculation by removing some of the more-obscure
steps. Our calculation presented below basically follows Mu and Bird (2003, Section 3),
although the presentation is a bit different as we focus on partial invertibility, especially the
separation of unidirectional and invertible computation.

Note that Glück and Yokoyama (2019) gives a reversible version of tree rebuilding using
(an extension of) R-WHILE (Glück and Yokoyama 2016), a reversible imperative language
inspired by Janus (Lutz 1986; Yokoyama et al. 2008). However, R-WHILE only supports
a very limited form of partial invertibility (Section 6.1), and the difference between their
definition and ours is similar to what is demonstrated by the goSubs and goSubsF examples
in Fig. 2.

5.1.1 Calculation of the Original Definition

The first step is tupling (Hu et al. 1997; Chin 1993) which eliminates multiple data
traversals. The elimination of multiple data traversals is known to be useful for program
inversion (Eppstein 1985; Matsuda et al. 2012).

pi :: Tree→ ([Int], [Int])

pi L = ([ ], [ ])

pi (N a l r) = let (pr, ir) = pi r; (pl, il) = pi l in (a : pl ++ pr, il ++ [a] ++ ir)

Mu and Bird (2003, Section 3) also use tupling as the first step in their derivation.
The next step is to eliminate ++, a source of inefficiency. The standard technique is to use

accumulation parameters (Kühnemann et al. 2001). Specifically, we obtain piA satisfying
piA t py iy = let (p, i) = pi t in (p ++ py, i ++ iy) as below.

piA :: Tree→ [Int]→ [Int]→ ([Int], [Int])

piA L py iy = (py, iy)
piA (N a l r) py iy = let (pr, ir) = piA r py iy; (pl, il) = piA l pr (a : ir) in (a : pl, il)

The invertibility of piA is still not clear because piA is called with two different forms
of the accumulation parameter iy: one is the case where iy is empty (e.g., the initial call
pi x = piA x [ ] [ ]), and the other is the case where it is not (e.g., the recursion for the left child
piA l pr (a : ir)). This distinction between the two is important because, unlike the former,
an inverse for the latter is responsible for searching for the appropriate place to separate the
inorder-traversal list. Nevertheless, this separation can be achieved by deriving a specialized
version pi of piA satisfying pi x = piA x [ ] [ ] (we reuse the name as it implements the same
function).

pi :: Tree→ ([Int], [Int])

pi L = ([ ], [ ])

pi (N a l r) = let (pr, ir) = pi r; (pl, il) = piA l pr (a : ir) in (a : pl, il)

Having this new version of pi, we now have an invariant that iy of piA t py iy is always
non-empty; the other case is separated into a call to pi. Moreover, we can determine the head
h of iy beforehand in both forward and backward computations; this is exactly the label we
search for to split the inorder-traversal list. Indeed, if we know the head h of iy beforehand,
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piR : Tree• ⊸ (List Int⊗ List Int)•

piR L• = (Nil•,Nil•)•

with null ◦ fst
piR (N a l r)• =

let (pr, ir)• = piR r in
let (a, (pl, il))• =

pin a (λa′.piASR a′ l pr ir) in
(Cons• a pl, il)•

piASR : Int→Tree• ⊸ (List Int)•

⊸ (List Int⊗ List Int)•

piASR h L• py iy = (py,Cons• (new eqInt h) iy)•

with eqInt h ◦ head ◦ snd
piASR h (N a l r)• py iy =

let (pr, ir)• = piASR h r py iy in
let (a, (pl, il))• = pin a (λa′.piASR a′ l pr ir) in
(Cons• a pl, il)•

Fig. 5: Invertible pre- and in-order traversal in SPARCL

we can distinguish the ranges of the two branches of piA: for the first branch (py, iy), as iy
is returned as is, the head of the second component is the same as h, and for the second
branch (a : pl, il), the head of the second component of the return value cannot be equal to
h, i.e., the head of iy. Recall that piA t py iy = let (p, i) = pi t in (p ++ py, i ++ iy); thus, ir
in the definition of piA must have the form of · · ·++ iy, and then il must have the form of
· · ·++ [a] ++ · · ·++ iy.

Thus, as the last step of our calculation, we clarify the unidirectional part, namely the
head of the second component of the accumulation parameters of piA, by changing it to a
separate parameter. Specifically, we prepare the function piAS satisfying piAS h t py iy =
piA t py (h : iy) as below.

piAS :: Int→Tree→ [Int]→ [Int]→ ([Int], [Int])

piAS h L py iy = (py, h : iy)
piAS h (N a l r) py iy = let (pr, ir) = piAS h r py iy; (pl, il) = piAS a l pr ir in (a : pl, il)

Also, we replace the function call of piA in pi appropriately.

pi :: Tree→ ([Int], [Int])

pi L = ([ ], [ ])

pi (N a l r) = let (pr, ir) = pi r; (pl, il) = piAS a l pr ir in (a : pl, il)

5.1.2 Making Partial-Invertibility Explicit

An efficient implementation in SPARCL falls out from the above calculation (see Fig. 5): the
only additions are the types and the use of pin. Recall that let p• = e1 in e2 is syntactic sugar
for case e1 of {p• → e2 with λ .True}. Recall also that the first match principle is assumed
and the catch-all with conditions for the second branches are omitted. The function new
in the program lifts an A-typed value a to an A•-typed value, corresponding to a bijection
between () and {a}.

new : (a → a →Bool)→ a → a•

new eq c = lift (λ .c) (λc′. case eq c c′ of {True→ ( )}) ( )•

Note that the arguments of lift in new eq form a not-necessarily-total bijection, provided
that eq implements the equality on A.

The backward evaluation of piR has the same behavior as that Mu and Bird (2003,
Section 3) derived. The partial bijection that piASR defines indeed corresponds to reb in
their calculation. Their reb function is introduced as a rather magical step; our calculation
can be seen as a justification of their choice.
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5.1.3 new and delete

In the above example, we used new, which can be used to introduce redundancy to the
output. For example, it is common to include checksum information in encoded data. The
new function is effective for this scenario, as demonstrated below.

checkSum : List Int• ⊸ List Int•

checkSum xs =
let (xs, s) = pin xs (λxs′.new eqInt (sum xs′)) in -- sum : List Int→ Int

Cons• s xs

In the forward direction, checkSum computes the sum of the list and prepends it to the list.
In the backward direction, it checks if the head of the input list is the sum of its tail: if the
check succeeds, the backward computation of checkSum returns the tail, and (correctly)
fails otherwise.

It is worth mentioning that the pattern new eq is a finer operation than reversible copying
where the inverse is given by equivalence checking (Glück and Kawabe 2003); reversible
copying can be implemented as λx.pin x (new eq) : A• ⊸ (A ⊗ A)•, assuming appropriate
eq : A → A →Bool.

The new function has the corresponding inverse delete, which can be used to remove
redundancy from the input.

delete : (a → a →Bool)→ a → a• ⊸ ( )•

delete eq c a = lift (λc′.case eq c c′ of {True→ ( )}) (λ .c) a

It is interesting to note that new and delete can be used to define a safe variant of lift.

safeLift : (a → a →Bool)→ (b → b →Bool)→ (a → b)→ (b → a)→ a• ⊸ b•

safeLift eqA eqB f g a = let (a, b)• = pin a (λa′.new eqB ( f a′)) in
let (b, ( ))• = pin b (λb′.delete eqA (g b′) a) in
b

In the forward computation, the function applies f to the input, and tests whether g is
an inverse of f by applying g to the output and checking if the result is the same as the
original input by eqA. The backward computation does the opposite: it applies g and tests
the result by using f and eqB. This function is called “safe”, as it guarantees correctness by
the runtime check, provided that eqA and eqB implement the equality on the domains.

5.2 Huffman Coding

The Huffman coding is one of the most popular compression algorithms (Salomon 2008).
The idea of the algorithm is to assign short code to frequently occurring symbols. For
example, consider that we have symbols a, b, c and d that occur in the text to be encoded with
probability 0.6, 0.2, 0.1, and 0.1 respectively. If we assign code as a : 0, b : 10, c : 110 and
d : 111, then a text aabacabdaa will be encoded into 16-bit code 0

a
0
a
10
b
0
a
110
c

0
a
10
b
111
d

0
a
0
a
,

which is smaller than the 20-bit code obtained under the naive encoding that assigns two
bits for each symbol.
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huffCompress : (List Symbol)• ⊸ (Huff ⊗ List Bit)•

huffCompress s =
let (s, h)• = pin s (λ s′.new eqHuff (makeHuff s′)) in
pin h (λh′.encode h′ s)

encode : Huff → (List Symbol)• ⊸ (List Bit)•

encode h Nil• =Nil• with null
encode h (Cons s ss)• = encR h s (encode h ss)

Fig. 6: Two-pass Huffman coding in SPARCL

5.2.1 Two-Pass Huffman Coding

Assume that we have a data structure for a Huffman coding table, represented by type Huff.
The table may be represented as an array (or arrays) or a tree, and in practice one may
want to use different data structures for encoding and decoding (for example, an array for
encoding, and a trie for decoding). In this case, Huff is a pair of two data structures, where
each one is used only in one direction. To handle such a situation, we treat it as an abstract
type with the following functions.

makeHuff : List Symbol→Huff

enc : Huff → Symbol→ List Bit

dec : Huff → List Bit→ Symbol⊗ List Bit

Here, enc and dec satisfy the properties dec h (enc h s ++ ys) = (s, ys) and dec h ys = (s, ys′)
implies enc s ++ ys = ys′, where ++ is the list append function.

Then, by enc and dec, we can define an bijective version encR as below.

encR : Huff → Symbol• ⊸ (List Bit)• ⊸ (List Bit)•

encR h s r = lift (λ (s, ys). enc h s ++ ys) (λys. dec h ys) (s, r)•

An encoder can be defined by firstly constructing a Huffman coding table and then
encoding symbol by symbol. We can program this procedure in a natural way in SPARCL

(Fig. 6) by using pin. This is an example where multiple pins are used to convert data.
The input symbol list is firstly passed to makeHuff under new to create a Huffman table h
in the first pin; here the input symbol list is unidirectional (static), while the constructed
Huffman table is invertible. Then, the input symbol list is encoded with the constructed
Huffman table in the second pin; here the input symbol list is invertible, while the Huffman
table is unidirectional (static). A subtlety here is the use of eqHuff : Huff →Huff →Bool

to test the equality of the Huffman encoding tables. This check ensures the property that
fwd huffCompress (bwd huffCompress (h, ys)) = (h, ys). This equation holds only when h
is the table obtained by applying makeHuff to the decoded text; indeed, eqHuff checks the
condition. One could avoid this check by using the following unsafeNew instead.

unsafeNew : a → a•

unsafeNew a = lift (λ ( ).a) (λa′.( )) -- assuming a = a′

The use of unsafeNew a is safe only when its backward execution always receives a.
Replacing new with unsafeNew violates this assumption, but for this case, the replace-
ment just widens the domain of bwd huffCompress, which is acceptable even though
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fwd huffCompress and bwd huffCompress do not form a bijection due to unsafeNew. But
in general this outcome is unreliable, unless the condition above can be guaranteed.

5.2.2 Concrete Representation of Huffman Tree in SPARCL

In the above we have modelled the case where different data structures are used for encoding
and decoding, which demands the use of abstract type and consequently the use of lifting.
In this section, we define encR directly in SPARCL, which is possible when the same data
structure is used for encoding and decoding.

To do so, we first give a concrete representation of Huff.

data Huff = Lf Symbol |Br Huff Huff

Here, Lf s encodes s into the empty sequence, and Br l r encodes s into
Cons 0 c if l encodes s to c, and Cons 1 c if r encodes s to c. For example,
Br (Lf ′a′) (Br (Lf ′b′) (Br (Lf ′c′) (Lf ′d′))) is the Huffman tree used to encode the
example presented in the beginning of Section 5.2.

Now let us define encR to be used in encode above. It is easier to define it via its inverse
decR.

decR : Huff → (List Bit)• ⊸ (Symbol⊗ List Bit)•

decR (Lf s) ys = (new eqSym s, ys)•

decR (Br l r) ys = case ys of (Cons 0 ys′)• → decR l ys′ with λ (s, ).member s l
(Cons 1 ys′)• → decR r ys′

encR h s ys = invert (decR h) (s, ys)•

Here, member : Symbol→Huff →Bool is a membership test function. Recall that invert
implements inversion of a bijection (Section 2). One can find that searching s in l for every
recursive call is inefficient, and this cost can be avoided by additional information on Br

that makes a Huffman tree a search tree. Another solution is to use different data structures
for encoding and decoding as we demonstrated in Section 5.2.1.

5.2.3 Adaptive Huffman Coding

In the above huffCompress, a Huffman coding table is fixed during compression which
requires the preprocessing makeHuff to compute the table. This is sometimes suboptimal:
for example, a one-pass method is preferred for streaming while a text could consist of
several parts with very different frequency distributions of symbols.

Being adaptive means that we have the following two functions instead of makeHuff .

initHuff : Huff updHuff : Symbol→Huff →Huff

Instead of constructing a Huffman coding table beforehand, the Huffman coding table is
constructed and changed throughout compression here.

The updating process of the Huffman coding table is the same in both compression
and decompression, which means that SPARCL is effective for writing an invertible and
adaptive version of Huffman coding in a natural way (Fig. 7). This is another demonstration
of the SPARCL’s strength in partial invertibility. Programming the same bijection in a
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huffCompress : (List Symbol)• ⊸ (Huff ⊗ List Bit)•

huffCompress = encode initHuff

encode : Huff → (List Symbol)• ⊸ (List Bit)•

encode h Nil• =Nil• with null
encode h (Cons s ss)• =

let (s, r)• = pin s (λ s′.encode (updHuff s′ h) ss) in
encR h s r

Fig. 7: Adaptive Huffman coding in SPARCL

fully-invertible language gets a lot more complicated due to the irreversible nature of
updHuff .

5.3 Arithmetic Coding

The idea of arithmetic coding is to encode the entire message into a single number in
the range [0, 1). It achieves this by assigning a range to each symbol, and encode the
symbol sequence by narrowing the ranges. For example, suppose that symbols a, b, c and
d are assigned with ranges [0, 0.6), [0.6, 0.8), [0.8, 0.9), and [0.9, 1.0). The compression
algorithm retains a range [l, r), narrows the range to [l + (r − l)ls, l + (r − l)rs) when it
reads a symbol s to which [ls, rs) is associated, and finally yields a real in [l, r). For example,
reading a text aabacabdaa, the range is narrowed into [0.25258176, 0.2526004224) and a
real 0.010000001010101 (in base 2) can be picked. Since the first and last bits are redundant,
the number can be represented by a 14-bit code 01000000101010, which is smaller than
the 20 bit code produced by the naive encoding. Notice that the code 0 corresponds to
multiple texts a, aa, aaa, . . . . There are several ways to avoid this ambiguity in decoding;
here we assume a special end-of-stream symbol EOS whose range does not appear in the
symbol range list.

As a simplification, we only consider ranges defined by rational numbers Q. Specifically,
we assume the following type and functions.

type Range= (Q,Q)

rangeOf : Symbol→ Range

find : Range→Q→ Symbol

Here, rangeOf returns a range assigned to a given symbol, and find takes a range and a
rational in the range, and returns a symbol of which the subdivision of the range contains
the rational. In addition, we will use the following functions.

The narrowing of ranges can be implemented straightforwardly as below.

narrow : Range→ Range→ Range

narrow (l, r) (ls, rs) = (l + (r − l) ∗ ls, l + (r − l) ∗ rs)

In what follows, narrow is used only with rangeOf . So, we define the following function
for convenience.

narrowBySym : Range→ Symbol→ Range

narrowBySym ran s = narrow ran (rangeOf s)
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These functions satisfy the following property.

narrowBySym (l, r) s = (l′, r′)
⇒ (l ≤ l′ ∧ r′ ≤ r)∧ (∀q ∈Q.l′ ≤ n < r′ ⇒ find (l, r) q = s)

Although λ s.narrow (l, r) (rangeOf s) is an injection (provided that r − l > 0), the arith-
metic coding does not use the property in decompression because in decompression the
result is a rational number instead of a range.

As the first step, we define a unidirectional version that return a rational instead of a bit
sequence for simplicity.

arithComp : (List Symbol)→Q
arithComp = encode (0, 1)
encode : Range→ (List Symbol)→Q
encode (l, r) Nil = l
encode (l, r) (Cons s ss) = encode (narrowBySym (l, r) s) ss

We can see from the definition that unidirectional and invertible computation is mixed
together. On one hand, the second component of the range is nonlinear (discarded when
encode meats Nil), meaning that the range must be treated as unidirectional. On the other
hand, a rational in the range (here we just use the lower bound for simplicity) goes to
the final result of arithComp, which means that the range should be treated as invertible.
The pin operator could be a solution to the issue. Since we want to use the unidirectional
function narrowBySym, it is natural to pin the symbol s to narrow the range, which belongs
to the unidirectional world. However, there is a problem. Using pin produces an invertible
product (Symbol⊗Q)• with the symbol remaining in the output. In Huffman coding as
we have seen, this is not a problem because the two component are combined as the final
product. But here the information of Symbol is redundant as it is already retained by the
rational in the second component. We need a way to reveal this redundancy and safely
discard the symbol.

The solution lies with the delete function in Section 5.1.3. For this particular case of the
arithmetic coding, the following derived version is more convenient.

deleteBy : (b → b →Bool)→ (a → b)→ a• ⊸ b• ⊸ a•

deleteBy eq f a b = let (a, ())• = pin a (λa′.delete eq ( f a′) b) in
a

By using deleteBy with find (part of the arithmetic encoding API), we can write an invertible
version as below.

arithComp : (List Symbol)• ⊸Q•

arithComp = encode (0, 1)

encode : Range→ (List Symbol)• ⊸Q•

encode (l, r) (Nil)• = new eqQ l with eqQ l
encode (l, r) (Cons s ss)• =

let (s, q)• = pin s $ λ s′. encode (narrowBySym (l, r) s′) ss in
deleteBy eqSym (find (l, r)) q s
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Here, eqQ and eqSym are equivalence tests on Q and Symbol respectively. The operator ($),
defined by ($) = λ f .λx. f x, is used to avoid parentheses, which is right-associative and
has the lowest precedence unlike function application. The with-condition enQ l becomes
false for any result from the second branch of encode; the assumption on EOS guarantees
that encode eventually meats EOS and changes the lower bound of the range. It is worth
noting that, in this case, the check eqSym involved in deleteBy always succeeds thanks to
the property about narrowBySym and find above. Thus, we can use the “unsafe” variants
of delete and deleteBy safely here. Also, for this particular case, we can replace new with
unsafeNew, if we admit some unsafety: this replacement just makes bwd arithComp accept
more inputs than what fwd arithComp can return.

As a general observation, programming in a compositional way in SPARCL is easier when
a component function, after fixing some arguments, transforms all and only the information
of the input to the output. In the Huffman coding example, where a bounded number of bits
are transmitted for a symbol, both enR and encode satisfy this criterion; and as a result, its
definition is mostly straightforward. In contrast, in arithmetic coding, even recursive calls
of encode do not satisfy the criterion, as a single bit of an input could affect an unbounded
number of positions in the output, which results in the additional programming effort as we
demonstrated in the above.

5.4 LZ77 Compression

LZ77 (Ziv and Lempel 1977) and its variant (such as LZ78 and LZSS) are also some
of the most popular compression algorithms. The basic idea is to use a string of a fixed
length (called a window) from the already traversed part of the message as a dictionary, and
repeatedly replace to be traversed strings with their entries (matching positions and lengths)
in the dictionary. To do so, LZ77 maintains two buffers: the window and the look-ahead
buffer (Salomon 2008), where the window is searched for the matching position and length
of the string in the look-ahead buffer. When the search succeeds, the algorithm emits the
matching position and length, and shifts both buffers by the matching length16. Otherwise,
it emits the first character and shifts the two buffers by one. For example, when the window
size is 4 and the look-ahead buffer size is 3, for an window dabc and an input string abda,
the algorithm yields (3, 2)da, as below

dabc abda emits (3, 2)

dabcab da emits d

dabcabd a emits a

where (3, 2) means that the string ab of length 2 appears in the window at position 3
(counted from the last). In general, the end of a matched string may not be in the window
but the look-ahead buffer. For example, for bbba aaa the algorithm emits (1, 4).

The basic idea of our implementation is to use pin to convert the input string from invert-
ible to unidirectional to allow overlapping in searching. Hence, we prepare the following

16 Here, we consider an LZSS-flavored variant that emits either a character or a pair of matching position and
length, unlike the original one that always emits a triple of matching position, length and the following character
even when the matched length is zero
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lz77 : (List Symbol)• ⊸ (List LZCode)•

lz77 = encode emptyWindow

encode : Window→ (List Symbol)• ⊸ (List LZCode)•

encode w Nil• =Nil• with null
encode w inp• =

let (inp, matchRes)• = pin inp (λ inp′. new eqMatchRes (findMatch w inp)) in
case matchRes of

Nothing• →
let (Cons s ss)• = inp in
let (s, r)• = pin s (λ s′. encode (extendWindow w (Cons s′ Nil)) ss) in
Cons• (revised Lit s) r

with isLit ◦ head
(Just (p, l))• →

let (l, (mstr, rest))• = pin l (λ l′. split l inp) in
let (mstr, r)• = pin mstr (λmstr′. encode (extendWindow w mstr′) rest) in
let (c, ())• = pin (p, l)• (λc. delete eqStr (takeMatch w c) mstr) in
Cons• (Entry c) r

split :: Int→ (List a)• → (List a)•

split n Nil• = (Nil•,Nil•)• with λ (a, b).null a && null b
split n (Cons a as)• = if n 0 then (Cons• a as,Nil•)•

else let (t, d)• = split (n − 1) as in (Cons a t, d)•

Fig. 8: LZ77 in SPARCL

unidirectional functions for the manipulation of the window, which is an abstract type
Window.

emptyWindow : Window

extendWindow : Window→ List Symbol→Window

findMatch : Window→ List Symbol→Maybe (Int⊗ Int)

takeMatch : Window→ (Int⊗ Int)→ List Symbol

Here, the last two functions satisfy the following property.

findMatch w s = Just (p, l) =⇒ takeMatch w (p, l) = take l s

Also, we use the following type for the output code.

data LZCode= Lit Symbol | Entry (Int⊗ Int)

We do not need to represent the look-ahead buffer explicitly, as it is hidden in the findMatch
function. Instead of using custom-sized integers, we use Int to represent both matching
positions (bounded by the size of the window) and matching lengths (bounded by the size
of the look-ahead buffer) for simplicity.

Fig. 8 shows an implementation of an invertible LZ77 compression in SPARCL. We
omit the definition of eqMatchRes : Maybe (Int⊗ Int)→Maybe (Int⊗ Int)→Bool and
eqStr : List Symbol→ List Symbol→Bool. Similarly to the arithmetic coding example,
we also use the new/delete trick here. The property above of findMatch and takeMatch
ensures that the delete in encode must succeed in the forward evaluation, meaning that
we can replace the delete by its unsafe variant similarly to the arithmetic coding example.
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It is also similar to the previous examples that the backward evaluation of lz77 can only
accept the encoded string that the corresponding forward evaluation can produce. This is
inconvenient in practice, because there in general are many compression algorithms that
correspond to a decompression algorithm. Fortunately, the same solution to the previous
examples also apply to this example: for this particular case, replacing new with unsafeNew
is widen the domain of the backward execution, without risking the expected behavior that
decompression after compression should yield the original data.

6 Related Work

6.1 Program Inversion and Invertible/Reversible Computation

In the literature of program inversion (a program transformation technique to find f−1

for a given f ), it is known that an inverse of a function may not arise from reversing all
the execution steps of the original program. Partial inversion (Romanenko 1991; Nishida
et al. 2005) addresses the problem by classifying inputs/outputs into known and unknown,
where known information is available also for inverses. This classification can be viewed
as a binding-time analysis (Jones et al. 1993; Gomard and Jones 1991) where the known
part is treated as static. The partial inversion is further extended so that the return values
of inverses are treated as known as well (Almendros-Jiménez and Vidal 2006; Kirkeby
and Glück 2019, 2020); in this case, it can no longer be explained as a binding-time
analysis. This extension introduces additional power, but makes inversion fragile as success
depends on which function is inverted first. For example, the partial inversion for goSubs
succeeds when it inverts x − n first, but fails if it tried to invert goSubs x xs first. The
design of SPARCL is inspired by these partial inversion methods: we use (−)•-types to
distinguish the known and unknown parts, and pin together with case to control orders.
Semi inversion (Mogensen 2005) essentially converts a program to logic programs and then
tries to convert it back to a functional inverse program, which also allows the original and
inverse programs to have common computations. Its extension (Mogensen 2008) can handle
a limited form of function arguments. Specifically, such function arguments must be names
of top-level functions; neither closures nor partial applications is supported. The Inversion
Framework (Kirkeby and Glück 2020) unifies the partial and semi inversion methods based
on the authors’ reformulation (Kirkeby and Glück 2019) of semi inversion for conditional
constructor term rewriting systems (Terese 2003). The PINS system allows users to specify
control structures as they sometimes differ from the original program (Srivastava et al.
2011). As we mentioned in Section 1, these program inversion methods may fail, and often
for reasons that are not obvious to programmers.

Embedded languages can be seen as two-staged (a host and a guest), and there are several
embedded invertible/reversible programming languages. A popular approach to implement
such languages is based on combinators (Mu et al. 2004; Rendel and Ostermann 2010;
Kennedy and Vytiniotis 2012; Wang et al. 2013), in which users program by composing
bijections through designated combinators. To the best of our knowledge, only (Kennedy
and Vytiniotis 2012) has an operator like pin : A• ⊸ (A → B•)⊸ A ⊗ B•, which is key
to partial invertibility. More specifically, Kennedy and Vytiniotis (2012) has an operator
depGame :: Game a → (a →Game b)→Game (a, b). The types suggest that Game and
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(−)• play a similar role; indeed they both represent invertibility but in different ways. In
their system, Game a represents (total) bijections from bit sequences and a-typed values,
while in our system A• represents a bijection whose range is A but domain is determined
when unlift is applied. One consequence of this difference is that, in their domain-specific
system, there is no restriction of using a value v :: Game a linearly, because there is no
problem of using an encoder/decoder pair for type a multiple times, even though nonlinear
use of v : A•, especially discarding, leads to non-bijectivity. Another consequence of the
difference is that their system is hardwired to bit sequences and therefore does not support
deriving general bijections between a and b from Game a →Game b, whereas we can obtain
a (not-necessarily-total) bijections between A and B from any function of type A• ⊸ B• that
does not contain linear free variables.

The pin operator can be seen as a functional generalization of reversible update
statements (Axelsen et al. 2007) x ⊕= e in reversible imperative languages (Lutz 1986;
Yokoyama et al. 2008; Glück and Yokoyama 2016; Frank 1997), of which the inverse is
given by x ⊖= e with ⊖ satisfying (x ⊕ y)⊖ y = x for any y; examples of ⊕ (and ⊖) include
addition, subtraction, bitwise XOR, and replacement of nil (Glück and Yokoyama 2016)
as a form of reversible copying (Glück and Kawabe 2003). Having (x ⊕ y)⊖ y means that
⊕ and ⊖ are partially invertible, and indicates that they correspond to the second argument
of pin. Whereas the operators such as ⊕ and ⊖ are fixed in those languages, in SPARCL,
leveraging its higher-orderness, any function of an appropriate type can be used as the
second argument of pin, which leads to concise function definitions as demonstrated in
goSub in Section 2 and the examples in Section 5.

Most of the existing reversible programming languages (Yokoyama et al. 2008; Lutz
1986; Frank 1997; Baker 1992; Yokoyama et al. 2011; Mu et al. 2004; Wang et al. 2013)
do not support function values, and higher-order reversible programming languages are
uncommon. One notable exception is Abramsky (2005) that shows a subset of the linear
λ -calculus concerning ⊸ and ! (more precisely, a combinator logic that corresponds to the
subset) can be interpreted as manipulations of (not-necessarily-total) bijections. However,
it is known to be difficult to extend their system to primitives such as constructors and
invertible pattern matching (Abramsky 2005, Section 7). Abramsky (2005)’s idea is based
on the fact that a certain linear calculus is interpreted in a compact closed category, which
has a dual object A∗ such that A∗ ⊗ B serves as a function (i.e., internal hom) object, and
that we can construct (Joyal et al. 1996) a compact closed category from the category of
not-necessary-total bijections (Abramsky et al. 2002). Recently, Chen and Sabry (2021)
designed a language that has fractional and negative types inspired by compact closed
categories. In the language, a negative type −A is a dual of A for ⊕, and constitutes a
“function” type −A ⊕ B that satisfies the isomorphism A ⊕ B ↔C ≃ A ↔−B ⊕C, where
↔ denotes bijections. One of the applications of the negative type is to define a loop like
operation called the trace operator, which has a similar behavior to trace in Section 3.6.4.
The fractional types in the language are indexed by values as 1/(v : A), which represents the
obligation to erase an ancilla value v, and hence the corresponding application form does
perform the erasure. However, behavior of both −A ⊕ B and 1/(v : A)⊗ B is different from
what we expect for functions: the former operates on ⊕ instead of ⊗, and the latter only
accepts the input v.
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A few reversible functional programming languages also support a limited form of partial
invertibility. RFunT,17 a typed variant of RFun (Yokoyama et al. 2011) with Haskell-like
syntax, allows a function to take additional parameters called ancilla parameters. The
reversibility restriction is relaxed for ancilla parameters, and they can be discarded and
pattern-matched without requiring a way to determine branching from their results. However,
these ancilla parameters are supposed to be translated into auxiliary inputs and outputs that
stay the same before and after reversible computation, and mixing unidirectional computa-
tion is not their primary purpose. In fact, very limited operations are allowed for these ancilla
data by the system. CoreFun also supports ancilla parameters (Jacobsen et al. 2018). Their
ancilla parameters are treated as static inputs to reversible functions, and arguments that
appear at ancilla positions are free from the linearity restriction.18 The system is overly con-
servative: all the functions are (partially) reversible, and thus functions themselves used in
the ancilla positions must obey the linearity restriction. Jeopardy (Kristensen et al. 2022)19

is a work-in-progress reversible language, which plans to support partial invertibility via
program analysis. The implicit argument analysis (Kristensen et al. 2022), which Jeopardy
uses, identifies which arguments are available (or, known (Nishida et al. 2005)) for each
functional call and for the forward/backward execution. However, the inverse execution
based on the analysis has neither been formalized nor implemented to the best of the authors’
knowledge. More crucially, RFunT, CoreFun and Jeopardy are first-order languages (to be
precise, they allow top-level function names to be used as values, but not partial application
or λ -abstraction), which limits flexible programming. In contrast, A• is an ordinary type
in SPARCL, and there is no syntactic restriction on expressions of type A•. This feature,
combined with the higher-orderness, gives extra flexibility in mixing unidirectional and
invertible programming. For example, SPARCL allows a function composition operator
that can be used for both unidirectional (hence unrestricted) and invertible (hence linear)
functions, using multiplicity polymorphism (Bernardy et al. 2018; Matsuda 2020).

6.2 Functional Quantum Programming Languages

In quantum programming many operation are reversible, and there are a few higher-order
quantum programming languages (Selinger and Valiron 2006; Rios and Selinger 2017).
Among them, the type system of Proto-Quipper-M (Rios and Selinger 2017) is similar to
λ PI
→ in the sense that it also uses a linear-type system and distinguishes two sorts of variable

environments as we do with Γ and Θ, although the semantic back-ends are different. They
do not have any language construct that introduces new variables to the second sort of
environments (a counterpart of our Θ), because their language does not have a counterpart
to our invertible case.

It is also interesting to see that some quantum languages allow weakening (i.e., discard-
ing) (Selinger and Valiron 2006) and some allow contraction (i.e., copying) (Altenkirch
and Grattage 2005). In these frameworks, weakening is allowed because one can throw
away a quantum bit after measuring, and contraction is allowed because states can be
shared through introducing entanglements. As our goal is to obtain a bijection as final

17 https://github.com/kirkedal/rfun-interp
18 A correction to Jacobsen et al. (2018) (personal communication with Michael-Kirkedal Thomsen, Jun 2020).
19 Don’t confuse it with the program inversion method with the same name (Dershowitz and Mitra 1999).
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product, weakening in general is not possible in our context. On the other hand, it is a
design choice whether or not contraction is allowed. Since the inverse of copying can be
given by equivalence checking and vice versa (Glück and Kawabe 2003). However, careless
uses of copying may result in unintended domain restriction. Moreover supporting such a
feature requires hard-wired equivalence checks for all types of variables that can be in Θ

(notice that multiple uses of a variable in Γ will be reduced to multiple uses of variables
in Θ (Matsuda and Wang 2018)). This requires the type system to distinguish types that
can be in Θ from general ones, as types such as A ⊸ B do not have decidable equality.
Moreover, the hard-wired equivalence checks would prevent users from using abstract types
such as Huff in Section 5, for which the definition of equivalence can differ from that on
their concrete representations.

6.3 Bidirectional Programming Languages

It is perhaps not surprising that many of the concerns in designing invert-
ible/bijective/reversible languages are shared by the closely related field of bidirectional
programming (Foster et al. 2007). A bidirectional transformation is a generalization of a
pair of inverses that allows a component to be non-bijective; for example, an (asymmetric)
bidirectional transformation between a and b are given by two functions called get : a → b
and put : a → b → a (Foster et al. 2007). Similarly to ours, in the bidirectional language
HOBiT (Matsuda and Wang 2018), a bidirectional transformation between a and b is rep-
resented by a function from B a to B b, and top-level functions of type B a → B b can be
converted to a bidirectional transformation between a and b. Despite the similarity, there are
unique challenges in invertible programming. Notably, the handling of partial-invertibility
that this paper focuses on, and the introduction of the operator pin as a solution. Another
difference is that SPARCL is based on a linear type system, which, as we have seen, per-
fectly supports the need for the intricate connections between unidirectional and inverse
computation in addressing partial invertibility. One of the consequences of this difference in
the underlying type system is that Matsuda and Wang (2018) can only interpret top-level
functions of type B a → B b as bidirectional transformations between a and b, yet we can
interpret functions of type A• ⊸ B• in any places as bijections between A and B, as long as
they have no linear free variables. Linear types also clarify the roles of values and prevent
users from unintended failures caused by erroneous use of variables. For example, the type
A• ⊸ (A → B•)⊸ (A ⊗ B)• of pin clarifies that the function argument of pin can safely
discard or copy its input as the nonlinear uses do not affect the domain of the resulting
bijection.

It is worth mentioning that, in addition to bidirectional transformations, HOBiT provides
a way to lift bidirectional combinators (i.e., functions that take and return bidirectional
transformations). However, the same is not obvious in SPARCL due to its linear type system,
as the combinators need to take care of the manipulation of Θ environments such as splitting
Θ = Θ1 + Θ2. On the other hand, there is less motivation to lift combinators in the context
of bijective/reversible programming especially for languages that are expressive enough to
be reversible Turing complete (Bennett 1973).

The applicative-lens framework (Matsuda and Wang 2015, 2018), which is an embedded
domain specific language in Haskell, provides a function lift that converts a bidirectional
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transformation (a → b, a → b → a) to a function of type L s a → L s b where L is an abstract
type parameterized by s. As in HOBiT, bidirectional transformations are represented as
functions so that they can be composed by unidirectional functions; the name applicative
in fact comes from the applicative (point-wise functional) programming style. (To be
precise, L together with certain operations forms a lax monoidal functor (Mac Lane 1998,
Section XI.2) as Applicative instances (McBride and Paterson 2008; Paterson 2012) but
not endo to be an Applicative instance (Matsuda and Wang 2018).) The type parameter s
has a similar role to the s of the ST s monad (Launchbury and Jones 1994), which enables
the unlifting that converts a polymorphic function ∀s.L s a → L s b back to a bidirectional
transformation (a → b, a → b → a). That is, unlike HOBiT, functions that will be interpreted
as bidirectional transformations are not limited to top-level ones. However, in exchange for
this utility, the expressive power of the applicative lens is limited compared with HOBiT; for
example, bidirectional cases are not supported in the framework, and resulting bidirectional
transformations cannot propagate structural updates as a result.

As a remark, duplication (contraction) of values is also a known challenge in bidirectional
transformation, for the purpose of supporting multiple views of the same data and synchro-
nization among them (Hu et al. 2004). However, having unrestricted duplication makes
compositional reasoning of correctness very difficult; in fact most of the fundamental prop-
erties of bidirectional transformation, including well-behavedness (Foster et al. 2007) and
its weaker variants (Mu et al. 2004; Hidaka et al. 2010), are not preserved in the presence
of unrestricted duplication (Matsuda and Wang 2015).

6.4 Linear Type Systems

SPARCL is based on λ q
→, a core system of Linear Haskell (Bernardy et al. 2018), with

qualified typing (Jones 1995; Vytiniotis et al. 2011) for effective inference (Matsuda 2020).
An advantage of this system is that the only place where we need to explicitly handle linearity
is the manipulation of (−)•-typed values; there is no need of any special annotations for
the unidirectional parts, as demonstrated in the examples. This is different from Wadler
(1993)’s linear type system, which would require a lot of ! annotations in the code. Linear
Haskell is not the only approach that is able to avoid the scattering of !s. Mazurak et al.
(2010) use kinds (◦ and ∗) to distinguish types that are treated in a linear way (◦) from those
that are not (∗). Thanks to the subkinding ∗ ⪯ ◦, no syntactic annotations are required to
convert the unrestricted values to linear ones. Their system has two sort of function types:
◦→ for the functions that themselves are treated in the linear way and ∗→ for the functions

that are unrestricted. As a result, a function can have multiple incomparable types; e.g.,
the K combinator can have four types (Morris 2016). Universal types accompanied by
kind abstraction (Tov and Pucella 2011) addresses the issue to some extent; it works well
especially for K, but still gives the B combinator two incomparable types (Morris 2016).
Morris (2016) further extends these two systems to overcome the issue by using qualified
types (Jones 1995), which can infer principal types thank to inequality constraints. Note
that the implementation of SPARCL uses an inference system by Matsuda (2020), which,
based on OUTSIDEIN(X) (Vytiniotis et al. 2011), also uses qualified typing with inequality
constraints for λ q

→, inspired by Morris (2016).
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7 Conclusion

We have designed SPARCL, a language for partially-invertible computation. The key idea of
SPARCL is to use types to distinguish data that are subject to invertible computation and
those that are not; specifically the type constructor (−)• is used for marking the former.
A linear type system is utilized for connecting the two worlds. We have presented the
syntax, type system and semantics of SPARCL, and proved that invertible computations
defined in SPARCL are in fact invertible (and hence bijective). To demonstrate the utility of
our proposed language, we have proved its reversible Turing completeness, and presented
non-trivial examples of tree rebuilding and three compression algorithms (Huffman coding,
arithmetic coding, and LZ77).

There are several future directions of this research. One direction is to use finer type
systems. Recall that we need to check with conditions even in the forward computation,
which can be costly. We believe that refinement types and their inference (Xi and Pfenning
1998; Rondon et al. 2008) would be useful for addressing this issue. Currently, our prototype
implementation is standalone, preventing users from writing functions in another language
to be used in lift, and from using functions obtain by fwd and bwd in the other language.
Although prototypical implementation of a compiler of SPARCL to Haskell is in progress, a
seamless integration through an embedded implementation would be desirable (Matsuda
and Wang 2018). Another direction is to extend our approach to bidirectional transforma-
tions (Foster et al. 2007) to create the notion of partially bidirectional programming. As
discussed in Section 6, handling copying (i.e., contraction) is an important issue; we want
to find the sweet spot of allowing flexible copying without compromising reasoning about
correctness.
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1 Appendix: Proof of the Reversible Turing Completeness

As we mentioned before, the proof will be done by implementing a given reversible Turing
machine. We follow Yokoyama et al. (2008) for the construction except the last step. For
convenience, we shall use SPARCL instead of λ PI

→ for construction, but the discussions in
this section can be adapted straightforwardly to λ PI

→ .
Following Yokoyama et al. (2008) means that we basically do not make use of the partial

invertibility in the implementation, which is unsurprising as a reversible Turing machine is
fully-invertible by nature. A notable exception is the last step, which uses a general looping
operator represented as a higher-order function, where function parameters themselves are
static (i.e., unidirectional).

1.1 Reversible Turing Machines

We start with reviewing ordinary Turing machines.

Definition 1.1 (Turing Machine). A (nondeterministic) Turing machine is a 5-tuple
(Q, Σ, δ , q0, q f ) where Q is a finite set of states, Σ is a finite set of symbols, δ is a finite
set of transition rules whose element has a form (q1, (σ1, σ2), q2) or (q1, d, q2) where
q1, q2 ∈ Q, q1 ̸= q f , q2 ̸= q0, σ1, σ2 ∈ Σ and d ∈ {−1, 0, 1}, q0 ∈ Q is the initial state and
q f ∈ Q is the final state. ■

We assume that Σ contains a special symbol ␣ called blank. A Turing machine, with
a state and a head on a tape with no ends, starts with the initial state q0 and a tape with
the finite non-black cells and repeats transitions accordingly to the rules δ until it reaches
the final state q f . Intuitively, a rule (q1, (σ1, σ2), q2) states that, if the current state of a
machine is q1 and the head points to the cell containing σ1, then it writes σ2 to the cell and
changes the current state to q2. A rule (q1, d, q2) states that, if the current state of a machine
is q1 and its head is located at position i in the tape, then it moves the head to the position
i + d and changes the state to q2. A reversible Turing machine is a Turing machine whose
transitions are deterministic both forward and backward.
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Definition 1.2 (Reversible Turing Machine (Bennett 1973; Yokoyama et al. 2008)). A
reversible Turing machine is a Turing machine (Q, Σ, δ , q0, q f ) satisfying the following
conditions for any distinct rules (q1, a, q2) and (q′1, a′, q′2).

• If q1 = q′1, then a and a′ must have the forms (σ1, σ2) and (σ ′
1, σ ′

2), respectively, and
σ1 ̸= σ ′

1.
• If q2 = q′2, then a and a′ must have the forms (σ1, σ2) and (σ ′

1, σ ′
2), respectively, and

σ2 ̸= σ ′
2. ■

1.2 Programming a Reversible Turing Machine

Consider a given reversible Turing machine (Q, Σ, δ , q0, q f ). We first prepare types used for
implementing the given reversible Turing machine. We assume types TQ and TΣ for states
and symbols, and Qq : TQ and Sσ : TΣ for constructors corresponding to q ∈ Q and σ ∈ Σ,
respectively. Then, a type for tapes is give by a product Tape= List TΣ ⊗TΣ ⊗ List TΣ,
where a triple (l, a, r) : Tape means that a is the symbol at the current head, l is the symbols
to the left of the head, and r is the symbols to the right to the head. For uniqueness of the
representation, the last elements of l and r are assumed not to be S␣ if they are not empty.

Then, we prepare the function moveR below that moves the head to the right.

moveR : Tape• ⊸Tape•

moveR (l, a, r)• = let (a′, l′)• = invert push l in
(l′, a′, push (a, r)•)•

push : (TΣ ⊗ List TΣ)
• ⊸ (List TΣ)

•

push (S␣,Nil)
• =Nil• with null

push (a, xs)• = Cons• a xs

Here, (−, . . . ,−)• is a lifted version of the tuple constructor (−, . . . ,−), let p• = e in e′ is
a shorthand notation for case e of {p• → e′ with λ .True}, and the function invert : (A• ⊸
B•)→ B• ⊸ A• implements the inversion of a invertible function (Section 2).

Then, we define the one-step transition of the given reversible Turing machine.

step : (TQ ⊗Tape)• ⊸ (TQ ⊗Tape)•

step t = case t of {JrK}r∈δ

Here, the translation JrK of each rule r is defined as below.

J(q1, (σ1, σ2), q2)K = (Qq1 , (l, Sσ1 , r))• → (Qq2 , (l, Sσ2 , r))•

with λ (q, ( , s, )).isQq2
q && isSσ2 s

J(q1, 0, q2)K = (Qq1 , t)• → (Qq2
•, t)• with λ (q, ).isQq2

q
J(q1, 1, q2)K = (Qq1 , t)• → (Qq2

•, moveR t)• with λ (q, ).isQq2
q

J(q1,−1, q2)K = (Qq1 , t)• → (Qq2
•, invert moveR t)• with λ (q, ).isQq2

q

Here, isQq : TQ →Bool is a function that returns True for Qq and False otherwise, and
isSσ : TΣ →Bool is similar but defined for symbols. Notice that, by the reversibility of the
Turing machine, patterns are non-overlapping and at most one with-condition becomes
True.

The last step is to apply step repeatedly from the initial state to the final state, which
can be performed by a reversible loop (Lutz 1986). Since we do not have reversible loop
as a primitive, manual reversible programming is required. In functional programming,
loops are naturally encoded as tail recursions, which are known to be difficult to handle
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in the contexts of program inversion (Nishida and Vidal 2011; Mogensen 2006; Matsuda
et al. 2010; Glück and Kawabe 2004). Roughly speaking, for a tail recursion (such as g x =
case x of{p → g e; p′ → e′}), with-conditions are hardly effective in choosing branches, as
due to the tail call of g, the set of possible results of a branch coincides with the other’s. So
we need to program such loop-like computation without tail recursions.

The higher-orderness of SPARCL (and λ PI
→) is useful here, as the effort can be made once

for all. Specifically, we prepare the following higher-order function implementing general
loops.

trace : (a• ⊸ (a ⊗ a)•)→ (b• ⊸ (b ⊗ b)•)→ ((a ⊕ x)• ⊸ (b ⊕ x)•)→ a• ⊸ b•

trace dupA dupB h a = let (a1, a2)
• = dupA a in

let (b1, n)• = go (h (InL• a1)) in
let (InL b2)

• = h (goN a2 n) in
invert dupB (b1, b2)

•

where go : (b ⊕ x)• ⊸ (b ⊗Nat)•

go (InL b)• = (b, Z•)• with isZ ◦ snd
go (InR x)• = let (b, n)• = go (h (InR• x)) in (b, S• n)•

goN : a• ⊸Nat• ⊸ (a ⊕ x)•

goN a Z• = InL• a with isInL
goN a (S n)• = let (InR x)• = h (goN a n) in InR• x

The trace dupA dupB h a applies the forward/backward computation of h repeatedly to
InL a; it returns b if h returns InL b, and otherwise (if h returns InR x) it applies the same
computation again for h (InR x). Here, dupA and dupB are supposed to be the reversible
duplication (Glück and Kawabe 2003). This implementation essentially uses Yokoyama et al.
(2012)’s optimized version of Bennett (1973)’s encoding. That is, if we have an injective
f : A ⊸ B of which invertibility is made evident (i.e., locally reversible) by outputting
and consuming the same trace (or, history (Bennett 1973)) of type H as f1 : A ⊸ B ⊗ H
and f2 : A ⊗ H ⊸ B, respectively, then we can implement the version f ′ : A ⊸ B of which
invertibility is evident by (1) copying the input a as (a1, a2), (2) applying f1 to a1 to obtain
(b1, h), (3) applying f2 to a2 and h to obtain b2, and (4) applying the inverse of copying (i.e.,
equivalence check (Glück and Kawabe 2003)) to (b1, b2) to obtain b (= b1 = b2). Note that
the roles of f1 and f2 are swapped in the backward execution. Above, we use loop counts
as the trace H, and go and goN correspond to f1 and f2, respectively. The construction
implies that the inverse of copying must always succeeds, and thus we can safely replace
dupA by unsafe copying λa.pin a unsafeNew and dupB by invert (λb.pin b unsafeNew).
The version presented in the main body of this paper assumes this optimization.

By using trace, we conclude the proof by rtm below that implements the behavior of the
given reversible Turing machine.

rtm : Tape• ⊸Tape•

rtm = trace dupTape dupTape (checkFinal ◦ step ◦ assertInit)

assertInit : (Tape⊕ (TQ ⊗Tape))• → (TQ ⊗Tape)•

assertInit (InL t)• = (Qq0
•, t)• with isQq0

◦ fst
assertInit (InR (q, t))• = (q, t)•

checkFinal : (TQ ⊗Tape)• → (Tape⊕ (TQ ⊗Tape))•
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checkFinal (Qq f , t)• = InL• t with isL
checkFinal (q, t)• = InR• (q, t)•

Here, dupTape : Tape• ⊸ (Tape⊗Tape)• is the reversible duplication of tapes. Recall that
q0 cannot be the destination of a transition and q f cannot be the source. Note that, thanks to
trace, the above definition of rtm is more straightforward than Yokoyama et al. (2008) in
which rtm is defined by forward and backward simulations of a reversible Turing machine
with step counting.
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