
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, ?? pages, 2021. © Cambridge University Press 2021 1
doi:10.1017/xxxxx

Contract Lenses: Reasoning about Bidirectional
Programs via Calculation

HANLIANG ZHANG
University of Bristol, United Kingdom

(e-mail: hlzhang1997@pku.edu.cn)

WENHAO TANG
The University of Edinburgh, United Kingdom

(e-mail: wenhao.tang@ed.ac.uk)

RUIFENG XIE
Peking University, China

(e-mail: xieruifeng@pku.edu.cn)

MENG WANG
University of Bristol, United Kingdom

(e-mail: meng.wang@bristol.ac.uk)

ZHENJIANG HU
Peking University, China

(e-mail: huzj@pku.edu.cn)

Abstract

Bidirectional transformations (BXs) are a mechanism for maintaining consistency between multi-
ple representations of related data. The lens framework, which usually constructs BXs from lens
combinators, has become the mainstream approach to BX programming because of its modularity
and correctness by construction. However, the involved bidirectional behaviours of lenses make the
equational reasoning and optimisation of them much harder than unidirectional programs. We pro-
pose a novel approach to deriving efficient lenses from clear specifications via program calculation,
a correct-by-construction approach to reasoning about functional programs by algebraic laws.

To support bidirectional program calculation, we propose contract lenses, which extend conven-
tional lenses with a pair of predicates to enable safe and modular composition of partial lenses.
We define several contract-lens combinators capturing common computation patterns including
fold, filter, map, and scan, and develop several bidirectional calculation laws to reason about and
optimise contract lenses. We demonstrate the effectiveness of our new calculation framework based
on contract lenses with non-trivial examples.

1 Introduction

A bidirectional transformation (BX) is a pair of mappings between source and view
data objects, one in each direction. When the source is updated, a (forward) transfor-
mation executes to obtain an updated view. For a variety of reasons, the view may also

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

be subjected to direct manipulation, requiring a corresponding (backward) transforma-
tion to keep the source consistent. Much work has gone into this area with applications
in databases (Bancilhon and Spyratos, 1981; Bohannon et al., 2006; Tran et al., 2020),
software model transformation (Stevens, 2008; He and Hu, 2018; Tsigkanos et al., 2020;
Stevens, 2020), graph transformation (Hidaka et al., 2010) etc; in particular there has been
several language-based approaches that allow transformations in both directions to be pro-
grammed together (for example Foster et al. (2007); Voigtländer (2009); Matsuda et al.
(2007); Ko et al. (2016)).

The lens framework (Foster et al., 2007) is the leading approach to BX programming.
A lens consists of a pair of transformations: a forward transformation get producing a
view from a source, and a backward transformation put which takes a source and a possi-
bly modified view, and reflects the modifications on the view to the source, producing an
updated source. It can be represented as a record using Haskell-like notations as

data S ↔ V = Lens {get : S → V, put : S → V → S}

The additional argument S in put ensures that a view does not have to contain all the
information of the source for backward transformation to be viable.

These two transformations should be well-behaved in the sense that they satisfy the
following round-tripping properties:

put s (get s) = s GETPUT

get (put s v) = v PUTGET

The GETPUT property requires that no-change to the view should be reflected as no-change
to the source, while the PUTGET property requires that all changes in the view should be
completely reflected to the source so that the changed view can be successfully recovered
by applying the forward transformation to the updated source.

One main advantage of lenses is their modularity. The lens composition ℓ1; ℓ2 : S ↔ T
of lenses ℓ1 : S ↔ V and ℓ2 : V ↔ T is defined as 1

ℓ1; ℓ2 = Lens g p
where

g = getℓ2
◦ getℓ1

p s t′ = putℓ1
s (putℓ2

(getℓ1
s) t′)

In the forward direction, lens composition is simply a function composition of the two get
functions. In the backward direction, it will first put the updated t′ back to the intermediate
v produced by getℓ1

s using ℓ2, and then put the updated v back to s.
Lenses are programmed in special languages that preserve round-tripping properties by

construction. One popular type of such languages are lens combinators, i.e., higher order
functions that construct complex lenses by composing simpler ones. Designing lens lan-
guages that are expressive and easy-to-use has been a popular research topic (Bohannon
et al., 2008; Foster et al., 2008; Barbosa et al., 2010; Hofmann et al., 2011; Ko et al.,
2016; Matsuda and Wang, 2018, 2015), effectively creating the paradigm of bidirectional
programming.

1 Note that the order of the composition of lenses is left-to-right, while the function composition is right-to-left.

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Journal of Functional Programming 3

This flourishing scene of languages invites the next question of software development:
what are the suitable methods of BX program construction?

Is there an algebraic theory of lens combinators that would underpin optimization of lens expres-
sions in the same way that the relational algebra and its algebraic theory are used to optimize
relational database queries? ... This algebraic theory will play a crucial role in a more serious
implementation effort. (Foster et al., 2007)

Motivated by this question, we propose a calculation framework which optimizes lenses
over lists from clear specifications using the algebraic structures of lens combinators.

1.1 Program Calculation and the Challenge of Partiality

Program calculation (Bird, 1989) is an established technique for reasoning about and
optimizing functional programs. The idea is that program developments may benefit from
simple properties and laws: equivalences between programming constructs. And conse-
quently, one may calculate with programs — in the same way that one calculates with
numeric quantities in algebra — to transform simple specifications into sophisticated and
efficient implementations. Each step of a calculation is a step of equational reasoning,
where properties of a fragment of the program, such as relations between data structures
and algebraic identities, are applied to transform the program structure. A great advantage
of this method is that the resulting implementation is guaranteed to be semantically equiv-
alent to the original specification, removing the onerous task of verifying the correctness
of the resulting implementation.

Our observation is that program calculation is a good fit to BX programming in a number
of different ways. In terms of philosophy, both advocate correctness by construction aiming
at significantly reducing the verification and maintenance effort. In terms of representation,
both rely heavily on forming programs using composition and computation patterns: in BX
languages, the computation patterns are typically captured as lens combinators which are
designed to preserve well-behavedness, and in program calculation, the use of computation
patterns allows general algebraic laws such as fusion laws and Horner’s rule (Gibbons,
2002, 2011) to be applied to specific instances without the need of special analysis.

However, the more complex setting of BX as compared to unidirectional programs posts
unique challenges to program calculation. First of all, calculating BX cannot be superfi-
cially treated as calculating twice, once in each direction, as the round-tripping properties
bind get and put closely together, demanding simultaneous reasoning with both. Moreover,
lenses are often partially defined, making it hard to reason about the construction and com-
positions of combinators like map, fold, and scan. Semantic preservation amid calculation
is difficult in this case as well (note that a change in the definedness of a function changes
its semantics).

In this context, the term partiality links to round-tripping properties. A lens is partial
when its put component cannot successfully restore consistency for certain inputs, even
if this function is total (Stevens, 2014). 2 This partiality can be inherent, where the get
component is non-surjective; there is no meaningful put semantics for values outside the
codomain of get. This partiality can also be of design choices, as forcing a lens to be total

2 In this paper, we assume all functions are total.

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

may introduce unwanted complexity. As an example, consider following definition of list
mapping as a (high-order) lens which takes a lens ℓ of type A ↔ B and return a lens of type
[A]↔ [B].

bmap : (A ↔ B)→ ([A]↔ [B])

bmap ℓ= Lens (map getℓ) p
where p (x : xs) (y : ys) = putℓ x y : p xs ys

p = []

This lens is partial: when the view list is updated to be longer, the put component can-
not deal with the inconsistency of the structure (length) between the original source
list and the updated view list correctly; it only returns a new source list of the same
length as the original one. As a result, the PUTGET property is broken, as shown by
getbmap bid (putbmap bid [1] [2, 3]) = [2] ̸= [2, 3] where bid is the trivial identity lens. It is
common in practice to assume that only certain view updates are permitted, for example,
the length of the view list is preserved. With such an assumption, bmap serves as a correct
lens.

As a remark, for some lenses such as bmap, it is possible to make their definitions total
without contracts and any other constraints on sources and views by using more compli-
cated machinery such as default values (Foster et al., 2007; Pacheco and Cunha, 2011).
However, giving total definitions to lenses (especially their put components) requires more
involved types and semantics and leads to extra programming work for designing lenses.
It is totally not necessary to endure this extra complication when we can guarantee that
the changes on views always satisfy certain constraints, such as preserving the struc-
tures (lengths) of views. Moreover, forcing total definitions also results in challenges to
the development of calculation laws, again due to the additional complications of types
and semantics. For example, the calculation law of bmap with default values will require
additional semantic conditions on them as shown in Appendix 1.

In this work, instead of insisting on giving total definitions to all lenses, we use a pair
of predicates to constrain the changes on the source and view, so that partial lenses can be
constructed correctly and composed well. It also facilitates the development of simple but
powerful calculation laws.

1.2 Contributions

In this paper, we develop a calculation framework to reason about and optimize bidirec-
tional programs over lists. Our goal is to transform lenses with clear specifications to
efficient ones by applying calculation laws. Specifically, we propose an extension to tra-
ditional lenses, which we call contract lenses, to enable the construction and composition
of possibly partial lenses. We develop several contract-lens combinators, which are high-
order functions that characterize key bidirectional computation patterns on lists. And we
establish related calculation laws that lay the foundation of a general algebraic theory for
BX calculation.

Contract Lenses The main idea of contract lenses is to utilize a pair of fine-grained
predicates, one on source and one on view, to characterize the bidirectional behaviour on

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

Journal of Functional Programming 5

propagating changes in a compositional way. Composition of contract lenses is justified by
the implication relation between the view predicate of the former lens and the source pred-
icate of the latter lens. We also provide an equivalence relation between contract lenses for
calculation. (Section 4)

Contract-Lens Combinators We develop bidirectional computation patterns on the list
data structure using contract lenses, including bidirectional fold, map and scan. An inter-
esting finding is that some bidirectional versions of map and scan cannot be expressed as
instances of bidirectional fold due to the requirement of maintaining the consistency of
inner dependencies of data structures. (Section 5)

Contract-Lens Calculation Laws We establish calculation laws that transform compo-
sitions of such combinators into equivalent but efficient forms. We provide bidirectional
versions of many algebraic laws, including fold fusion, map fusion, fold-map fusion, and
the scan lemma. These laws comprise a bidirectional algebraic theory that manipulates
lenses directly, which underpins the optimization of bidirectional programs. (Section 6)

Mechanized Proofs in Agda We prove the technical details of our calculation framework
in Agda, including the correctness of all contract lens combinators and calculation laws, as
well as most of the examples. The proof consists of 4k lines of Agda code. (Section 9 and
Supplementary Files)

Moreover, we showcase the ability of our framework to construct and calculate lenses by
advanced examples that either have intricate partial bidirectional behaviours, or are well-
studied in both bidirectional transformations and program calculation literature (Section 7).
Section 8 discusses related works, and Section 10 concludes.

One thing worth noting is that our primary goal is to propose a calculation framework
without restricting to any specific reasoning method. Users are free to calculate contract
lenses with pencil/paper proofs following the tradition of program calculation (Bird, 1989),
or formalise the calculation via theorem provers like our mechanized proofs in Agda. It is
even possible to develop automatic reasoning tools based on our framework.

2 Background: Program Calculation

Program calculation (Bird, 1989; Gibbons, 2002) is a technique for constructing efficient
programs that are correct by construction. It is suitable for humans to derive efficient pro-
grams by hand (Bird, 1989), as well as for compilers to optimize programs automatically
(Gill et al., 1993; Hu et al., 1996). The principle of program calculation is to express the
initial specification of the programming problem in terms of a set of higher order functions,
which support generic algebraic laws, so that an efficient implementation can be calculated
through a process of equational reasoning based on the algebraic laws.

2.1 Specification with Folds

Fold is a computation pattern that captures structural recursion. In Haskell, there are two
versions of fold on list: foldl : (b → a → b)→ b → [a]→ b and foldr : (a → b → b)→ b →

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

[a]→ b, which can be used to define a range of functions. We give some examples as
follows, which are also used in the remainder of the paper.

maximum = foldr max (−∞)

sum = foldr (+) 0
map f = foldr (λa r → f a : r) []
filter p = foldr (λa r → if p a then a : r else r) []
scanr f b0 = foldr (λa bs → (f a (head bs)) : bs) [b0]

inits = foldr (λa r → [] : map (a:) r) [[]]
tails = foldr (λa r → (a : head r) : r) [[]]

Here, maximum computes the maximum of a list, sum sums up all the elements in a list,
map f applies function f to each element of a list, filter p accepts a list and keeps those
elements that satisfy p, scanr keeps the intermediate results of foldr in a list (similarly we
have a scanl), inits returns all initial segments (prefix lists) of a list, and tails returns all tail
segments (postfix lists) of a list.

Note that foldr f e has two arguments, which can be combined into one foldr′ alg where
alg is a function of type Either () (a, b)→ b.

foldr′ : (Either () (a, b)→ b)→ [a]→ b
foldr′ alg [] = alg (Left ())
foldr′ alg (x : xs) = alg (Right (x, foldr′ alg xs))

Now we have foldr f e = foldr′ alg, where alg is defined below.

alg (Left ()) = e
alg (Right (a, b)) = f a b

One advantage of writing foldr′ this way is that it can be generalized to arbitrary
algebraic data types such as trees (Gibbons, 2002), and its dual unfoldr′ can be easily
defined.

unfoldr′ : (b → Either () (a, b))→ b → [a]
unfoldr′ coalg b = case coalg b of

Left ()→ []

Right (a, b)→ a : unfoldr′ coalg b

There are some variants of the above functions that will be used later:

inits′ = tail ◦ inits
tails′ = init ◦ tails
scanl′ f x = tail ◦ scanl (flip f) x
scanr′ f x = init ◦ scanr f x

The main difference is that they remove the empty list from the result. For example,
inits′ [1, 2, 3] = [[1], [1, 2], [1, 2, 3]].

Note that the functions defined with fold are all executable programs. But we call
them specifications in the context of program calculation because such definitions (despite
being clear and concise) are not necessarily efficient (especially when multiple folds are

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Journal of Functional Programming 7

composed together). Program calculation is about turning such specifications into more
efficient (though likely less clear) implementations.

2.2 Algebraic Laws

The foundation of program calculation is the algebraic laws, which can be applied step by
step to derive efficient implementations. The most important algebraic law for fold is the
foldr fusion law:

h ◦ f = g ◦ FL h
h ◦ foldr′ f = foldr′ g

FOLD FUSION

It states that a function h composed with a foldr′ can be fused into a single foldr′ if the
fusible condition h ◦ f = g ◦ FL h is satisfied. Note that FL is the so-called list functor,
which is defined by

FL h = const () + id × h

where + and × on functions are defined by (f + g) (Left x) = Left (f x), (f + g) (Right y) =
Right (g y), and (f × g) (x, y) = (f x, g y). The function const and id are defined by
const x = x and id x = x.

There is a corresponding fusion law for foldl too. And for some special cases of fold,
the fusible conditions are always satisfied and therefore omitted from the laws.

map f ◦ map g = map (f ◦ g) MAP FUSION

foldr′ f ◦ map g = foldr′ (f ◦ Fm g) FOLD-MAP FUSION

map (foldl f e) ◦ inits = scanl f e SCAN LEMMA

Note that Fm is the so-called map functor, which is defined by

Fm h = const () + h × id

It is worth noting that it is possible for an algebraic law to abstract a complex deriva-
tion step. For instance, the following Horner’s lemma shows a big step to fuse a complex
composition into a single foldl.

Lemma 1 (Horner’s Rule). Let ⊕ and ⊗ are associative operators. Suppose ⊗ distributes
through ⊕ and b is a left-identity of ⊕, then:

foldl (⊕) b ◦ map (foldl (⊗) a) ◦ tails = foldl (⊙) a

where x ⊙ y = (x ⊗ y)⊕ a, and a is the value passed to foldl (⊗). □

2.3 A Calculational Example

The maximum segment sum problem (mss for short) is to compute the maximum of the
sums of the segments in a list. Developing an efficient implementation of it is challenging,
and it has become a classic example to show off the power of program calculation.

The idea is to start with a straightforward specification as follows.

mss = maximum ◦ map maximum ◦ map (map sum) ◦ map tails ◦ inits

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

Given a list, we first enumerate all the segments by map tails ◦ inits. Then we calculate the
sum of all segments by map (map sum) and get the maximum of these results of sum by
maximum ◦ map maximum. This implementation is easy to understand but very inefficient
(O(n3) where n is the length of the list). Through program calculation, one can step-by-
step rewrite the program through applying a sequence of algebraic laws to reach a version
that has time complexity O(n). The details of the calculation can be found in Bird (1989).

The challenge that this paper aims to address is: Can the same be done for bidirectional
programs – deriving efficient lenses from clear specifications?

3 Overview

In this section, we informally introduce contract lenses and demonstrate how they facilitate
the construction of a bidirectional program calculation framework.

3.1 Taming Partiality with Contract Lenses

The core idea of contract lenses is to enrich traditional lenses with source and view
conditions (also called contracts) restricting the changes on source and view, as below

{cs} ℓ {cv}

where ℓ is a lens with only get and put. The contracts are highlighted through the paper.
Though we write cs and cv around the lens ℓ for readability in this section, a contract lens
is formally defined as a four-tuple consisting of get, put, cs, and cv. 3

This is a BX setting, so we assume that it is the views that are actively updated and
the sources are passively changed accordingly. Given a source s and an updated view v,
the view condition cv is a predicate that takes two arguments: the original view getℓ s and
updated view v, restricting the permitted values of the updated view in relation to the
original view. The source condition cs has a similar structure. It takes two arguments: the
original source s and the updated source putℓ s v, specifying an invariant that must hold for
source changes as a result of valid view changes.

For the list mapping lens bmap we have seen in the introduction, we are interested in a
condition that rules out any changes to the structure (length) of the view, which we specify
as the following predicate:

eqlength = λxs xs′ → length xs = length xs′

This condition is enough to ensure that the put component of bmap can always restore
consistency between the updated view and source without breaking the round-tripping
properties. In addition, we can conclude for bmap that if the view length does not change,
the source length does not change either. This gives rise to the following contract lens
where {eqlength} serves as both the view and source conditions: 4

3 In spite of the similarity of syntax, contracts are different from Hoare logic, which we will discuss in details in
Section 8.2.

4 One might expect a bidirectional version of map to have more complicated source and view conditions, e.g.,
imposing the source and view conditions of the parameter ℓ to all elements in the list. In Section 5.2, we will
show alternative definitions of bidirectional map with different contracts.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Journal of Functional Programming 9

{eqlength} bmap ℓ {eqlength}

Two lenses can be composed if the view condition of the former matches the source
condition of the latter. For example, we can compose two bmaps:

{eqlength} bmap ℓ1 {eqlength}; {eqlength} bmap ℓ2 {eqlength}

With contract lenses, the partiality issues of lens composition is reduced to local reasoning
of adjacent conditions. Moreover, since we always want the modification on view (and
source) to satisfy the contracts, the round-tripping properties also only need to hold when
the contracts are satisfied, which significantly simplify the design of lenses. For instance,
when designing {eqlength} bmap ℓ {eqlength}, we do not need to consider how to put back
the changes to source when the length of view is changed any more.

The idea of introducing contracts is natural because when updating a view of type V in
a BX setting, we usually want the updated view to satisfy certain constraints (like being
of the same length as the original view), instead of allowing it to be any value of type V .
Another option of solving the partiality problem is to give total definitions to all lenses.
However, as we have discussed in Section 1.1, it leads to several obstacles to designing
lenses and developing a calculation framework, which we avoid by using contracts lenses.

3.2 Calculation with Contract Lenses

Once we have established the composition of contract lenses, we can start to design a
calculation framework for lenses.

For the sake of demonstration, we start with a contrived example: given a list of
nonempty lists, we extract all head elements of the lists, and then filter out the even ele-
ments. (More realistic examples will be given in Section 7.) In the unidirectional setting,
one can apply the FOLD-MAP FUSION law to fuse the two passes of the list as follows: 5

filter even ◦ map head
= { expressing filter as foldr }

foldr (λa r → if even a then a : r else r) [] ◦ map head
= { FOLD-MAP FUSION }

foldr ((λa r → if even a then a : r else r) ◦ head) []

With contract-lens combinators, we can give a bidirectional version of the specification.

{eqlength} bmap bhead {eqlength}; {eqlength} bfilter even {ceven}
where bhead = CLens head (λxs x′ → x′ : tail xs)

The view condition of bfilter even is defined as

ceven = λxs xs′ → eqlength xs xs′ ∧ all even xs′

which depends on the predicate even. 6 The combinator bfilter is a bidirectional version
of filter implemented by bfoldr′, which is a bidirectional version of foldr with contracts

5 Since all functions are total, here we assume the head and tail functions only take non-empty lists (for instance,
the List+ type in Agda stdlib implemented as a record of an element and a normal list).

6 The definition of the contracts of bfilter is technically given by the definition of bfilter, which will be more
clear in Section 5.1.2. Again, we write the contracts around bfilter for readability in this section.

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

(Section 5). We have already seen bmap in Section 1.1. In this example, bfilter even is also
given source and view conditions including eqlength, which is needed to be composed
with {eqlength} bmap bhead {eqlength}. The contracts of {eqlength} bfilter even {ceven}
make sense: if the number of even elements is not changed, the total number of elements
will neither be changed because the odd elements, which do not appear in the view, remain
invariant.

The advantage of calculating with contract lenses is that we only need to care about
the round-tripping properties under the source and view conditions, which simplifies the
design of lenses, and as a result simplifies the calculation laws. For bfoldr′, we have a
bidirectional version of FOLD-MAP FUSION law called BFOLDR’-BMAP FUSION, with
which we can bidirectionalize the calculation process of filter even ◦ map head we have
seen before. 7

{eqlength} bmap bhead {eqlength}; {eqlength} bfilter even {ceven}
= { expressing bfilter as bfoldr′ }
{eqlength} bmap bhead {eqlength}; {eqlength} bfoldr′ (bfilterAlg even) {ceven}

= { BFOLDR’-BMAP FUSION }
{eqlength} bfoldr′ (bmapF bhead; (bfilterAlg even)) {ceven}

The bmapF is a bidirectional version of Fm used in the FOLD-MAP FUSION law, and
the bfilterAlg even is a bidirectional version of λa r → if even a then a : r else r defined in
Section 5.1.2.

This “banality” of the calculation is the strength of our framework, as we have success-
fully set up a system that allows programmers to reason about lenses in almost exactly the
same way as they have done for unidirectional programs for decades. In the rest of the
paper we will formally develop the contract lens framework and continue to demonstrate
the kind of reasoning that it enables through examples far more advanced than the ones we
have seen in this section.

4 Contract Lenses

In this section we formally define contract lenses, a natural extension of the traditional
lenses with contracts. This novel construction enables us to express a wide class of partial
BXs while ensuring safe and modular composition.

4.1 Contract Lenses

Lenses essentially manipulate changes. A put propagates a change in view back to a change
in source with respect to a get function. As we have already seen in Section 3, to guaran-
tee correct change propagation, we extend lenses with a pair of constraints, cs and cv,
describing the conditions of changes in the source and the view respectively.

7 We omit administrative parameters for contracts taken by higher-order contract lenses bfoldr′ and bmapF for
simplicity. They are easy to be reconstructed from the definitions of lens combinators.

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Journal of Functional Programming 11

Definition 1 (Contract Lenses). A contract lens 8 between source of type S and view of
type V consists of a pair of transformations get and put together with a pair of relations: a
source condition cs : S → S → Set and a view condition cv : V → V → Set.

data S ↔ V = CLens {
get : S → V,

put : S → V → S,
cs : S → S → Set,
cv : V → V → Set

}

where the following round-tripping properties are satisfied for every s : S and v : V.

cv (get s) v ⇒ cs s (put s v) BACKWARDVALIDITY

cv (get s) v ⇒ get (put s v) = v CONDITIONEDPUTGET

cs s s ⇒ cv (get s) (get s) FORWARDVALIDITY

cs s s ⇒ put s (get s) = s CONDITIONEDGETPUT

□

For backward transformations, the BACKWARDVALIDITY law and the
CONDITIONEDPUTGET say that if the change in the view satisfies cv, then the change in
the source should satisfy cs, and the put-get law holds. For forward transformations, the
FORWARDVALIDITY law and the CONDITIONEDGETPUT say that if the source s satisfies
cs s s, then the view get s should satisfy cv, and the get-put law holds. The condition cs s s
in the CONDITIONEDGETPUT law is necessary to keep the system consistent: if the get-
put law put s (get s) = s holds, replacing v with get s in the BACKWARDVALIDITY law, we
have cs s (put s (get s)) = cs s s. The BACKWARDVALIDITY law and FORWARDVALIDITY

law are important for the proof of the Theorem 1, which states that the composition of
contract lenses preserves round-tripping properties. Essentially, they guarantee that the
contracts are propagated by get and put.

We have a few remarks to make here.
First, as we have discussed in Section 1, all functions including get and put components

of lenses are total in this paper. For simplicity, some function definitions are abridged and
lack some catch-all patterns. Complete definitions of these functions can be found in the
Agda formalisation.

Second, to be more consistent with our Agda formalisation, we use the Set type in Agda
to represent the type for predicates. Note that any value b of type Bool can be transformed
into Set by using the expression b = True. For readability, we allow this transformation to
be implicit in the rest of the paper. That is to say, anywhere a value of type Set is needed,
we can fill in a value of type Bool.

Third, the role of source conditions in contract lenses are primarily for describing
the “effect” on source updates after ruling out those view updates, which can be seen

8 The name contract lenses is inspired by the paradigm of Programming by Contract, which requires every
function to have a precondition and a postcondition. They are required to hold before entering the function and
after leaving the function, respectively.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

in the rule BACKWARDVALIDITY: when inputs are restricted to satisfy the view con-
dition, the corresponding outputs are guaranteed to satisfy the source condition. This
guarantee is necessary for contract lens composition. The rule FORWARDVALIDITY and
CONDITIONEDGETPUT are conditioned on cs s s, a predicate on the identity source update,
which should hold in most of the cases. The requirement here is necessary for proving the
correctness of contract lens composition. Also note that even though we add conditions
to the traditional GETPUT and PUTGET laws, we do not weaken the properties of lenses.
Since we always want them to hold, the condition cv (get s) v should always be satisfied
when we compute put s v, and the condition cs s s should always be satisfied when we
compute get s. 9

We use the following notational conventions:
• We use csℓ, cvℓ, getℓ, putℓ to refer to the source condition, view condition, forward

transformation and backward transformation of a contract lens ℓ, respectively.
• Lists start from index 1 and the notation xi refers to the i-th element of a list x.
Now we give some simple examples of contract lenses. We leave more interesting

examples in Section 5.

Example 1 (Embedding Traditional Lenses into Contract Lenses). As contract lenses are
extensions of traditional lenses, traditional lenses can be embedded into contract lenses by
adding dummy conditions ctrue, where ctrue =⊤. □

Example 2 (Bidirectional Inits). An interesting example is a bidirectional version of inits′

defined in Section 2.1. The view condition essentially describes the range of the inits′. It is
a little complicated, but this kind of detailed specification is needed for calculation.

binits : [a]↔ [[a]]
binits = CLens inits′ p eqlength cv′

where p v′ = if null v′ then [] else last v′

cv′ v v′ = (∀ 1 < i ≤ |v′|, init v′i = v′i−1) ∧ (init v′1 = []) ∧ eqlength v v′

With the help of the condition on the view change (which keeps the “inits” structure), our
putback function becomes very simple, just returning the last element if it is not empty. □

4.2 Composition of Contract Lenses

Contract lenses are compositional, which is similar to that of traditional lenses, except that
we need to be sure that the change conditions match well.

Definition 2 (Composition of Contract Lenses). For two contract lenses ℓ1 : S ↔ V and
ℓ2 : V ↔ T, if ∀ (v : V) (v′ : V), csℓ2 v v′ ⇒ cvℓ1 v v′ and ∀ v : V, cvℓ1 v v ⇒ csℓ2 v v hold, then
they can be composed into a contract lens ℓ1; ℓ2 : S ↔ T as defined below.

ℓ1; ℓ2 = CLens g p csℓ1 cvℓ2

where

9 We write get when we just want to use get as a total function without considering the satisfaction of the source
condition.

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

Journal of Functional Programming 13

g = getℓ2
◦ getℓ1

p s t = putℓ1
s (putℓ2

(getℓ1
s) t) □

Theorem 1 (Well-behaved Composition). For any two contract lenses ℓ1 : S ↔ V and ℓ2 :
V ↔ T, their composition ℓ1; ℓ2 : S ↔ T satisfies the round-tripping properties. □

Notice that we not only require the backward implication csℓ2 v v′ ⇒ cvℓ1 v v′, but also
the forward one cvℓ1 v v ⇒ csℓ2 v v. Intuitively, the latter is used to establish a connec-
tion between the FORWARDVALIDITY law of ℓ1 and ℓ2. Moreover, we can strengthen
the condition of composition to make it easier to use. We say that two predicates
c1 : A → A → Set and c2 : B → B → Set are equivalent, written as c1 ⇔ c2, if A = B and
∀ (a : A) (a′ : A), c1 a a′ ⇔ c2 a a′. The condition of composition can be strengthened to
csℓ2 ⇔ cvℓ1 , which is sufficient in most cases.

4.3 Equivalence of Contract Lenses

Now we define an equivalence relation over contract lenses.

Definition 3 (Lens Equivalence). For lens ℓ1 : S ↔ V and ℓ2 : S ↔ V, we say ℓ1 is
equivalent to ℓ2, written as ℓ1 = ℓ2, if

• csℓ1 ⇔ csℓ2

• cvℓ1 ⇔ cvℓ2

• ∀ s : S, getℓ1
s = getℓ2

s
• ∀ (s : S) (v : V), cvℓ1 (getℓ1

s) v ⇒ putℓ1
s v = putℓ2

s v
□

Theorem 2 (Lens Equivalence is an Equivalence Relation). The equivalence relation
between contract lenses is reflexive, symmetric and transitive. □

There is nothing special about this definition of the equivalence relation. The equiv-
alence relation for contract lenses is the base for our equational program reasoning and
plays an important role in developing our program calculation theory of contract lenses.

5 Contract-Lens Combinators

Lens combinators have become a popular approach to programming bidirectional transfor-
mations because of their modularity and correctness-by-construction. In this section, we
define several lens combinators to capture fundamental patterns (higher order functions)
for easy construction of complex contract lenses in a compositional manner, as well as to
demonstrate the expressiveness and flexibility of our new contract lens framework.

Since bidirectional transformations can be considered as unidirectional forward pro-
grams with additional put semantics, our idea is to bidirectionalise widely used recursion
schemes in (forward) functional programming including fold, map, filter, and scan. The
main challenge is that these functions are usually not bijective, which requires contracts to

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

make them total and suitable for calculation. Different contracts will lead to different bidi-
rectional version of the same high-order functions, and are useful for different situations.
We will give both total bidirectional versions of these functions, and their variants which
have some additional conditions on the source and the view to make them flexible for com-
posing with each other. It will be interesting to see later that although map and scan can be
implemented by fold, it turns out to be more useful to implement bidirectional versions of
map and scan individually to attain better control over their contracts and behaviours.

5.1 Bidirectional Fold

As we have seen in Section 2.1, folds are of vital importance in program calculation. We
start with bfoldr, a bidirectional version of foldr′, with trivial source and view conditions.

bfoldr : {ℓ : Either () (S, V)↔ V | csℓ ⇔ ctrue ∧ cvℓ ⇔ ctrue}→ ([S]↔ V)

One challenge for designing higher-order contract lenses is that they usually impose certain
constraints to the contracts of their lens parameters. For instance, a trivial bidirectional
version of foldr′ requires the parameter lens to have the trivial contract ctrue. To specify
such requirements, we use similar syntax to refinement types, which is easily readable
and understandable by humans, and is also suitable for pencil/paper proofs. In theorem
provers, one could use existential types to express the requirements of contracts like our
Agda formalisation.

We introduce the following syntactic sugar to specify the source and view conditions of
parameters for higher-order contract lenses:

{cs′} S ↔ V {cv′} ≡ {ℓ : S ↔ V | csℓ ⇔ cs′ ∧ cvℓ ⇔ cv′}

The type of bfoldr can be simplified to

bfoldr : ({ctrue} Either () (S, V)↔ V {ctrue})→ ([S]↔ V)

Given a simple contract lens ℓ : Either () (S, V)↔ V with trivial contracts, bfoldr ℓ returns
a contract lens of type [S]↔ V also with trivial contracts, synchronizing a list of type [S]
with a value of type V . For the get direction, we simply use the unidirectional foldr′. For
the put direction, we recursively construct an updated source list (using unfoldr′) from the
original source and an updated view step by step through putℓ, the backward transformation
of ℓ. Formally, we define bfoldr as follows.

bfoldr ℓ= CLens (foldr′ getℓ) (curry $ unfoldr′ coalg) ctrue ctrue
where

coalg ([], v′) = case putℓ (Left ()) v′ of
Left ()→ Left ()
Right (a′, b′)→ Right (a′, ([], b′))

coalg (a : as, v′) = case putℓ (Right (a, g as)) v′ of
Left ()→ Left ()
Right (a′, b′)→ Right (a′, (as, b′))

Note that the put direction of the above definition is inefficient since it computes “g as”
every time coalg (a : as, v′) is called. A more efficient implementation is to calculate all

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

Journal of Functional Programming 15

g as in advance using a scanr as shown in Appendix 2.1. We will use the efficient definition
of bfoldr in the following sections.

Similarly, we can define bfoldl, which is omitted here. The following example shows
how the bidirectional fold works.

Example 3 (Bidirectional Maximum). Considering that we want to synchronize a list with
its maximum, we can define it in terms of bfoldr by

bmaximum : [Int]↔ Int
bmaximum = bfoldr bmax

where bmax is a bidirectional version of max whose backward transformation uses the
modified value to replace the maximum value of the parameter pair. 10

bmax : Either () (Int, Int)↔ Int
bmax = CLens g p ctrue ctrue

where
g (Left ()) =−∞

g (Right (x, y)) = max x y
p (Left ()) (−∞) = Left ()
p (Left ()) v′ = Right (v′,−∞)

p (Right (x, y)) v′ = if x ≥ y then Right (v′, min v′ y) else Right (min v′ x, v′)

To see a computation instance of bmaximum, we refer to Appendix 3.1. □

5.1.1 Bidirectional Fold : Preserving Length and Transmitting Constraints

While bfoldr is useful when it is total in both get and put directions, we may wish to keep
the length of the source unchanged after put. For example, considering the bmaximum
in Example 3, we may wish to keep the length of the source list after putbmaximum, and
furthermore, we hope that the source and view conditions of bfoldr be able to express some
extra constraints on the elements. All these can be concisely expressed as the following
higher-order contract lens:

bfoldr′ : (ĉs : S → S → Set)→ (ĉv : V → V → Set)
→ ({lift ĉs ĉv} Either () (S, V)↔ V {ĉv})→ ([S]↔ V)

bfoldr′ ĉs ĉv ℓ= bfoldr ℓ {cs = licond ĉs, cv = ĉv}

The lift and licond, two high-order predicates, require their arguments to be of the same
shape, and structurally lift predicates over sum types (Either) and list types, respectively.

lift : (S → S → Set)→ (V → V → Set)→ Either () (S, V)→ Either () (S, V)→ Set
lift p q a a′ = (a = Left () ∧ a′ = Left ()) ∨

(a = Right (x, y) ∧ a′ = Right (x′, y′) ∧ p x x′ ∧ q y y′)
licond : (S → S → Set)→ [S]→ [S]→ Set
licond p xs xs′ = eqlength xs xs′ ∧ (∀ 1 ≤ i ≤ |xs|, p xsi xs′i)

The lens combinator bfoldr′ takes two predicates ĉs and ĉv and have the same definition of
get and put components as bfoldr. The ĉs represents the constraints on the elements of the

10 We treat ∞ as a value of type Int as well for simplicity.

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

source list, and the ĉv represents the view condition. Notice that the predicate parameters ĉs
and ĉv are kind of administrative; their main role is to guarantee that the source condition
of the parameter lens is of shape lift cs′ cv′ for some cs′ and cv′. Idealy, we can make them
existentially bound. We opt to have explicit predicate parameters to make the presentation
clear and more consistent with our Agda formalisation.

Example 4 (Bidirectional Maximum Preserving Length). A direct use of bfoldr′ is to define
a bidirectional version of maximum that preserves the length of the source list.

bmaximum′ : [Int]↔ Int
bmaximum′ = bfoldr′ eqlength ĉv bmax′

where
ĉv = λx x′ → x ̸=−∞ ∨ x′ =− ∞

bmax′ = bmax {cs = lift ctrue cv, cv = ĉv}

One may doubt that the put (Left ()) v′ = Right (v′,−∞) in bmax′ might break the equal
length condition. In fact, it will never be executed because the view condition requires the
maximum value to be unchanged when it is −∞. □

5.1.2 Bidirectional Filter

As an application of bidirectional folds, we construct the bidirectional filter, which
appears frequently in application scenarios of BXs, often in the forms of explicit
combinators (Foster et al., 2007) or SQL selection commands (Abou-Saleh et al., 2018).

The unidirectional version of filter can be implemented by foldr as filter pr =
foldr (λx xs → if pr x then x : xs else xs) [], which returns a list of elements satisfying the
predicate pr. With the bfoldr′ introduced above, we are able to define a bidirectional version
of filter which preserves the lengths of the source and view lists.

bfilter : (pr : a → Bool)→ ([a]↔ [a])
bfilter pr = bfoldr′ ctrue (fcond pr) (bfilterAlg pr)

where
bfilterAlg : (pr : a → Bool)→ (Either () (a, [a])↔ [a])
bfilterAlg pr = CLens g p (lift ctrue (fcond pr)) (fcond pr)

where
g (Left ()) = []

g (Right (x, xs)) = if pr x then x : xs else xs
p (Left ()) [] = Left ()
p (Right (x, xs)) xs′ = Right (if pr x then (head xs′, tail xs′) else (x, xs′))

The function fcond is defined as fcond pr = licond (λ x′ → pr x′). The bfilterAlg pr is
essentially a bidirectional version of the function λx xs → if pr x then x : xs else xs. One
example of bfilter is the bfilter even defined in Section 3.2.

5.2 Bidirectional Map

Map is another important high-order function in functional programming and program
calculation, which applies a function to each element of a list. In this section, we will give

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

Journal of Functional Programming 17

three different definitions of bidirectional map with different source and view conditions.
The first one is bmap, which is just a bidirectional map that preserves the length of the
source and view list. It has no other constraints on the source and view. The second one
is bmap′, which takes the constraint on individual elements of the list into consideration.
The third one is bmapl (and bmapr), which goes a step further and takes into account the
constraints on adjacent elements of the list as well. These three bidirectional versions of
map cover a large range of applications. In particular, the most powerful bmapl is helpful
in our later calculation of bidirectional maximum segment sum.

5.2.1 Bidirectional Map: Preserving Length

First, we give bmap which preserves the lengths of both source and view lists. It simply
requires the parameter to have trivial contracts like bfoldr.

bmap : ({ctrue} S ↔ V {ctrue})→ ([S]↔ [V])

bmap ℓ= CLens (map getℓ) p eqlength eqlength
where p as bs′ = map (λ (x, y)→ putℓ x y) (zip as bs′)

It is clear to see that if the change on the view does not change its length, after backward
propagation through putbmap ℓ, the length of the source will not be changed.

As shown in Section 2.1, map is just a special version of fold. Similarly, we can also
implement bmap using bfoldr′ as shown in Appendix 2.2. One example of bmap is the
bmap bhead defined in Section 3.2.

5.2.2 Bidirectional Map: Preserving Inner Constraints

The above bmap assumes that the lens argument it takes never introduces any constraint.
But this is not always the case. When the parameter lens has non-trivial contracts, the
bidirectional map combinator should reflect these contracts in its result lens. Thus, we
define another version of bidirectional map which takes the inner constraints on elements
of lists into consideration.

bmap′ : (S ↔ V)→ ([S]↔ [V])

bmap′ ℓ= bmap ℓ {cs = licond csℓ, cv = licond cvℓ}

The bmap′ simply lifts the contracts of its parameter to all elements in the source and view
lists. As seen above, bmap′ is a generalized version of bmap; they are equivalent when the
parameter lens ℓ has trivial contracts. Also, we can implement bmap′ using bfoldr′ in the
same way as shown in Appendix 2.2. One example of bmap′ is shown in Appendix 3.2

In the above definition of bmap′ ℓ, we directly use csℓ and cvℓ in the contracts of the result
lens. The bmap′ ℓ has no requirement on the contracts of ℓ. Another alternative definition
of bmap′ more similar to the definition of bfoldr′ which takes predicate parameters is as
follows:

bmap′ : (ĉs : S → S → Set)→ (ĉv : V → V → Set)
→ ({ĉs} S ↔ V {ĉv})→ ([S]↔ [V])

bmap′ ĉs ĉv ℓ= bmap ℓ {cs = licond ĉs, cv = licond ĉv}

We use the first definition in the paper as it takes fewer arguments.

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

5.2.3 Bidirectional Map: Preserving Constraints on Adjacent Elements

In practice, it is very common that map f is composed with a function that produces a list
with some constraints on adjacent elements. For instance, map f may be composed with
inits′, where the result of [as1, as2, . . . , asn] produced by inits′ [a1, a2, . . . , an] has the
constraint (init asi = asi−1) ∧ (init as1 = []).

In bidirectional programming, we need to carefully specify this kind of constraints.
Recall the binits in Section 4.1 with the following view condition:

cvbinits = λ t as → (∀ 1 < i ≤ |as|, init ai = ai−1) ∧ (init a1 = []) ∧ eqlength t as

The composition binits; bmap ℓ inviolates the condition in Definition 2. This motivated
us to introduce bmapl, another bidirectional version of map which is able to express
constraints on adjacent elements.

The core idea is that for bmap′ ℓ, we augment the parameter lens ℓ of type S ↔ V with an
extra argument of type S representing the adjacent element, which leads to a parameterised
lens ℓ′ : S → (S ↔ V). Notice that ℓ′ is still a bidirectional version of a function of type
S → V , so we need to restrict the get components of all ℓ′ s to be the same function for any
s : S. We again use similar syntax to refinement types to express the requirement on the
parameters, and define the following syntactic sugar:

A ⇒ (S ↔ V) ≡ {ℓ : A → (S ↔ V) | ∃ f : S → V. ∀ a : A. getℓ a = f}

Our two syntactic sugars can be used nestedly:

A ⇒ ({cs′} S ↔ V {cv′}) ≡
{ℓ : A →{ℓ′ : S ↔ V | csℓ ⇔ cs′ ∧ cvℓ ⇔ cv′} | ∃ f : S → V. ∀ a : A. getℓ a = f}

The bidirectional map preserving constraints on adjacent elements is defined as follows:

bmapl : (c̃s : S → S → Set)→ (c̃v : V → V → Set)→ (as0 : S)
→ (ℓ : (a : S)⇒ ({λ a′ → c̃s a a′} S ↔ V {λ b′ → c̃v (get(ℓ a) a) b′}))
→ ([S]↔ [V])

bmapl c̃s c̃v as0 ℓ= CLens g p cs′ cv′

where bs0 = get(ℓ as0)
as0

g as = map (λ (a′, a)→ getℓ a′ a) (zip (as0 : init as) as)
p as bs′ = scanl′ (λ (a, b′) a′ → putℓ a′ a b′) as0 (zip as bs′)
cs′ t as = (∀ 1 ≤ i ≤ |as|. c̃s asi−1 asi) ∧ eqlength t as
cv′ t bs = (∀ 1 ≤ i ≤ |as|. c̃v bsi−1 bsi) ∧ eqlength t bs

The constraints on adjacent elements of lists are specified by c̃s and c̃v. For example,
if we take c̃s to be λx y → (init y = x) and as0 to be [], then the source condition of the
bmapl as0 ℓ is equivalent to cvbinits, and thus, the composition binits; bmapl [] ℓ is valid.

The implementation of bmapl a0 ℓ is visualized in Figure 1. The parameterised lens ℓ :
(a : S)⇒ ({λ a′ → c̃s a a′} S ↔ V {λ b′ → c̃v (get(ℓ a) a) b′}) takes the adjacent element
of source as the argument. As we have mentioned in Section 4.1, getℓ a means using the get
component of ℓ a simply as a total function. For the get direction, when computing bi from
ai, we pass the adjacent element ai−1 to ℓ and make sure that we have c̃v bi−1 bi, which
ensures the view list satisfies the constraints on adjacent elements. For the put direction,

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

Journal of Functional Programming 19

Fig. 1. Implementation of bmapl. The left figure shows the computation of the get and the right
figure shows the computation of the put.

when computing a′i from b′i and ai, we pass a′i−1 to ℓ and make sure that we have c̃s a′i−1 a′i,
which ensures the updated source list satisfies the constraints on adjacent elements.

Note that we use the name bmapl because the constraints are leftwards on every pair of
ai−1 and ai. Similarly, we have a bmapr which are used to deal with constraints rightwards
on every pair of ai and ai+1, usually generated by some scanr′ (⊕) a0. The implementation
is almost the same except for replacing scanl′ in the code with scanr′. One example of
bmapl is shown in Appendix 3.3.

5.2.4 Bidirectional Map using Inner Bidirectional Fold

As we have seen so far, bmapl ℓ is useful to give a bidirectional version for map f with
expressive contraints. What if f is a fold? Since bmapl takes a parameterised lens of type
S ⇒ (S ↔ V), we cannot directly pass either bfoldr or bfoldr′ to bmapl. Moreover, since
the bidirectional fold we needed depends on the c̃s in the source condition of the result of
bmapl, it is actually difficult to give a general bidirectional fold. Fortunately, we can define
some special bidirectional versions of fold to cope with some frequently used constraints,
such as λai−1 ai → init ai = ai−1. The bfoldlinit shown below is such a special bfold that
can be used inside bmapl.

bfoldlinit : (c̃v : V → V → Set)→ (b0 : V)

→ (ℓ : (b : V)⇒ ({λ t′ → t′ = Right (, b)}
Either () (S, V)↔ V)

{λ b′ → c̃v b b′})
→ [S]⇒ ([S]↔ V)

bfoldlinit c̃v b0 ℓ as = CLens g p cs′ cv′

where g = foldl (λb a → getℓ b (Right (a, b))) b0

p [] b′ = case putℓ (g as) (Left ()) b′ of
Right (a,)→ as ++ [a]

p as′ b′ = case putℓ (g as) (Right (last as′, g (init as′))) b′ of
Right (a,)→ as ++ [a]

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

cs′ = λ as′ → (init as′ = as)
cv′ = λ b′ → (c̃v (g as) b′)

The bfoldlinit takes a parameterised contract lens and returns another parameterised con-
tract lens which is suitable to be passed to bmapl. Notice that the result parameterised
lens bfoldlinit c̃v b0 ℓ of type [S]⇒ ([S]↔ V) indeed has the same get component for any
argument as : [S], because the get component does not use as at all. The get direction is a
standard foldl, and the put direction only computes the last element of the new source
list, since other elements are given as the argument indicated by the source condition
λ as′ → (init as′ = as).

For an example usage of bfoldlinit, we refer to Appendix 3.4.

5.3 Bidirectional Scan

After discussing bidirectional fold and map, we turn to bidirectional scan, which is an effi-
cient computation pattern using an accumulation parameter and is useful for optimisation
(as will be seen later). The main challenge to bidirectionalize scan is that the result of scan
may have constraints between adjacent elements similar to bmapl. In this section, we give
a powerful bidirectional version of scan with the help of contract lenses.

bscanl : (c̃v : V → V → Set)→ (b0 : V)

→ (ℓ : (b : V)⇒ ({λ t′ → t′ = Right (, b)}
Either () (S, V)↔ V
{λ b′ → c̃v b b′}))

→ ([S]↔ [V])

bscanl c̃v b0 ℓ= CLens g p eqlength cv′

where
g = scanl′ (λb a → getℓ b (Right (a, b))) b0

p as bs′ = map (λ ((a, b), (b′′, b′))→ fstRight (putℓ b′′ (Right (a, b)) b′)) abb
where bs = g as

abb = zip (zip as (b0 : init bs)) (zip (b0 : init bs′) bs′)
fstRight (Right (x,)) = x

cv′ t bs = (∀ 1 ≤ i ≤ |bs|. c̃v bsi−1 bsi) ∧ eqlength t bs

The implementation of bscanl c̃v b0 ℓ is visualized in Figure 2. The get direction is a
standard scanl′. For the put direction, when computing a′i from ai and b′i, we pass b′i−1 to
the lens ℓ to restrict the result of put is of form Right (, b′i−1).

For an example usage of bscanl, we refer to Appendix 3.5.

6 Bidirectional Calculation Laws

So far, we have seen that fundamental high-order functions such as fold, filter, map and
scan can be extended naturally from unidirectional to bidirectional, and that these bidirec-
tional versions can be used to describe various bidirectional behaviours through suitable
definitions of get, put, and the source/view conditions. In this section, we shall develop

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

Journal of Functional Programming 21

Fig. 2. Implementation of bscanl. The left figure shows the computation of the get and the right
figure shows the computation of the put.

several important bidirectional calculation laws for manipulating them, including bidirec-
tional versions of FOLD FUSION, MAP FUSION and SCAN LEMMA. These bidirectional
calculation laws are useful to reason about and optimize bidirectional programs.

6.1 Bidirectional Fold Fusion

We start with a bidirectional version of the FOLD FUSION law for bfoldr. To characterize
bidirectional fold fusion law, we first bidirectionalize the list functor FL in Section 2.2.

blistF : V
→ ({ctrue} V ↔ T {ctrue})
→ ((Either () (S, V))↔ (Either () (S, T)))

blistF b0 ℓ= CLens g p ctrue ctrue
where g (Left ()) = Left ()

g (Right (a, b)) = Right (a, getℓ b)
p (Left ()) = Left ()
p (Right (a, b)) (Right (a′, c′)) = Right (a′, putℓ b c′)
p (Left ()) (Right (a′, c′)) = Right (a′, putℓ b0 c′)

The tricky part lies in the last line above when there is a mismatch in the constructors of
source and view. The implementation chooses a default value b0 of type V to help with
this process. With this bidirectional list functor, we can have the following bidirectional
fold fusion law, which is similar to the unidirectional fold fusion law but with this explicit
default value.

ℓ1; ℓ= blistF (getℓ1
(Left ())) ℓ; ℓ2

bfoldr ℓ1; ℓ= bfoldr ℓ2
BFOLDR FUSION

It reads that the lens composition bfoldr ℓ1; ℓ can be fused into a single lens bfoldr ℓ2 if
there exists ℓ2 such that the equation ℓ1; ℓ= blistF (getℓ1

(Left ())) ℓ; ℓ2 holds.
Similarly, we have another fusion law for bfoldr′, for which we need a slightly different

bidirectional version of the list functor FL. The good thing is that we do not need the

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

default value anymore because the contracts of bfoldr′ guarantee that there will not be any
mismatch.

blistF′ : (S → S → Set)→ (V ↔ T)
→ (Either () (S, V)↔ Either () (S, T))

blistF′ ĉs ℓ= CLens g p (lift ĉs ĉv) (lift ĉs ĉt)
where g (Left ()) = Left ()

g (Right (a, b)) = Right (a, getℓ b)
p (Left ()) (Left ()) = Left ()
p (Right (a, b)) (Right (a′, c′)) = Right (a′, putℓ b c′)
ĉv = csℓ
ĉt = cvℓ

Then, the fusion law is stated as

ℓ1; ℓ= blistF′ ĉs ℓ; ℓ2

bfoldr′ ĉs ĉv ℓ1; ℓ= bfoldr′ ĉs ĉt ℓ2
BFOLDR’ FUSION

6.2 Bidirectional Map Fusion

The bidirectional map fusion laws for bmap and bmap′ are quite easy since they just map
ℓ to each element of the list in both forward and backward transformations. Since bmap is
a special case of bmap′, we only give the bidirectional map fusion law for bmap′.

bmap′ ℓ1; bmap′ ℓ2 = bmap′ (ℓ1; ℓ2) BMAP’ FUSION

Similarly, we can give the bidirectional map fusion law for bmapl:

bmapl c̃s c̃v a0 ℓ1; bmapl c̃v c̃t b0 ℓ2 = bmapl c̃s c̃t a0 (ℓ1; ; ℓ2) BMAPL FUSION

where (; ;) is the composition of parameterised lenses whose types are of form S ⇒ (S ↔
V). It is defined as follows:

(; ;) : (ℓ1 : (a : S) ⇒ ({λ a′ → c̃s a a′} S ↔ V {λ b′ → c̃v (getℓ1 a a) b′}))
→ (ℓ2 : (b : V)⇒ ({λ b′ → c̃v b b′} V ↔ T {λ c′ → c̃t (getℓ2 b b) c′}))
→ S ⇒ (S ↔ T)

ℓ1; ; ℓ2 = λa → ℓ1 a; ℓ2 (getℓ1 a a)

The definition of ℓ1; ; ℓ2 is quite intuitive. We just pass the parameter a to ℓ1, and the
result of a after the forward transformation of ℓ1 to ℓ2. Notice that we still use the syntactic
sugar S ⇒ (S ↔ T) for the type of the result parameterised lenses, which means the get
component is the same for any parameter. This makes natural sense because both ℓ1 and ℓ2

have fixed get components. It is also easy to check that the composition ℓ1 a; ℓ2 (getℓ1 a a)
is well-defined (i.e., satisfies the condition in Definition 2).

6.3 Bidirectional Fold-Map Fusion

We give a bidirectional fold-map fusion law for bfoldr′ and bmap′, both of which preserve
the length of the source list.

First, we bidirectionalize Fm defined in Section 2.2 with conditions required by bfoldr′.

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

Journal of Functional Programming 23

bmapF : (T → T → Set)→ (S ↔ V)

→ (Either () (S, T)↔ Either () (V, T))
bmapF ĉt ℓ= CLens g p (lift ĉs ĉt) (lift ĉv ĉt)

where g (Left ()) = Left ()
g (Right (a, c)) = Right (getℓ a, c)
p (Left ()) (Left ()) = Left ()
p (Right (a, c)) (Right (b′, c′)) = Right (putℓ a b′, c′)
ĉs = csℓ
ĉv = cvℓ

The result of bmapF has the same source condition as the lens bfoldr′ takes. Now we can
give the bidirectional fold-map fusion law for bfoldr′.

bmap′ ℓ1; bfoldr′ ĉv ĉt ℓ2 = bfoldr′ ĉs ĉt (bmapF ĉt ℓ1; ℓ2) BFOLDR’-BMAP FUSION

6.4 Bidirectional Scan Lemma

In the unidirectional world, the SCAN LEMMA is a special version of the FOLD FUSION

law. Note that replacing inits with inits′ and scanl with scanl′, the scan lemma still holds.
The major challenge for developing a similar bidirectional calculation law on contract
lenses is that the inits′ introduces a constraint on adjacent elements of the view list.
Fortunately, the contract-lens combinator bmapl can handle constraints on adjacent ele-
ments. With bmapl, bfoldlinit and bscanl, we can successfully obtain a bidirectional version
of scan lemma.

binits; bmapl (λa a′ → init a′ = a) c̃v [] (bfoldlinit c̃v b0 ℓ) = bscanl c̃v b0 ℓ

BIDIRECTIONAL SCAN LEMMA

The form of the bidirectional scan lemma is quite similar to its unidirectional ver-
sion modulo some administrative parameters for contracts. We give an example of
BIDIRECTIONAL SCAN LEMMA in Appendix 3.6.

7 Examples

In this section, we will demonstrate further through three examples that with contract
lenses, combinators and associated calculation laws, we are able to flexibly construct and
optimize bidirectional programs. The first example is a projection problem from geom-
etry, where the conditions afforded by contract lenses are essential for its construction.
The second example concerns bidirectional data conversion, specifically, string process-
ing and formatting. It showcases that within our framework, such computation tasks can
be constructed in a point-free style, of which efficiency are guaranteed by calculational
laws. The third example stems from a classic scenario of program calculation, it demon-
strates the ability to reason about and optimize complicated bidirectional programs through
semantics-preserving transformation based on calculational laws, in a way that one would
have done for unidirectional programs.

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

7.1 Projection onto a Hyperplane

Let us look at an example to see the expressive power of contract lenses, especially how
we can use contracts to constrain the changes of source and view. One basic computation
in the area of geometry is to calculate the projection of a point onto a hyperplane in a
higher dimensional Euclidean space. In this example, we want to synchronize a point xs =
[x1, x2, . . . , xn]

11 in a n-dimensional Euclidean space with the projection of it onto the
hyperplane H : ∑

n
i=1 xi = 0. The projection of X onto H is the point ys = [x1 − m, x2 −

m, . . . , xn − m] where m = 1
n ∑

n
i=1 xi. What’s more, there is a unique hyperplane H ′ parallel

to H and through the point xs. We want an extra property that the new point obtained from
backward transformation is on the hyperplane H ′. In other words, the task is to synchronize
a list of numbers with the differences between each number and the mean of all numbers,
meanwhile the mean of the source list is unchanged after changes on the view list.

One way to implement this synchronization using lenses is to compose two lenses, where
one lens synchronizes a list with a pair of the list itself and its mean, and the other lens
synchronizes this pair with the list of differences. The constraints that the dimension n and
the hyperplane H′ should not be changed can be easily expressed with contracts. The full
implementation is as follows:

bproj : [Float]↔ [Float]
bproj = bmean; bdiff

bmean : [Float]↔ (Float, [Float])
bmean = CLens g p cs′ cv′

where g xs = (mean xs, xs)
p (m, xs′) = xs′

cs′ xs xs′ = mean xs = mean xs′ ∧ eqlength xs xs′

cv′ (m, xs) (m′, xs′) = m = m′ = mean xs = mean xs′ ∧ eqlength xs xs′

bdiff : (Float, [Float])↔ [Float]
bdiff = CLens g p cs′ cv′

where g (m, xs) = map (+(−m)) xs
p (m,) xs′ = (m, map (+m) xs′)
cs′ (m, xs) (m′, xs′) = m = m′ = mean xs = mean xs′ ∧ eqlength xs xs′

cv′ xs xs′ = sum xs′ = 0 ∧ eqlength xs xs′

mean : [Float]→ Float
mean = λxs → sum xs / fromIntegral (length xs)

The specifications of synchronization behaviour on each lenses are clearly expressed by
contracts, which enables the compositions as we see in the definition of bproj.

7.2 String Formatting and Processing

Specifying programs that manipulate texts/strings bidirectionally is not new, and has been
extensively studied in Bohannon et al. (2008); Matsuda and Wang (2015). The novelty

11 Here we use a list of length n to represent a point in n-dimensional space.

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

Journal of Functional Programming 25

of our framework is that it supports a point-free style of specifications and calculational
reasonings for such computational tasks.

7.2.1 String Formatting

Let us look at the following string formatting task: given an input string, we want to filter
out all digits, and convert all remaining characters to upper case. With contract lens com-
binators, we readily specify it in point-free style (for simplicity, we assume that characters
in strings are either numbers or letters):

bformatting : String ↔ String
bformatting = bfilter (not ◦ isDigit); bmap′ btoUpper

where
btoUpper :: Char ↔ Char
btoUpper = CLens toUpper putToLower cs cv
cs = λ c → not (isDigit c)
cv = λ c → isUpper c

putToLower x y = if isUpper x then y else toLower y

The composition is valid, since one can check that fcond (not ◦ isDigit) and
licond (λ c → not (isDigit c)) are by definition equivalent.

In this naive specification, intermediate structures are created after one lens, and are
immediately consumed by another, in both directions. Recall that bfilter is an instance of
bfoldr′, using BFOLDR’ FUSION, we reason as follows:

bformatting
= { definition }

bfilter (not ◦ isDigit); bmap′ btoUpper
= { expressing bfilter as bfoldr′ }

bfoldr′ ctrue (fcond (not ◦ isDigit)) (bfilterAlg (not ◦ isDigit)); bmap′ btoUpper
= { BFOLDR’ FUSION }

bfoldr′ ctrue (licond (λ c → isUpper c)) balg

where

balg :: (Either () (Char, [Char]))↔ [Char]
balg = CLens g p cs cv

where g (Left ()) = []

g (Right (x, xs)) = if not (isDigit x) then toUpper x : xs else xs
p (Left ()) = Left ()
p (Right (x, xs)) (x′ : xs′) = if not (isDigit x)

then Right (putToLower x x′, xs′)
else Right (x, x′ : xs′)

p (Right (x, [])) [] = if not (isDigit x) then Left () else Right (x, [])
cs = lift ctrue (licond (λ c → isUpper c))
cv = licond (λ c → isUpper c)

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

26 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

The definition of balg is not as complicated as it seems: it is essentially the combination of
bfilterAlg (not ◦ isDigit) and btoUpper.

It is easy to verify the condition of the BFOLDR’ FUSION law, which is the lens
equivalence relation

bfilterAlg (not ◦ isDigit); bmap′ btoUpper = blistF′ ctrue
(bmap′ btoUpper); balg

The calculated version creates no intermediate structure and hence is more efficient in
practice.

7.2.2 String Encoding and Decoding

Another useful string processing algorithm is the encoding and decoding, which is usually
used in compressing a string. It is very appropriate to write them as a single bidirectional
program in order to make it easier to maintain and optimize the encoding and decoding
algorithms at the same time (Matsuda and Wang, 2020). Let us consider the following
simple string encoding algorithm which illustrates the idea of Run Length Encoding.

compression : [String]→ [Int]
compression = foldr′ cat ◦ map ascii ◦ map encode

where encode = (head ws, length ws)
ascii (x, y) = (ord x, y)
cat (Left ()) = []

cat (Right ((x, y), b)) = x : y : b

For simplicity, the input string has already been splitted into a list of strings, where each
string consists of consecutive identical characters. The compression compresses consecu-
tive identical characters into its ASCII value and number of consecutive occurrences. The
map encode maps the consecutive identical characters to the pair of the character and the
length. Then the map ascii transforms the characters to their ASCII values. Finally, the
foldr′ cat concatenates the pairs to a single list. For example, 12

compression ["aaaaa", "bbbb", "ccccccccc"] = [97, 5, 98, 4, 99, 9]

Using the contract-lens combinators we defined in Section 5, it is easy to derive a bidirec-
tional version of the function compression. The length of the results should not be changed,
meanwhile the ASCII values in the results should all be greater than or equal to 0 and less
than 128. Thus, the view condition is defined as cvcomp v as = (|v|= |as|) ∧ (∀ 1 ≤ i ≤
|as|, odd i ∨ (0 ≤ asi < 128)).

bcompression : [String]↔ [Int]
bcompression = bmap′ bencode

; bmap′ bascii
; bfoldr′ (λ (x,)→ 0 ≤ x < 128) cvcomp bcat

where the following contract lenses are used

12 The ASCII value of ’a’ is 97, ’b’ is 98, ’c’ is 99. We assume that the Char type only includes the standard
128 ASCII values for simplicity.

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

Journal of Functional Programming 27

bencode : String ↔ (Char, Int)
bencode = CLens (λws → (head ws, length ws)) (λ (a, n)→ replicate n a)

(λ as → allsame as) ctrue
where allsame xs = (xs = "")∨ (and $ map (= head xs) (tail xs))

bascii : (Char, b)↔ (Int, b)
bascii = CLens (λ (x, y)→ (ord x, y)) (λ (x, y)→ (chr x, y))

ctrue (λ (x,)→ 0 ≤ x < 128)

bcat : Either () ((Int, Int), [Int])↔ [Int]
bcat = CLens g p cs cv

where g (Left ()) = []

g (Right ((x, y), b)) = x : y : b
p (Left ()) [] = Left ()
p (Right) (x : y : b) = Right ((x, y), b)
cs = lift (λ (x,)→ 0 ≤ x < 128) cvcomp

cv = cvcomp

It is easy to check the contract lens bcompression is well-defined. However, this version
of bcompress is not so efficient because it traverses the string three times. We can use
the bidirectional calculation laws in Section 6 to reduce both the compression and the
decompression algorithms to only one traversal simultaneously.

bcompression
= { definition }

bmap′ bencode
; bmap′ bascii
; bfoldr′ (λ (x,)→ 0 ≤ x < 128) cvcomp bcat

= { BMAP’ FUSION }
bmap′ (bencode; bascii)

; bfoldr′ (λ (x,)→ 0 ≤ x < 128) cvcomp bcat
= { BFOLDR’-BMAP FUSION }

bfoldr′ (λ as → allsame as) cvcomp (bmapF (bencode; bascii); bcat)

7.3 Bidirectional Maximum Segment Sum

Now let us turn to another example involving more advanced program calculation. The
maximum segment sum is a classic problem in the area of program calculation. To demon-
strate the ability of our calculation framework, we change the specification of mss in
Section 2.3 into a bidirectional version directly using contract-lens combinators, and opti-
mize it to a more efficient version which has time complexity O(n) in both get and put
directions, meanwhile the semantics is preserved.

To see this concretely, let us first get a bidirectional version of mss without considering
efficiency. To achieve this, we introduce a refinement type TailsList a = {as : [[a]] | (∀ 1 ≤
i < n, tail asi = asi+1) ∧ (tail asn = [])}. It is a modified version of the type [[a]], where
each element of the list is the tail of the previous element, and the tail of the last element
is the empty list. The specification of the bidirectional version of mss is

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

28 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

bmss : [Int]↔ Int
bmss = binits

; bmapl c̃v1 c̃v2 [] btailsinit

; bmapl c̃v2 c̃v3 [] bmapSum
; bmapl c̃v3 ctrue [] bmaximum2
; bmaximum′

where the definitions of the contracts and contract lenses appeared are

c̃v1 = λa a′ → init a′ = a
c̃v2 = λb b′ → map init (init b′) = b
c̃v3 = λb b′ → map (+(−last b′)) (init b′) = b

btailsinit : [Int]⇒ [Int]↔ TailsList Int
btailsinit a = CLens tails′ (λ v → head v) cs cv

where cs = λ a′ → c̃v1 a a′

cv = λ b′ → c̃v2 (tails′ a) b′

bmapSum : TailsList Int ⇒ TailsList Int ↔ [Int]
bmapSum a = CLens (map sum) p cs cv

where p xs = map (λ t → t ++ [last xs]) a ++ [[last xs]]
cs = λ a′ → c̃v2 a a′

cv = λ b′ → c̃v3 (map sum a) b′

bmaximum2 : [Int]⇒ [Int]↔ Int
bmaximum2 a = CLens maximum p cs ctrue

where p x = let t = a ++ [0] in map (+(x − maximum t)) t
cs = λ a′ → c̃v3 a a′

The binits and bmaximum′ have been already defined in the previous sections. It is easy
to check that bmss is well-defined, i.e., satisfies round-tripping properties and the condition
of lens composition.

Next, we make use of the bidirectional calculation rules we developed in Section 6 to
optimize the bmss. The calculation goes as follows.

bmss
= { definition }

binits
; bmapl c̃v1 c̃v2 [] btailsinit

; bmapl c̃v2 c̃v3 [] bmapSum
; bmapl c̃v3 ctrue [] bmaximum2
; bmaximum′

= { BMAPL FUSION }
binits

; bmapl c̃v1 ctrue [] (btailsinit; ; bmapSum; ; bmaximum2)
; bmaximum′

= { a specific bidirectional Horner’s rule (to be discussed below) }

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Journal of Functional Programming 29

[3,−1, 4,−1, 5,−9]

[3, 2, 6, 5, 10, 1]

10

[3,−1, 4,−1, 1,−5]

[3, 2, 6, 5, 6, 1]

6

getbscanl ctrue (−∞) ℓ putbscanl ctrue (−∞) ℓ

getbmaximum′ putbmaximum′

Fig. 3. Visualization of an example calculation of bmss.

binits
; bmapl c̃v1 ctrue [] (bfoldlinit ctrue (−∞) ℓ)

; bmaximum′

= { BIDIRECTIONAL SCAN LEMMA }
bscanl ctrue (−∞) ℓ

; bmaximum′

One thing worth noting is that in the third step of calculation we use a specific
bidirectional Horner’s rule:

btailsinit; ; bmapSum; ; bmaximum2 = bfoldlinit ctrue (−∞) ℓ

where
ℓ : Int ⇒ Either Int (Int, Int)↔ Int
ℓ b = CLens g p cs ctrue

where g (Left ()) =−∞

g (Right (x, y)) = max (x + y) x
p t = Right (t − max b 0, b)
cs = λ t′ → t′ = Right (, b)

The get direction of (btailsinit; ; bmapSum; ; bmaximum2) a for any a : [Int] is similar to the
original Horner’s rule with ⊗=+ and ⊕= max. It would take space to develop a general
bidirectional Horner’s rule for any ⊕ and ⊗, because we require that ⊕ and ⊗ form a ring
structure and keep it in the bidirectional setting. However, it is useful to define and prove
some specific bidirectional versions of the Horner’s rule like this.

By now, we have successfully derived a correct and linear-time efficient bidirectional
program that can synchronize a list with its maximum segment sum.

Let us look at an example to get a better understanding of our final
result bscanl (−∞) ℓ; bmaximum′ that is visualized in Figure 3. Given the input
list xs = [3,−1, 4,−1, 5,−9], getbscanl ctrue (−∞) ℓ xs yields [3, 2, 6, 5, 10, 1], whose
each element refers to the maximum segment sum ending at this position.
Then, getbmaximum′ [3, 2, 6, 5, 10, 1] yields 10, which is the maximum segment
sum of the whole list. Now we change the result from 10 to 6. For the
backward direction, putbmaximum′ [3, 2, 6, 5, 10, 1] 6 yields [3, 2, 6, 5, 6, 1]. Finally,
putbscanl ctrue (−∞) ℓ [3,−1, 4,−1, 5,−9] [3, 2, 6, 5, 6, 1] yields [3,−1, 4,−1, 1,−5].

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

8 Related Work

In this section, we discuss related work on partiality in the lens framework, Hoare-style
reasoning of BX, automatic bidirectionalization, and some attempts on calculating with
lenses.

8.1 Lens Family and Partiality of put

The most prominent approach to bidirectional transformation is the lens framework for-
mally introduced by Foster et al. (2007). It is highly influential and directly inspired
a number of follow-on works including Boomerang (Bohannon et al., 2008), quo-
tient lenses (Foster et al., 2008), matching lenses (Barbosa et al., 2010), symmetric
lenses (Hofmann et al., 2011), edit lenses (Hofmann et al., 2012), BiGUL (Ko et al., 2016),
applicative lenses (Matsuda and Wang, 2015), HOBiT (Matsuda and Wang, 2018) and so
on. The present paper on contract lenses is no exception. On the issue of partiality, differ-
ent approaches were taken by the various works, which can be broadly categorized into the
following.

8.1.1 Formulation of Contracts and Relation to Type Systems

As argued in Section 1.1, giving total definitions to get and put components is not always
desirable, as the effort in achieving it necessarily complicates program design and reason-
ing. Some previous work on lenses ensures the totality of them by advanced type systems,
with enriched type constraints over the type variables S, V in the lens type S ↔ V . For
example, in Foster et al. (2007), partial lenses are ruled out by set-based type constraints
that precisely characterize the domain/range of get and put, and in Boomerang (Bohannon
et al., 2008), the underlying String type is enriched with regular languages to serve as types
for dictionary lenses.

As far as we know, lens formulations with enriched type systems like the above are
not readily used to flexibly express the bidirectional behaviours we see in this paper.
Take bmap : (S ↔ V)→ [S]↔ [V] as an example. With contracts, we can easily ensure
that the changes on view do not modify the length of lists by setting the view condition
to eqlength. However, it is non-trivial to express the “equal length” view condition by
only constraining the types S and V themselves, instead of specifying constraints on the
changes of values of types S and V . By adding an additional parameter to bmap specifying
the length of the source and view list, one could encode bmap indirectly with a notion of
dependent/refinement types into something like the following.

bmap : (n : N)→ (S ↔ V)→ ({xs : [S] | |xs|= n}↔ {ys : [V] | |ys|= n})

This version of bmap fixes the length of lists, which is obviously less general than the
versions using eqlength like the bmap in Section 5.2.1 and bmap′ in Section 5.2.2.

The “equal length” view condition is essentially a constraint on the dynamic changes
of inputs to a lens, which can be nicely handled by our view contract. In our framework,
contracts specifies the ranges that lens components behave well, the dynamic changes that
a lens can reasonably accept, and the conditions that different components can compose
together.

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

Journal of Functional Programming 31

It is worth noting that different from the previous work on constraining the source and
view types (Foster et al., 2007; Bohannon et al., 2008), contracts are not part of types, but
rather additional specifications that parallel get and put. Moreover, users have full control
of these specifications, just as how they specify the component get and put in the first
place. In this sense, user have the flexibility to choose different contracts based on the
same underlying get and put. For instance, the “equal length” condition for bmap may be
strengthened so that additionally the first element of the list is preserved. These choices are
completely up to the users.

An alternative design choice of contract lenses is to encode the BACKWARDVALIDITY

and FORWARDVALIDITY laws as well as the extra conditions of the
CONDITIONEDPUTGET and CONDITIONEDGETPUT laws directly into the types of
get and put with refinement types.

get : {s : S | cs s s}→ {v : V | cv v v}
put : (s : S)→{v : V | cv (get s) v}→ {s′ : S | cs s s′}

With the above refinement type signatures, we can use the original PUTGET and GETPUT

laws of lenses. Note that the definition of contract lenses is still a four-tuple of get,
put, cs and cv in this case. There is no clear advantage or disadvantage between these
two approaches. We choose to characterize the properties of contracts with explicit laws
like BACKWARDVALIDITY and FORWARDVALIDITY to avoid the complication of type
signatures and emphasize the differences between traditional lenses and contract lenses.

In this work, we do not impose any restriction on the constraints used in contracts. It
is the users’ work to prove the round-tripping properties of contract lenses and the well-
definedness of lens composition by either handwritten proofs or formalisation in theorem
provers like Agda. As a result, the designer of a practical system that implements contract
lenses has to strike a balance between expressiveness of contracts and checkability of con-
tracts implications. Nonetheless, we believe such systems are implementable, by restricting
the set of contracts available to users to a small set of efficiently solvable constraints. As
shown in our examples, simple predicates like eqlength can already help with constructing
powerful combinators like generic mapping over lists.

8.1.2 Edit Lenses

Edit lenses (Hofmann et al., 2012) model changes to view/source as operations (edits)
in contrast to states in the traditional lenses. The edits are represented as monoids, and
monoid actions on set become the actions of applying an edit to a state. As a result, only
the edits in the monoid are allowed to be applied to the states, which in a way restricts
changes to the source and view. But unlike contract lenses, these restrictions are not used
to address partiality; in fact edit lenses have the same problem of partiality as state-based
ones because the monoid actions are allowed to be partial. For example, the edit del which
deletes the last element of a list is partial as we can not apply it to an empty list. Extra
dynamic checks are needed to ensure that the computation of edit lenses will not fail. For
contract lenses, the get and put will not fail as long as the source conditions and view
conditions are satisfied.

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

32 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

8.1.3 Totality with Maybe Monad

Another approach is to wrap the return type of get and put in the Maybe monad to remove
partiality (Matsuda and Wang, 2015; Ko et al., 2016; Xia et al., 2019). The put direction
is a total function of type s → v → Maybe s and it returns Nothing at run-time when an
invalid input is passed to it. This approach is unsuitable for program calculation as it lacks
the ability to reason about partiality statically. We want to know the static specification of a
program and get meaning results instead of just getting a Nothing when the program fails.
Moreover, the specification can guide the design of program calculation laws.

8.1.4 Other Discussions

The properties of partial BX and the relations between them are discussed extensively in
Stevens (2014). Different from our goal, the discussion there does not concern practical
program construction nor mentions composition of transformations. In contrast, we focus
on lenses that satisfy the round-tripping property on possibly partial domains. We make
partiality explicit as a component of lenses, and use it to explore composition behaviour of
partial lenses.

8.2 Hoare-style Reasoning of Bidirectional Transformation

In Ko and Hu (2018), a reasoning framework for BiGUL programs based on Hoare logic is
proposed, which is able to precisely characterize the bidirectional behaviours by reasoning
in the put direction. The main concept is the put triplet in the form of {R}b{R′}, which
includes a set of pre- and post-conditions that are used to reason about the behaviour of
put in a way similar to the Hoare logic: if the original source s and the updated view
v satisfy the precondition R, then putb s v will produce an updated source satisfying the
postcondition R′.

To some extent, their pre- and post-conditions serve a similar purpose to our
BACKWARDVALIDITY law: if the original source s and the updated view v satisfy the view
condition cv (get s) v, then put s v will successfully produce an updated source satisfying
the source condition cs s (put s v). However, the novelty of contract lenses does not solely
rely on the BACKWARDVALIDITY law, but also the combination with other three laws of
the round-tripping properties which give a clear specification of lenses to resolve the par-
tiality problem and make the composition of contract lenses easy and well-behaved. It is
worth mentioning that in their framework reasoning about lens composition is difficult and
involves several complicated proof rules. In contrast, contract lenses make such reasoning
easy: two lenses ℓ1 : {csℓ1} S ↔ V {cvℓ1} and ℓ2 : {csℓ2} V ↔ T {cvℓ2} can be composed
into a lens ℓ1; ℓ2 : {csℓ1} S ↔ T {cvℓ2} given the condition proposed in Definition 2.

Furthermore, the purpose of pre- and post-conditions differs from that of source and
view conditions. While pre- and post-conditions mainly focus on specifying the behaviours
of the put components, our primary objective is to address the partiality problem of lenses,
which allows for straightforward design of lenses and calculation laws.

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

Journal of Functional Programming 33

8.3 Bidirectionalization

Bidirectionalization is an approach to bidirectional programming that is different from the
lens framework. Instead of writing bidirectional programs directly in a specialized lan-
guage, it aims to mechanically convert existing unidirectional programs into bidirectional
ones. Voigtländer (2009) gives a high-order function bff that receives a polymorphic get
function, and returns its put counterpart. The technique is extended (Voigtländer et al.,
2010) by combining it with syntactic bidirectionalization (Matsuda et al., 2007), which
separates view changes in shape and in content. However, bidirectionalization is done
for whole programs which lacks modular reasoning of compositions, and therefore is not
suitable for program calculation.

8.4 Calculating with Lenses

The goal of generic point-free lenses (Pacheco and Cunha, 2010) is the most similar to
ours. In that work, lens combinators are designed for many traditional high-order functions
including fold and map. Subsequently, the point-free lenses are use for a limited form
of calculation where the universal property (uniqueness) of the lens version of fold was
proved and used to establish some program calculation laws for lenses such as the fold-map
fusion (Pacheco and Cunha, 2011).

But very different from ours, their work is based on the traditional lenses without con-
tracts, which means that the problem of partiality seriously limits the composition of lenses.
As a result, many crucial calculation laws such as the SCAN LEMMA are not expressible
in their framework.

9 Formalisation with Agda

In this section, we briefly discuss one possible formalisation of contract lenses in Agda.
We use this formalisation to prove the correctness of lens composition, all lens combina-
tors, all calculation laws and most of the examples (except the string processing example
in Section 7.2) in this paper. As mentioned in Section 1.2, our intention is not to restrict
potential users of contract lenses within this formalisation, but rather to provide a calcu-
lation framework which allows any method of reasoning. This Agda formalisation shows
one potential way to mechanise our framework.

The formalisation of the whole contract lens calculation framework is rather straight-
forward. A contract lens is a (possibly mutually defined) four-tuple get, put, cs and cv,
with a set of laws on them. This construction is formalised faithfully in the Agda code,
where we define the lens type as a record type

record Lens (S : Set) (V : Set) where
field
-- four-tuple
get : S → V
put : S → V → S
cs : S → S → Set

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

34 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

cv : V → V → Set
-- laws
BackwardValidity : ∀ (a : S) (b : V)→ cv (get a) b → cs a (put a b)
ForwardValidity : ∀ (a : S)→ cs a a → cv (get a) (get a)
PutGet : ∀ (a : S) (b : V)→ cv (get a) b → get (put a b) = b
GetPut : ∀ (a : S)→ cs a a → cv put a (get a) = a

Typically, to construct an instance of this type, one will first define the four-tuple, and then
gives proof of the four laws.

The formalisation of lens combinators also follows from what we have in the paper. For
instance, the bmap combinator with type

bmap : ({ctrue} S ↔ V {ctrue})→ ([S]↔ [V])

is formalised in Agda using existential types as

bmap : ∀ {S V : Set}→ (∃ (S ↔ V)λℓ→ cvℓ ⇔ ctrue ∧ csℓ ⇔ ctrue)→ ([S]↔ [V])

One difference between our Agda formalisation and what we have in the paper is
that the Agda formalisation does not use the syntactic sugar ℓ : S ⇒ (S ↔ V) defined in
Section 5.2.3 to restrict the parameterised lens ℓ to have a fixed get component. Instead, it
defines ℓ as a lens of type (S, S)↔ (V, V), where the parameter is embedded into the first
component of the source pair. The former form is more clear and suitable for human read-
ing, while the latter form is easier to formalise. We provided a translation between these
two kinds of lenses and proved its correctness in the Agda formalisation.

For the calculation part of this framework, we defined an equivalence relation between
lenses of the above type as described in Definition 3. We also prove the congruence theorem
for high-order lenses. Take bmap for example, we prove that if ℓ1 ∼ ℓ2, then bmap ℓ1 ∼
bmap ℓ2. Our calculation laws are defined as theorems stating equivalences of lenses.

10 Conclusion

In this work, we propose a framework based on program calculation to enable the develop-
ment of complex but efficient BX programs that are correct by construction. As part of the
framework, we design a novel extension to lenses, contract lenses, for handling partiality
and use it to justify general composition of lenses. Based on this, we extend the theories
for program calculation to BX programming by designing combinators to capture bidi-
rectional recursive computation patterns and proving their properties. We look at the list
datatype and give proofs for fundamental calculation laws including various fusion laws for
bidirectional fold and map and the bidirectional scan lemma. We showcase the construction
of a realistic projection program, the derivation of efficient bidirectional string processing
programs, and the maximum segment sum program to demonstrate the effectiveness of our
framework.

This work focuses on the calculation for bidirectional transformations on lists, which
mirrors the classic work on the theory of list (Bird, 1989, 1987) in the literature of program
calculation. Generalizing this bidirectional program calculation framework to algebraic
datatypes generated by polynomial functors is a natural next step. Another possible future

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

Journal of Functional Programming 35

work is to design practical systems based on contract lenses to reason about and optimize
BXs, automating the verification of round-tripping properties and lens composition using
SMT solvers.

Conflict of Interest

None.

References

Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J. & Stevens, P. (2018) Introduction to bidirec-
tional transformations. In Bidirectional Transformations: International Summer School, Oxford,
UK, July 25-29, 2016, Tutorial Lectures. Springer International Publishing. Cham. chapter 1, pp.
1–28. Available at: https://doi.org/10.1007/978-3-319-79108-1_1.

Bancilhon, F. & Spyratos, N. (1981) Update semantics of relational views. ACM Trans. Database
Syst. 6(4), 557–575.

Barbosa, D. M., Cretin, J., Foster, N., Greenberg, M. & Pierce, B. C. (2010) Matching lenses:
Alignment and view update. Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming. New York, NY, USA. Association for Computing Machinery. p.
193–204.

Bird, R. S. (1987) An introduction to the theory of lists. Logic of Programming and Calculi of
Discrete Design. Berlin, Heidelberg. Springer Berlin Heidelberg. pp. 5–42.

Bird, R. S. (1989) Algebraic identities for program calculation. Comput. J. 32(2), 122–126.
Bird, R. S. (1989) Lectures on constructive functional programming. Constructive Methods in

Computing Science. Berlin, Heidelberg. Springer Berlin Heidelberg. pp. 151–217.
Bohannon, A., Foster, J. N., Pierce, B. C., Pilkiewicz, A. & Schmitt, A. (2008) Boomerang:

Resourceful lenses for string data. Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. New York, NY, USA. Association for
Computing Machinery. p. 407–419.

Bohannon, A., Pierce, B. C. & Vaughan, J. A. (2006) Relational lenses: A language for updat-
able views. Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. New York, NY, USA. Association for Computing Machinery. p.
338–347.

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C. & Schmitt, A. (2007) Combinators for
bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst. 29(3), 17–es.

Foster, J. N., Pilkiewicz, A. & Pierce, B. C. (2008) Quotient lenses. Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA.
Association for Computing Machinery. p. 383–396.

Gibbons, J. (2002) Calculating functional programs. Algebraic and Coalgebraic Methods in the
Mathematics of Program Construction. Springer-Verlag. pp. 148–203.

Gibbons, J. (2011) Maximum segment sum, monadically (distilled tutorial). Electronic Proceedings
in Theoretical Computer Science. 66, 181–194.

Gill, A., Launchbury, J. & Peyton Jones, S. L. (1993) A short cut to deforestation. Proceedings of the
Conference on Functional Programming Languages and Computer Architecture. New York, NY,
USA. Association for Computing Machinery. p. 223–232.

He, X. & Hu, Z. (2018) Putback-based bidirectional model transformations. Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. New York, NY, USA. Association for Computing
Machinery. p. 434–444.

https://doi.org/10.1007/978-3-319-79108-1_1

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K. & Nakano, K. (2010) Bidirectionalizing graph
transformations. Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming. New York, NY, USA. Association for Computing Machinery. p. 205–216.

Hofmann, M., Pierce, B. & Wagner, D. (2011) Symmetric lenses. Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York, NY,
USA. Association for Computing Machinery. p. 371–384.

Hofmann, M., Pierce, B. & Wagner, D. (2012) Edit lenses. Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York, NY, USA.
Association for Computing Machinery. p. 495–508.

Hu, Z., Iwasaki, H. & Takeichi, M. (1996) Deriving structural hylomorphisms from recursive
definitions. Proceedings of the First ACM SIGPLAN International Conference on Functional
Programming. New York, NY, USA. Association for Computing Machinery. p. 73–82.

Ko, H.-S. & Hu, Z. (2018) An axiomatic basis for bidirectional programming. Proceedings of the
45th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
New York, NY, USA. Association for Computing Machinery.

Ko, H.-S., Zan, T. & Hu, Z. (2016) Bigul: A formally verified core language for putback-based bidi-
rectional programming. Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation. New York, NY, USA. Association for Computing Machinery. p.
61–72.

Matsuda, K., Hu, Z., Nakano, K., Hamana, M. & Takeichi, M. (2007) Bidirectionalization trans-
formation based on automatic derivation of view complement functions. Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA.
Association for Computing Machinery. p. 47–58.

Matsuda, K. & Wang, M. (2015) Applicative bidirectional programming with lenses. Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming. New York, NY,
USA. Association for Computing Machinery. p. 62–74.

Matsuda, K. & Wang, M. (2015) ”bidirectionalization for free” for monomorphic transformations.
Sci. Comput. Program. 111(P1), 79–109.

Matsuda, K. & Wang, M. (2018) Hobit: Programming lenses without using lens combinators.
European Symposium on Programming. Springer. pp. 31–59.

Matsuda, K. & Wang, M. (2020) Sparcl: A language for partially-invertible computation. 4(ICFP).
Pacheco, H. & Cunha, A. (2010) Generic point-free lenses. Proceedings of the 10th International

Conference on Mathematics of Program Construction. Berlin, Heidelberg. Springer-Verlag. p.
331–352.

Pacheco, H. & Cunha, A. (2011) Calculating with lenses: Optimising bidirectional transforma-
tions. Proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation. New York, NY, USA. Association for Computing Machinery. p. 91–100.

Stevens, P. (2008) A landscape of bidirectional model transformations. Generative and
Transformational Techniques in Software Engineering II: International Summer School, GTTSE
2007, Braga, Portugal, July 2-7, 2007. Revised Papers. Berlin, Heidelberg. Springer Berlin
Heidelberg. pp. 408–424.

Stevens, P. (2014) Bidirectionally tolerating inconsistency: Partial transformations. Fundamental
Approaches to Software Engineering. Berlin, Heidelberg. Springer Berlin Heidelberg. pp. 32–46.

Stevens, P. (2020) Maintaining consistency in networks of models: bidirectional transformations in
the large. Software and Systems Modeling. 19(1), 39–65.

Tran, V.-D., Kato, H. & Hu, Z. (2020) Birds: Programming view update strategies in datalog. 46th
International Conference on Very Large Data Bases. VLDB Endowment. p. 2897–2900.

Tsigkanos, C., Li, N., Jin, Z., Hu, Z. & Ghezzi, C. (2020) Scalable multiple-view analysis of
reactive systems via bidirectional model transformations. Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. New York, NY, USA. Association
for Computing Machinery. p. 993–1003.

Voigtländer, J. (2009) Bidirectionalization for free! (pearl). Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York, NY, USA.

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

Journal of Functional Programming 37

Association for Computing Machinery. p. 165–176.
Voigtländer, J., Hu, Z., Matsuda, K. & Wang, M. (2010) Combining syntactic and semantic bidi-

rectionalization. Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming. New York, NY, USA. Association for Computing Machinery. p. 181–192.

Xia, L.-y., Orchard, D. & Wang, M. (2019) Composing bidirectional programs monadically.
European Symposium on Programming. Springer. pp. 147–175.

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

38 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

1 Calculating with Total Lenses

It is possible to make bmap total:

bmaptotal : A → (A ↔ B)→ ([A]↔ [B])

bmaptotal a0 ℓ= Lens (map getℓ) p
where p [] = []

p (x : xs) (y : ys) = putℓ x y : p xs ys
p [] (y : ys) = putℓ a0 y : p [] ys

The additional parameter a0 is used as a default source value.
One can develop an associated map fusion law for it:

getℓ1
a0 = b0

bmaptotal a0 ℓ1; bmaptotal b0 ℓ2 = bmaptotal a0 (ℓ1; ℓ2)
BMAPTOTAL FUSION

However, this law requires getℓ1
a0 = b0, a semantic condition on default values, which is

an unwanted proof obligation to program calculators and optimisers.

2 Equivalent Implementation of Combinators

This appendix shows the code for equivalent implementations of some contract-lens
combinators in Section 5.

2.1 Efficient bfoldr

This section shows an efficient implementation of bfoldr.

bfoldr ℓ= CLens (foldr′ getℓ) p ctrue ctrue
where p as b′ = let bs = tail (scanr (λa b → getℓ (Right (a, b))) (getℓ (Left ())) as)

in go as bs b′

go [] [] b′ = case putℓ (Left ()) b′ of
Left ()→ []

Right (a′, bim′)→ a′ : go [] [] bim′

go (a : as) (bim : bs) b′ = case putℓ (Right (a, bim)) b′ of
Left ()→ []

Right (a′, bim′)→ a′ : go as bs bim′

2.2 Implementation of bmap and bmap′ with bfoldr′

This section shows how to use bfoldr′ to implement bmap and bmap′.

bmap : ({ctrue} S ↔ V {ctrue})→ ([S]↔ [V])

bmap ℓ= bfoldr′ ctrue eqlength ℓ′

where
ℓ′ :: Either () (S, [V])↔ [V]

ℓ′ = CLens g p (lift ctrue eqlength) eqlength
g (Left ()) = []

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

Journal of Functional Programming 39

g (Right (a, bs)) = getℓ a : bs
p (Left ()) [] = Left ()
p (Right (a,)) (a′ : bs′) = Right (putℓ a a′, bs′)

bmap′ : (S ↔ V)→ ([S]↔ [V])

bmap′ ℓ= bfoldr′ csℓ (licond cvℓ) ℓ′

where
ℓ′ :: Either () (S, [V])↔ [V]

ℓ′ = CLens g p (lift csℓ (licond cvℓ)) (licond cvℓ)
g (Left ()) = []

g (Right (a, bs)) = getℓ a : bs
p (Left ()) [] = Left ()
p (Right (a,)) (a′ : bs′) = Right (putℓ a a′, bs′)

3 Examples for Combinators

This appendix shows examples for some contract-lens combinators and calculation laws in
Section 5 and Section 6.

3.1 Computation Instances of bmaximum

This section shows two calculation instances of the bmaximum example in Section 5.1. Let
us assume that getbmaximum [9, 2, 5] yields 9, and suppose that the output 9 is changed to 4.
Now the following calculation shows how this change is reflected back to the input [9, 2, 5]
and get [4, 2, 4].

putbmaximum [9, 2, 5] 4

= { since putbmax (Right (9, getbmaximum [2, 5])) 4 = Right (4, 4) }
4 : putbmaximum [2, 5] 4

= { since putbmax (Right (2, getbmaximum [5])) 4 = Right (2, 4) }
4 : 2 : putbmaximum [5] 4

= { since putbmax (Right (5, getbmaximum [])) 4 = Right (4,−∞) }
4 : 2 : 4 : putbmaximum [] (−∞)

= { since putbmax (Left ()) (−∞) = Left () }
4 : 2 : 4 : []

Also, we can change the output 9 to a bigger value such as 10 and put it back to the input
[9, 2, 5], which is shown in the following calculation.

putbmaximum [9, 2, 5] 10

= { since putbmax (Right (9, getbmaximum [2, 5])) 10 = Right (10, 5) }
10 : putbmaximum [2, 5] 5

= { since putbmax (Right (2, getbmaximum [5])) 5 = Right (2, 5) }

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

10 : 2 : putbmaximum [5] 5

= { since putbmax (Right (5, getbmaximum [])) 5 = Right (5,−∞) }
10 : 2 : 5 : putbmaximum [] (−∞)

= { since putbmax (Left ()) (−∞) = Left () }
10 : 2 : 5 : []

3.2 Example of bmap′

The following defines a bidirectional version for map (∗2) : [Int]→ [Int] where the result
list only contains even numbers.

bdoubles : [Int]↔ [Int]
bdoubles = bmap′ bdouble

where bdouble : Int ↔ Int
bdouble = CLens (∗2) (λ v′ → div v′ 2) ctrue (λ b → mod b 2 = 0)

3.3 Example of bmapl

With the help of bmapl, we are able to handle any constraint on adjacent elements of
a list, such as partial order relations. Consider a unidirectional computation map (λx →
mod x 10) ◦ sort : [Int]→ [Int], which sorts the list first and then applies the modulo 10
operation on each element. The sort can be bidirectionalized as follows using some
auxiliary functions from the Data.List module of Haskell:

bsort : [Int]↔ [Int]
bsort = CLens sort p ctrue (λ t as → (∀ 1 < i ≤ |as|. asi−1 ≤ asi) ∧ eqlength t as)

where
p s v = let positions = map fst $ sortOn snd (zip [0 . .] s) in

map snd $ sortOn fst (zip positions v)

Thus, the backward transformation of map (λx → mod x 10) should produce a sorted list.
With the help of bmapl, we can write a bidirectional version for map (λx → mod x 10) as
follows.

bmapl (≤) ctrue (−∞) bmod10 : [S]↔ [V]

where
bmod10 : (a : S)⇒ (S ↔ V)

bmod10 a = CLens (λx → mod x 10) p (λ a′ → a ≤ a′) ctrue
where p x y = if mod x 10 = y then go x else go y

go x = if x > a then x else go (x + 10)

Now we have bsort; bmapl (−∞) bmod10 : [Int]↔ [Int] which synchronizes a list with the
result list of each element modulo 10 after it is sorted.

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

Journal of Functional Programming 41

3.4 Example of bfoldlinit

In this example, we give a bidirectional version of the computation of prefix sums. An
intuitive implementation of prefix sums is map (foldl (+) 0) ◦ inits. With the help of bmapl
and bfoldlinit, we can easily bidirectionalize it as

bprefixSum =

binits; bmapl (λ s s′ → init s′ = s) ctrue [] (bfoldlinit ctrue 0 badd) : [Int]↔ [Int]

where the badd is defined as

badd : (b : Int)⇒ (Either () (Int, Int)↔ Int)
badd b = CLens g p (λ t′ → t′ = Right (, b)) ctrue

where g (Left ()) = 0
g (Right (x, y)) = x + y
p s = Right (s − b, b)

This implementation of bidirectional prefix sum fits our intuition that a list of integers
is isomorphic to its prefix sums. For example, getbprefixSum [1, 2, 3] yields [1, 3, 6], and
putbprefixSum [1, 2, 3] [4, 6, 8] yields [4, 2, 2] regardless of what the original list is.

This is a good example showing the expressive power of contract lenses in writing
specifications solving bidirectional programming problems: we can decompose a complex
bidirectional problem into subproblems and solve them independently. With the help of
contracts (source and view conditions), they can be composed safely to solve the original
problem.

3.5 Example of bscanl

Consider that we want to synchronize a list of integers with its prefix products. The forward
transformation is characterized by prefixProd = scanl′ (∗) 1 : [Int]→ [Int]. Note that there
is a constraint on the adjacent elements of the view list: the preceding element divides the
following element. This constraint can be expressed with the help of bscanl.

bprefixProd : ([Int]↔ [Int])
bprefixProd = bscanl (λb b′ → mod b′ b = 0) 1 bmul

where
bmul : (b : Int)⇒ (Either () (Int, Int)↔ Int)
bmul b = CLens g p (λ t′ → t′ = Right (, b)) (λ b′ → mod b′ b = 0)

where g (Left ()) = 1
g (Right (x, y)) = x ∗ y
p b′ = Right (div b′ b, b)

3.6 Example of Bidirectional Scan Lemma

We give a simple example which makes use of the BIDIRECTIONAL SCAN LEMMA to
derive an efficient bidirectional program from an inefficient one. Recall the bprefixSum

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42 Contract Lenses: Reasoning about Bidirectional Programs via Calculation

defined in Appendix 3.4 for calculating the prefix sums of a list. It has time com-
plexity O(n2). Applying the BIDIRECTIONAL SCAN LEMMA to it, we can derive
bscanl ctrue 0 badd, which has time complexity O(n) in both forward and backward
transformations.

	Introduction
	Program Calculation and the Challenge of Partiality
	Contributions

	Background: Program Calculation
	Specification with Folds
	Algebraic Laws
	A Calculational Example

	Overview
	Taming Partiality with Contract Lenses
	Calculation with Contract Lenses

	Contract Lenses
	Contract Lenses
	Composition of Contract Lenses
	Equivalence of Contract Lenses

	Contract-Lens Combinators
	Bidirectional Fold
	Bidirectional Fold : Preserving Length and Transmitting Constraints
	Bidirectional Filter

	Bidirectional Map
	Bidirectional Map: Preserving Length
	Bidirectional Map: Preserving Inner Constraints
	Bidirectional Map: Preserving Constraints on Adjacent Elements
	Bidirectional Map using Inner Bidirectional Fold

	Bidirectional Scan

	Bidirectional Calculation Laws
	Bidirectional Fold Fusion
	Bidirectional Map Fusion
	Bidirectional Fold-Map Fusion
	Bidirectional Scan Lemma

	Examples
	Projection onto a Hyperplane
	String Formatting and Processing
	String Formatting
	String Encoding and Decoding

	Bidirectional Maximum Segment Sum

	Related Work
	Lens Family and Partiality of put
	Formulation of Contracts and Relation to Type Systems
	Edit Lenses
	Totality with Maybe Monad
	Other Discussions

	Hoare-style Reasoning of Bidirectional Transformation
	Bidirectionalization
	Calculating with Lenses

	Formalisation with Agda
	Conclusion
	Calculating with Total Lenses
	Equivalent Implementation of Combinators
	Efficient bfoldr
	Implementation of bmap and bmap' with bfoldr'

	Examples for Combinators
	Computation Instances of bmaximum
	Example of bmap'
	Example of bmapl
	Example of bfoldlinit
	Example of bscanl
	Example of Bidirectional Scan Lemma

