
Bridging the Gap between Different Programming Paradigms in
Coverage-based Fault Localization

Feng Li
MoE Key Laboratory of HCST,
School of Computer Science,

Peking University
Beijing, China

lifeng2014@pku.edu.cn

Meng Wang
Department of Computer Science,

University of Bristol
Bristol, UK

meng.wang@bristol.ac.uk

Dan Hao∗
MoE Key Laboratory of HCST,
School of Computer Science,

Peking University
Beijing, China

haodan@pku.edu.cn

ABSTRACT
Fault localization is to identify faulty program elements. Among
the large number of fault localization approaches in the literature,
coverage-based fault localization, especially spectrum-based fault
localization has been intensively studied due to its effectiveness
and lightweightness. Despite the rich literature, almost all existing
fault localization approaches and studies are conducted on impera-
tive programming languages such as Java and C, leaving a gap in
other programming paradigms. In this paper, we aim to study fault
localization approaches for the functional programming paradigm,
using Haskell language as a representation. We build up the first
dataset on realHaskell projects including both real and seeded faults,
which enables the research of fault localization for functional lan-
guages. With this dataset, we explore fault localization techniques
for Haskell. In particular, as typically for SBFL approaches, we study
methods for coverage collection as well as formulae for suspicious-
ness scores computation, and carefully adapt these two components
to Haskell considering the language features and characteristics,
resulting in a series of adaption approaches and a learning-based
approach, which are evaluated on the dataset to demonstrate the
promises of the direction.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
debugging, fault localization, programming paradigms, Haskell
ACM Reference Format:
Feng Li, Meng Wang, and Dan Hao. 2022. Bridging the Gap between Dif-
ferent Programming Paradigms in Coverage-based Fault Localization. In
13th Asia-Pacific Symposium on Internetware (Internetware 2022), June 11–12,
2022, Hohhot, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3545258.3545272
∗Corresponding author
HCST: High Confidence Software Technologies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Internetware 2022, June 11–12, 2022, Hohhot, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9780-3/22/06. . . $15.00
https://doi.org/10.1145/3545258.3545272

1 INTRODUCTION
Fault localization (FL) [8, 32, 43, 46] aims to automatically diag-
nose faulty program elements (e.g., classes and methods). More
specifically, fault localization techniques often leverage various
static and/or dynamic program analysis information to compute
suspiciousness scores (i.e., likelihood of being faulty) for each pro-
gram element, which can be then ranked as candidates for repair-
ing [12, 40, 45]. To date, researchers have proposed to leverage
various information to facilitate fault localization, among which,
coverage-based fault localization has been intensively studied due
to its effectiveness and lightweightness for real-world applica-
tions [2, 19, 42, 49].

Spectrum-based fault localization (SBFL) [1, 19, 42] identifies
faulty program elements by statistically analyzing coverage of failed
and passed tests. In particular, SBFL represents coverage by the
numbers of failed and passed tests covering each program element,
and regards the elements covered by more failed tests and less
passed tests as more suspicious. Over the years, a lot of research
has gone into this [2, 27, 31, 42].

Despite this rich literature, almost all existing fault localization
techniques and studies are conducted on imperative programming
languages such as Java and C. There are a variety of reasons behind
this phenomenon, some entirely rational and others less so. It is
clear that a few imperative languages dominate software develop-
ment and thus techniques based on them will have the most impact.
Moreover, there is a practical concern of evaluating the research,
especially when the data needed is hard to collect. Follow-on work
tends to stick to the same languages to reuse the datasets.

This lack of language coverage is increasingly a concern amid the
current trend of multi-language and multi-paradigm programming.
In additional to the mainstream imperative languages, companies
like WhatsApp, Facebook, and Standard Chartered now use func-
tional languages in large scale. Ideas originated from functional
programming such as lambda expressions, higher-order functions,
list structure and generics have made their way into the design of
many modern programming languages including Java, C, and C#.
If widely used, these language features will lead to programs sub-
stantially different in structure. Therefore, even for conventional
imperative languages, we can no longer safely assume the effective-
ness of techniques developed solely for one language paradigm.

In this paper, we aim to diverge from the well-travelled path and
study fault localization techniques for the functional programming
paradigm. Specifically, we use Haskell [20] as a representation of
the paradigm for its popularity and uncompromising functional
style that is free of imperative features such as side effects and

75

https://doi.org/10.1145/3545258.3545272
https://doi.org/10.1145/3545258.3545272
https://doi.org/10.1145/3545258.3545272
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545258.3545272&domain=pdf&date_stamp=2022-09-15

Internetware 2022, June 11–12, 2022, Hohhot, China Feng Li, Meng Wang, and Dan Hao

assignment. As mentioned above, the rise of multi-paradigm lan-
guages has blurred the traditional boundaries, and paradigm has
become more of a programming style rather than language dis-
tinction. Our hope is that by choosing a very “pure” language like
Haskell, we can better isolate and contrast the differences affecting
fault localization.

Having this very distinctive aim does not mean that we will
start from scratch, disregarding the wealth of knowledge in this
field accumulated through decades of intensive research. It is only
right if we stand on the shoulders of giants, and carefully examine
existing results in the new setting to identify gaps in applicability,
before trying to bridge them. In this paper, we do exactly this.

As a first step, we build up the first dataset containing two types
of faults (real and seeded) in Haskell. For real faults, we inspect the
development history of popular open-source projects to handpick
relevant bug-fixing issues, and construct versions of the projects
representing the faulty and fixed versions of the selected issues. For
seeded faults, we use a mutation analysis library [23] to generate
mutants. For each faults collected, we run the real tests that come
with the project to collect coverage data of each test.

The significance of the dataset is that it for the first time en-
ables one to explore fault localization techniques for functional
languages. We start with adapting existing SBFL approaches to
Haskell and test their effectiveness. Briefly speaking, an SBFL ap-
proach includes two parts: the method of coverage collection and
the formula for computing suspiciousness score; we will need to
adapt both to the functional context. Neither of the adaption is
trivial though. Functional programs are typically structured very
differently from imperative ones, which impacts the definition of
coverage criteria and collection of data. The formula for comput-
ing suspiciousness score is more abstract and not directly affected
by syntactic differences. Yet we do not expect the same level of
effectiveness can be achieved by simply imposing the formulae and
techniques conceived and verified in the imperative setting directly
to the functional setting.

Of course, it is unrealistic to expect this work alone to supersede
the decades of research in the imperative setting. But we do aim
to clearly identify the gaps through a series of experiments and
establish a new research direction justified by evidence of improve-
ments. To sum up, this paper makes the following contributions:
(1) The first work that identifies the fault localization problem in
functional programming languages and the first attempt to bridge
the gap between different programming paradigms in coverage-
based fault localization. (2) A dataset in Haskell that contains both
real faults and seeded faults, which is put on our website https:
//github.com/Spiridempt/HaFLa [16]. The dataset also contains
the coverage information of each test. (Section 4) (3) A series of
adaption approaches of SBFL to the functional setting and a study
evaluating the effectiveness of them. (Section 5) (4) A learning-
based approach for establishing the relationship between coverage
information and fault location. (Section 6)

2 PRELIMINARY: COVERAGE-BASED FAULT
LOCALIZATION

In the literature, researchers have proposed a large number of fault
localization techniques, e.g., coverage-based techniques [2, 19, 42],

mutation-based techniques [30, 33], and predicate switching based
techniques [48]. Among these techniques, coverage-based fault
localization has been intensively studied due to its effectiveness and
lightweightness for real-world systems [49]. Therefore, in this paper,
we investigate coverage-based fault localization across different
programming paradigms.

Coverage-based fault localization is usually proposed and evalu-
ated in imperative programming languages, whose basic program
elements are statements. Intuitively, a statement covered by more
failed tests and less passed tests is more likely to be faulty. Fol-
lowing this intuition, a large number of spectrum-based fault lo-
calization approaches (abbreviated as SBFL) have been proposed
in the literature and they are the most prominent coverage-based
fault localization approaches. In particular, an SBFL approach first
abstracts test coverage information on each statement e into the
number of failed tests covering e (i.e., ef) or not covering e (i.e., nf),
and the number of passed tests covering e (i.e., ep) or not covering e
(i.e., np), and computes suspiciousness scores (probability of being
faulty) of each statement based on the number of passed/failed tests
that cover it. Then SBFL outputs a ranked list of statements based
on the descendent order of their suspiciousness scores.

Following this idea, based on the same spectrum tuple values (i.e.,
ef ,nf , ep ,np), these SBFL approaches differ in their ranking formu-
lae. Among the formulae, Ochiai [2], DStar [42], and Tarantula [19]
are of the most effective ones. Moreover, these SBFL approaches
are usually presented and evaluated in imperative programming
languages whose granularity includes statements, methods, and
branches. Furthermore, as SBFL approaches based on method cover-
age results in many ties, Sohn and Yoo [38] proposed to propagate
the suspiciousness scores of a method based on its statements, i.e.,
using themaximum suspiciousness scores of all involved statements
for a method, and this propagation-based approach achieves better
fault localization results on the method level than the existing SBFL.

3 COVERAGE-BASED FAULT LOCALIZATION
FOR HASKELL

Although the existing coverage-based fault localization techniques
are not proposed explicitly for imperative programming languages,
their techniques (especially the coverage information) are given
based on program elements of imperative programming languages,
e.g., statements and methods. Therefore, it is not clear whether
these techniques can be applied to other programming languages,
e.g., functional programming languages.

Recently, declarative programming, especially functional pro-
gramming, became popular. Moreover, many software companies
like Facebook, Twitter, and LinkedIn directly use functional pro-
gramming languages likeHaskell in their development. That is, first,
Haskell is widely used in advanced software development. Second,
Haskell is popular and has uncompromising functional style that
is free of imperative features such as side effects and assignment.
Our hope is that by choosing a very “pure” language like Haskell,
we can better isolate and contrast the differences affecting fault
localization. Third, in the literature, few work investigated Haskell
project debugging, including fault localization. Therefore, in this
paper, we take Haskell as an example of functional programming
languages, and study coverage-based fault localization for Haskell.

76

https://github.com/Spiridempt/HaFLa
https://github.com/Spiridempt/HaFLa

Bridging the Gap between Different Programming Paradigms in Coverage-based Fault Localization Internetware 2022, June 11–12, 2022, Hohhot, China

3.1 Gaps between Different Programming
Paradigms

Haskell is a purely functional programming language, which is char-
acterized by composing of expressions and being executed through
evaluating expressions. Compared with imperative programming
languages like Java and C, Haskell has many characteristics (e.g.,
recursion and pattern matching, type classes, higher-order func-
tions, lazy evaluation, and program construct), which make it hard
to use coverage-based fault localization directly.

3.1.1 Recursion and Pattern Matching.
Functional programs are usually defined by recursion: functions

call themselves in the definitions; and when the calls return, the
values are used as components for constructing new return values.

This programming style results in a very different (usually more
succinct) code structure compared to the imperative style with
iterative loops and explicit manipulation of pointers, which may
require a different level of effort in achieving high code coverage.

3.1.2 Type Classes.
In functional programming, a type class [17] is a sort of interface

that defines some behavior. If a type is a part of a type class, that
means that it supports and implements the behavior the type class
describes. Take the first line in Listing 1 as an example: we want to
see the type signature of function == and find it is (Eq a) => a ->
a -> Bool. Here, we can first read the type declaration like this:
the equality function takes any two values that are of the same type
and returns a Bool. Then, the (Eq a) is called a class constraint,
which means the type of those two values must be a member of the
Eq class. In fact, the Eq type class provides an interface for testing
for equality, and any type where it makes sense to test for equality
between two values of that type should be a member of the Eq class.
Another example is the second line in Listing 1, where the elem
function uses == over a list to check whether some value we are
looking for is in it.

As a special feature in functional programming, Type classes
make it harder to conduct fault localization. In fact, type classes
belong to the type signature and are like pre-conditions of a func-
tion, which are not expressions and cannot be evaluated during
execution. At the same time, the impact of type classes is hidden to
some extent, which may influence far-away code. Therefore, this
adds difficulty to coverage-based fault localization.

Listing 1: Example
1 (==) :: (Eq a) => a -> a -> Bool
2 elem :: (Eq a) => a -> [a] -> Bool
3 insertList ks tree = foldr insert tree ks
4 mysum :: Int -> Int -> Int
5 mysum x y = x + y
6 mymax :: Int -> Int -> Int
7 mymax x y
8 | x > y = x
9 | otherwise = y

3.1.3 Higher-Order Functions.
One feature of functional programming that turns out to be

influential is high-order functions, which take other functions as
arguments and/or produce functions as return results. For example,
fold is a pattern that captures structurally inductive computation,
where a function is applied to each structure layer and returns

the accumulated result. We can define a function insertList that
inserts a list of elements into a tree as shown in the forth line in
Listing 1. It iterates through the key list and performs the insertions
one by one, and then returns the final tree with the inserted keys.

In the context of testing, the use of higher-order functions adds
difficulty to fault localization. On one hand, functions as arguments
make the program structure more complex, and the function calls
make the program tracemore complex. On the other hand, functions
like insertList have extremely short definitions, which puts the
effectiveness of coverage in doubts, as it becomes trivial to cover
the program.

3.1.4 Immutable Data and Lazy Evaluation.
Another feature in functional programming is referential trans-

parency or purity, which means the symbol = represents true equal-
ity instead of a destructive update in imperative programming.
Consequently, there is no concept of system state in functional
programming; the behavior of a function is completely determined
by its definition and the arguments passed to it.

Haskell uses the call-by-need evaluation strategy (also known
as laziness), which delays the evaluation of an expression until its
value is needed. For example, if we only need the head of a list,
then the expressions that compute the rest of the list structure will
not be evaluated.

3.1.5 Program Construct.
A Haskell program is composed of functions, which consist of

expressions instead of statements, which results in the difference
of localization granularity between imperative and functional pro-
gramming languages. The structure of a Haskell program is rela-
tively simple, containing only functions. Functions are the most
basic and important component in Haskell programs. Within a
function, there is no statement, just expressions. In fact, expres-
sions can be nested, which means one expression can contain other
smaller expressions and multiple expressions can make up a bigger
expression. We give an example in Listing 1 to explain the char-
acteristics of Haskell and our work all through the paper. In this
example, within the function mysum, there are three expressions:
x, y, and x + y.

Since there is no construct in Haskell that is equivalent to im-
perative statement, there is no construct coverage in Haskell that
is equivalent to statement coverage in imperative languages [9].
Therefore, the existing statement-coverage based fault localization
techniques cannot be applied directly to Haskell at all, indicating
some adaption is needed to bridge the gap between programming
paradigms in coverage-based fault localization.

3.2 Adaption Approaches from Imperative to
Functional Programming Languages

Program coverage is a snapshot for test execution, ignoring pro-
gram structures, and is useful in both imperative and functional
programming [9]. Therefore, we regard it as one of the bridges
between imperative programming languages and Haskell in fault
localization. More specifically, this paper targets fault localization
for Haskell on functions, because functions are the basic element
of a Haskell program. Compared with the other constructs of a

77

Internetware 2022, June 11–12, 2022, Hohhot, China Feng Li, Meng Wang, and Dan Hao

Haskell program (i.e., files and expressions), functions are semanti-
cally independent units in Haskell programs, while file granularity
is too coarse to provide insightful information and expressions are
nested so as to be too short (a token) or too long (a function).

According to Section 3.1, the existing coverage-based fault lo-
calization techniques cannot be applied directly to Haskell pro-
grams since no construct coverage in Haskell is equivalent to state-
ment coverage in imperative languages [9]. Following the existing
work [9], we map the method coverage in imperative programming
languages to function coverage in Haskell and the statement cover-
age in the former to expression coverage in Haskell. Moreover, due
to the existence of nested expressions (i.e., an expression contains
sub-expressions), the expression coverage is defined as a set of
expressions that are covered by a given test suite, including all sub-
expressions, which is also consistent with previous work [13]. This
mapping enables the adaption of coverage-based fault localization
for Haskell, which is given in Section 3.2.1 and Section 3.2.2.

Another thing to emphasize is how to deal with different types
of tests. Tests in Haskell consist of unit tests and property-based
tests. Unit testing is a type of software testing where individual
units or components of a software are tested. However, in property-
based testing, instead of writing specific testing inputs and ora-
cles, developers write the properties that a function should satisfy.
Property-based testing can reduce the efforts to write specific tests
and consider various corner cases. On the contrary, the testing
engine can automatically generate a large quantity of tests and
automatically verify them. In our work, when collecting program
coverage, we regard a property as a unit test and collect the cover-
age after all of its generated testing inputs are run.

3.2.1 Function Coverage based Approach.
We first adapt the existing coverage-based fault localization tech-

niques to Haskell by changing the coverage information. That is,
for each function e , we compute its suspiciousness score based on
the formula of a SBFL technique (e.g., Ochiai) and rank functions in
the descendent order of their suspiciousness scores. This approach
is called Function Coverage Based Approach (FCBA) hereafter.

3.2.2 Propagation based Approach.
Similarly, we adapt the propagation-based technique to Haskell

by changing the structure coverage. In particular, for each func-
tion f consisting of expressions e1, e2, ..., em (considering all sub-
expressions), we compute the suspiciousness score of each expres-
sion and take a series of statistics on these scores as the suspi-
ciousness scores of the function. In particular, the statistics used
in our adaption include (1) maximum, (2) mean, (3) median, (4) the
largest, 2nd largest, ... In our approach, we first directly adapt the
propagation approach, which means we use the maximum score as
the score of a function. This approach is called Propagation Based
Approach (PBA) hereafter. Then, we notice that ties often occur
in coverage-based fault localization in imperative programming
paradigms, which means two program elements have the same
suspiciousness scores. Therefore, we use the other three statistics
to break the possible ties. Moreover, to reduce the computation cost
in breaking the ties, these statistics are used only when ties occur.
In other words, only when two functions share the same maximum
scores, their other statistics are computed to distinguish them. This
approach with Tie Breaking is called PBA_TB hereafter.

4 BENCHMARK CONSTRUCTION
To our knowledge, there is no fault localization benchmark in
Haskell. Therefore, we manually build the first benchmark for
Haskell, including real projects with real faults. To enlarge the
number of faults, we also add seeded faults in this benchmark.
To facilitate the usage of this benchmark, we collect coverage in-
formation, including function coverage and expression coverage.
This benchmark is called HaFLa (abbreviation of Haskell Fault
Localization Dataset) hereafter, whose construction takes about
four man-months, and the benchmark is shared on our website [16].

4.1 Projects
The build process is similar to Defects4J [21], a dataset contain-
ing real faults in Java, which is widely used in software testing
research [22, 24, 34]. We construct this benchmark based on popu-
lar open-source projects from GitHub. In general, we first collect
Haskell projects on their popularity and then remove the ones with
problems in building, testing, or coverage collection process. The
detailed process of project selection is given below.

Step 1: We identify the Top-50 popular projects whose primary
programming language is Haskell. Here, we use the built-in lan-
guage identification logic provided by GitHub1. Then, we rank
them according to the number of stars, which is often used as an
indicator of popularity [5, 36]. The ranking date is Oct. 24, 2021.

Step 2: For each project, following the official guide, we try to
build it on our server locally. We find that most Haskell projects
take the usage of Stack2 as the build tool, which can automate the
development process just like Java build tools such as Maven3,
Ant4, and Gradle5. Therefore, to reduce the manual efforts, we only
consider Haskell projects that use Stack. Moreover, some projects
are discarded because they are not built successfully on our server
due to the dependency and requirement issues of some specific
version of GHC (Haskell compiler), Cabal (Haskell build tool), or
GCC (C compiler). There are 43 projects remaining in total.

Step 3: We then focus on the tests of remaining projects. We first
exclude projects that do not have tests. Then, we have requirements
for the testing framwork for each project. For example, Tasty6 is a
modern testing framework for Haskell. It lets developers combine
unit tests, golden tests, QuickCheck/SmallCheck properties, and
any other types of tests into a single test suite. For other 31 projects,
as we need to collect the detailed coverage information of each
test, the testing framework is supposed to support the functionality
to run each test separately. For instance, Tasty provides a pattern
matching feature, which can match the test description and run the
selected tests. In this step, if we cannot run single test, the project
is discarded (19 remaining).

Step 4: Next, we exclude projects whose coverage information
cannot be collected successfully by Haskell Program Coverage
(HPC) [13], which is a high-fidelity and widespread-used code cov-
erage tool for Haskell. More details on coverage collection is given
in Section 4.4.

1https://github.com/github/linguist
2https://www.haskellstack.org
3https://maven.apache.org
4https://ant.apache.org
5https://gradle.org
6https://hackage.haskell.org/package/tasty

78

https://github.com/github/linguist
https://www.haskellstack.org
https://maven.apache.org
https://ant.apache.org
https://gradle.org
https://hackage.haskell.org/package/tasty

Bridging the Gap between Different Programming Paradigms in Coverage-based Fault Localization Internetware 2022, June 11–12, 2022, Hohhot, China

That is, initially we collect 50 popular Haskell projects, and then
we remove 7 projects due to building problems, 24 projects due to
test problems, and 16 projects due to coverage collection problem.
Finally, we have only three projects, namely Pandoc, Hadolint, and
Duckling. In other words, a large number of projects are removed
in benchmark construction, and this phenomenon may raise the
attention on software engineering support in Haskell community.

4.2 Real Faults
For each project we collect its real faults based on the develop-
ment history recorded in GitHub, and construct faulty projects by
injecting these faults.

Step 1: We first collect all closed issues (reported by Oct. 30,
2020) that are labelled by “bug”, “fault”, or “defect” (case insensi-
tive), which may be related to faults. Then we manually check the
contents of these issues to remove the ones irrelevant to faults, and
finally get a set of issues reporting faults.

Step 2: For each of these issues, we manually check its contents
and the corresponding commit(s) to identify the fault reported by
the issue. In particular, the relevant commit(s) contain the reported
fault-fixing patch. At the same time, developers often add or modify
one or more tests that could reveal the fault in relevant commit(s).
However, developers may make more modification besides fault fix-
ing in one commit, e.g., refactoring and adding features. Therefore,
we manually isolate fault-fixing modification and the added/modi-
fies test(s).

Step 3: Next, we construct faulty and fixed versions for each
fault. In particular, for each fault, we construct a faulty version and
its corresponding fixed version by analyzing its relevant commit(s)
(mentioned in Step 2), so that the faulty version contains the code
before modifying and the fixed version contains the code after
modifying. At the same time, the added/modified test(s) are kept in
both versions. To guarantee the correctness of manual construction,
we verify the testing results on the faulty and fixed version. In
particular, all tests in the fixed version are passed, indicating the
correctness of the fixed version, while at least one test in the faulty
version is failed, indicating the reveal of the fault. Faults that violate
the above expectations are regarded unreproducible and discarded.

Similar to the project selection process (in Section 4.1), we further
remove the faulty programs with problems in building, testing, or
coverage collection process, and finally have 31 real faults in all 3
subjects. The detailed information is listed on our website [16]. For
each fault, we report the corresponding issue number and commit
SHA(s) for readers to check the fault-fixing context (e.g., bug report
and discussions). We also give the number of tests and failing tests
for each fault. As we can see, our dataset is very diverse: SLOC
ranging from 867 to 182,171 and #Tests ranging from 71 to 2,176.
The constructed diverse dataset gives us the opportunity to conduct
more analysis in various cases. Additionally, comparedwith existing
dataset (Defects4J in Java, Siemens, grep, gzip,make in C), the SLOC
and #Tests of our dataset are as large as them.

4.3 Seeded Faults
Although we try our best to collect real faults in open-source sub-
jects, due to the lack of mature software engineering tools inHaskell

community, the number of collected real faults is still small. There-
fore, we construct seeded faults as a supplement.

In imperative programming languages such as Java, people of-
ten generate seeded faults by mutation testing [18]. That is to say,
certain mutation testing tools slightly modify the original program
according to some pre-defined rules (mutation operators) and gen-
erate new programs (mutants) to simulate faulty programs, where
the modifications are simulated faults. In our scenario, we use
MuCheck [23] to generate mutants for Haskell programs. It does
this by parsing the Haskell source, and replacing a few common
Haskell functions and operators with other similar functions and op-
erators, and running the test suite to check whether the difference
has been detected.

In our experiments, we slightly modify MuCheck so that it gen-
erates mutants instead of giving a mutation score. Specifically, we
use all mutation operators provided by MuCheck, including (1)
re-ordering for pattern matching, e.g., exchanging the order of two
patterns in a function, (2) mutation of lists and list expressions, e.g.,
replacing a list with the identity element (empty list), replacing
l1 ++ l2 with l2 ++ l1, l1, or l2, and (3) type-aware function
replacement, i.e., replacing any functions with all type-equivalent
functions. Further, like previous work [9], we configure MuCheck
parameters by assigning lower weights to operators that mainly
generate equivalent mutants such as doMutatePatternMatches
and doMutateValues. The HEAD that we perform the mutation is
d5c13dd for Pandoc and e4e0354 for Hadolint.

To our knowledge, MuCheck is the only accessible mutation tool
for Haskell programs, but it is not maintained anymore since 2015
and cannot be applied to many Haskell projects, including some
Haskell files in our projects. Therefore, we discard those files in our
dataset. Then, for each project, we generate all mutants on usable
files and remove the mutants that cannot be killed by any tests, or
have problems in building, testing, or coverage collection process.

Finally, after filtering, we obtain 1,014mutants in total, consisting
of 96 in Pandoc and 918 in Hadolint. Similar to real faults, our seed
faults are also diverse. The SLOC is ranging from 2,911 to 73,756
with an average of 9,618, while the number of failing tests is ranging
from 1 to 22 with an average of 3.17.

4.4 Coverage Collection
To know which parts of the program each test executes, we need
to collect coverage information. Due to the lazy evaluation feature
of Haskell, its coverage is relatively difficult to collect. In this paper,
we use Haskell Program Coverage (HPC) [13] to collect coverage.
HPC is a high-fidelity code coverage tool for Haskell and includes
tools that instrument Haskell programs to record program coverage,
run instrumented programs, and display the coverage information
obtained.

In our HaFLa benchmark, we use HPC to collect the coverage of
all functions and all expressions in a program for each test. Specif-
ically, we instrument the source program and execute each test
separately. After each execution, we use the “hpc show” command
to get a formatted representation of coverage information and clear
the current coverage for the next execution.

We notice that in functional programming languages, especially
in Haskell community, the demand for high-quality coverage tool is

79

Internetware 2022, June 11–12, 2022, Hohhot, China Feng Li, Meng Wang, and Dan Hao

weaker than that in imperative programming languages. As a result,
HPC is not maintained anymore since 2016 and the applicability of
HPC is not very wide, which means it does not work in many cases.
Specifically, (1) HPC sometimes cannot instrument the program
because of unrecognized syntax; (2) the intrumentation details
(.mix files) are not matched with the recorded coverage number
(.tix files); (3) the coverage information cannot be converted to
be formatted; (4) the coverage information is incorrect, e.g., some
covered functions are shown to be uncovered. Because of these
reasons, many subjects are discarded as we state in Section 4.1,
Section 4.2, and Section 4.3.

5 STUDY OF THE PROPOSED ADAPTION
APPROACHES

In this section, we conduct an experimental study on HaFLa to learn
the fault localization performance inHaskell using approaches given
by Section 3.2.

5.1 Experimental Setup
In this experimental study, we evaluate the gap-bridging approaches
between Haskell and imperative programming languages proposed
in Section 3.2. In particular, we implement three groups of adap-
tion approaches for Haskell and try to answer how effective these
approaches are.
Function coverage based approach (FCBA): We first directly
apply coverage-based fault localization approaches (given in Sec-
tion 3.2.1) with various SBFL formulae (i.e., Ochiai, DStar, Tarantula)
to the HaFLa benchmark. Due to space limit, we do not present
the fault localization results of all these formulae. We only present
the results on the Ochiai formula and the remaining results can be
found on our website [16].
Propagation based approach (PBA):We apply propagation-based
approach (given in Section 3.2.2) that computes the suspiciousness
scores of expressions with various SBFL formulae (i.e., Ochiai, DStar,
Tarantula) to the HaFLa benchmark, and present results on Ochiai
in this paper.
Propagation based approach with tie breaking (PBA_TB): As
ties are widely recognized to have unignorable influence on fault
localization [37, 39, 44], we further apply propagation-based ap-
proach with tie breaking strategies (given by Section 3.2.2), and
record the best result of the three comparison statistics.

Similar to the existing work on fault localization [3, 4, 25, 26, 28,
38, 47], in this experiment, we use Top-N and the ranking of the
faulty function as the metrics. In particular, Top-N [4, 25, 26, 28]
presents howmany faults (faulty functions) are successfully located
within the first N functions, and the ranking of the faulty function
presents how many functions are ranked before the faulty function
in the ranked list of suspicious functions. Moreover, if one fault
contains more than one faulty functions, we use the highest ranking
because developers could start the program repairing process once
given any faulty code fragment. Since there are only 31 real faults
in total, in this paper we present the fault localization results on
real faults in terms of ranking, while the results on seeded faults in
terms of Top-N (N=1,5,10,50). The whole fault localization results
on real and seeded faults in terms of these two metrics are given
our website [16].

5.2 Results and Analysis
The fault localization results of the proposed adaption approaches
are given by Tables 1, 2, and 3.

In Table 1, each row represents the results on one fault. The
first three columns show some basic information of each fault.
Specifically, Column “ID” gives the identification number of a fault,
Column “#Functions” gives the total number of functions in source
code, while Column “#Functions covered by failing test(s)” gives
the number of functions that are covered by at least one failing test,
which consist of potential faulty functions. The next four columns
present the gap-bridging approaches proposed in this paper. In par-
ticular, ”FCBA” represents the results on function coverage based
approach, “PBA” represents the results on propagation based ap-
proach, and “PBA_TB” represents the results on propagation based
approach with tie breaking. Moreover, ties often occur in the fault
localization results of imperative programming languages. To learn
the existence of ties in Haskell programs, we visualize the ties in
Table 1 by showing the ranking range of a faulty function. For
example, if a faulty function f has a suspiciousness score s(f), and
in total h(f) functions have higher suspicioussness scores than
f and tie(f) functions have the same suspicousness scores as f ,
we present the ranking result by a range between h(f) + 1 and
h(f)+ tie(f) in this table. In other words, tie(f) shows the number
of functions in a tie occurred in fault localization.

Tables 2 and 3 show the results on seeded faults, where the former
presents the overall results and the latter presents the results on
each project. Herewe only present statistics results on real fault, and
the detailed results on each fault can be found on our website [16].
If a tie occurs in a fault, we regard the fault-localization result to be
within Top-N if and only if the lowest ranking in the tie is within
Top-N. Under this representation, developers are able to find the
fault in no more than N tries definitely.

5.2.1 Analysis of FCBA. From Table 1, in most real faults, espe-
cially on larger subjects such as Pandoc and Duckling, the fault
localization results are not ideal: most rankings are not high and
few rankings are within Top-3. In fact, according to previous work
on fault localization in imperative programming languages, original
SBFL could achieve satisfying results. For example, on Java real
faults dataset Defects4J [21], Top-1, Top-3, Top-5 are 80, 165, and
196 out of 395, respectively. However, things are different in Haskell.
Although we can intuitively adapt SBFL to Haskell with only slight
modifications, the performance is not generally good.

In many cases such as P1 and P3, higher suspiciousness scores
are assigned to non-faulty functions. In many cases such as P5 and
P6, although the ranking of fault function is relatively high, there
exist multiple functions sharing the same suspiciousness scores,
which is also called “tie”.

From Tables 2 and 3, similar to real faults, the performance is
also not satisfying: among the total 1,014 faults, only 8 are within
Top-1 and only 110 are within Top-5. Table 3 presents results on
each subject. Although Hadolint is smaller than Pandoc, the Top-1
accuracy of its mutants is higher, which is contradictory to results in
Table 1, where real faults in Hadolint tend to have a higher accuracy.
After manual inspection, we find that the ties appear more often in
Hadolint, which lead to lower Top-1 accuracy.

80

Bridging the Gap between Different Programming Paradigms in Coverage-based Fault Localization Internetware 2022, June 11–12, 2022, Hohhot, China

Table 1: Results on real faults

ID #Functions #Functions covered
by failing test(s) FCBA PBA PBA_TB Learning

P1 5,747 261 68-69 11 11 7-8
P2 5,746 270 3-9 7-8 3 2
P3 5,537 249 34-105 4-5 4 5
P4 4,922 722 9-13 8-10 8 6
P5 4,725 827 19-55 30-57 16 16-20
P6 4,711 907 14-20 10-11 11 3-7
P7 4,691 706 33-37 9-17 10 7
P8 5,314 338 6-11 1 1 1
P9 4,691 708 13 7-10 7 5
P10 4,824 691 14 10-12 10 8
P11 4,253 801 3 1 1 1
P12 4,253 801 5-10 2-4 2 1
P13 4,229 801 10-16 3-7 3 2
P14 4,211 990 1 1 1 1-3
H1 181 13 1 1-2 1 1
H2 170 20 5-6 10 5 4
H3 170 16 5 1-7 3 3
H4 114 21 5-6 10 5 3
H5 110 18 3 1-6 1 1
H6 114 20 3 1-6 1 1
H7 114 19 7 1-5 2 2
H8 58 4 1 1 1 1
H9 57 5 1 1 1 1
H10 135 45 1 1 1 1
H11 128 42 1 1 1 1
H12 128 43 1 1 1 1
H13 128 40 2-3 3 2 2
H14 128 44 1-6 4-9 4 2
H15 188 29 9 10 6 5
D1 6,063 460 16-95 5-87 12 7
D2 5,572 471 2-126 1 1 1

Table 2: Results on seeded faults (overall)

Approach Overall
Top-1 Top-5 Top-10 Top-50 Total

FCBA 8 110 196 322 1,014
PBA 27 277 570 759 1,014

PBA_TB 83 440 719 835 1,014

Learning 86 458 750 890 1,014

Table 3: Results on seeded faults (on each project)

Approach Pandoc Hadolint
Top-1 Top-5 Top-10 Top-50 Total Top-1 Top-5 Top-10 Top-50 Total

FCBA 8 11 15 65 96 0 99 181 257 918
PBA 27 63 71 88 96 0 214 499 671 918

PBA_TB 58 71 80 91 96 25 369 639 744 918

Learning 58 75 86 92 96 28 383 664 798 918

5.2.2 Analysis of PBA. In Table 1, the performance of PBA is better
than FCBA in most cases. In other cases, they achieve the same
performance or PBA is even worse due to the introduced ties.

In Tables 2 and 3, PBA could largely improve the fault localiza-
tion performance. Specifically, overall, 277 out of 1,014 (27.32%)
faults are located within Top-5 and 27 out of 1,014 (2.66%) faults
are located within Top-1. The improvement of PBA over FCBA in
Top-1, Top-5, Top-10, and Top-50 is 237.5%, 151.82%, 190.82%, and
135.71%, respectively. Additionally, the results on each subject are
also consistent with the overall results. The difference is that in
Hadolint, PBA still cannot produce any Top-1 result, which is due
to the prevalent ties.

5.2.3 Analysis of PBA_TB. In above approaches (especially PBA),
ties have negative influence on fault localization performance. There-
fore, we finally analyze the results of PBA_TB. In Table 1, we suc-
cessfully break the ties and obtain relatively higher rankings com-
pared with PBA. Specifically, when ties occur, in most cases, our
tie-breaking approach produces satisfying results in the ties, while
in some cases, our approach produces worse results.

In Tables 2 and 3, PBA_TB could largely improve the fault local-
ization performance compared with PBA. The reason behind this
is that ties seriously degrade the Top-N metrics in PBA and our
tie-breaking approach can produce accurate and high-performance
results. Specifically, overall, 440 out of 1,014 (43.39%) faults are lo-
cated within Top-5 and 83 out of 1,014 (8.19%) faults are located
within Top-1. The improvement of PBA_TB over PBA (i.e., with
the usage of tie breaking strategies) in Top-1, Top-5, Top-10, and
Top-50 is 207.41%, 58.84%, 26.14%, and 10.01%, respectively. Addi-
tionally, the results on each subject are also consistent with the
overall results. In particular, we successfully obtain 25 Top-1 results
in Hadolint, compared with previous 0 Top-1 result.
Finding 1: On HaFLa, PBA_TB achieves better results than
PBA, both of which are better than FCBA. Specifically, for
FCBA, the results are the most unsatisfying and few faults
(both real and seeded faults) are ranked within Top-5, espe-
cially on larger projects. PBA could improve the performance
to some extent, and the improvement on seeded faults is larger
than real faults. However, the ties have bad influence on the
performance. PBA_TB could break the ties successfully and
show better results.

5.3 Case Study
Here we present case studies on two real faults of Pandoc to explain
the gap between Haskell and imperative programming languages
in fault localization.

5.3.1 Analysis on P2.
In this section, we analyze the real fault P2. Since its modification

involves many expressions, for ease of understanding, we present
its major modification in the fixing patch as below.

1 [-] gridTableWith ::(Stream s m Char ,HasReaderOptions st,
2 Monad mf,IsString s)
3 [+] gridTableWith ::(Stream s m Char ,HasReaderOptions st,
4 HasLastStrPosition st, Monad mf,IsString s)
5 [-] gridTableHeader ::(Stream s m Char ,Monad mf,
6 IsString s)
7 [+] gridTableHeader ::(Stream s m Char ,Monad mf,
8 IsString s,HasLastStrPosition st)

The developers add a Type Class called HasLastStrPosition
to some functions, i.e., the parameter st must be a member of
the HasLastStrPosition class. As a unique feature in functional
programming, Type Classes define a set of functions that can have
different implementations depending on the type of data they are
given. However, because this constraint is not an expression and
would not be executed, coverage-based fault localization cannot
deal with its related information. In fact, its impact may exist in
some places far away, leading to inaccurate localization.

We then analyze it from another aspect. One feature of functional
programming is higher-order functions, which take other functions
as arguments and/or produce functions as return values. That is, in

81

Internetware 2022, June 11–12, 2022, Hohhot, China Feng Li, Meng Wang, and Dan Hao

Haskell, many complex function calls exist. Under this circumstance,
although most of the tests in our dataset are unit tests, they are
not as “clean” as unit tests in imperative programming languages.
In other words, the execution of a test in Java often results in the
execution of a few methods besides some initialization methods,
while the execution of an test in Haskell may cause the execution of
much more functions. As a result, coverage-based fault localization
may not obtain satisfying performance. In this case, many inno-
cent functions (e.g., renderRole, roleAfter, gridTable, table,
roleBefore, unmarkedInterpretedText in file “pandoc/src/Tex-
t/Pandoc/Readers/RST.hs”) are assigned with large suspiciousness
scores, which has bad influence on the localization results.

5.3.2 Analysis on P5.
In this section, we analyze the real fault P5. The modification in

the fixing patch and some context is shown as below. Developers
move endline from function inline to function inlineContent.
Within these two functions, the elements in the lists are functions
(e.g., note, whitespace).

1 inline = choice [note , link
2 [-] , endline
3 , strong , emph , code
4 inlineContent = choice [whitespace , str
5 [+] , endline
6 , smart , hyphens , escapedChar

However, the localization results show that functions such as
endline, strong, and emph are assigned with higher suspicious-
ness scores than inline and inlineContent. That is, elements
(which are also functions) within a function are assigned with
higher suspiciousness scores than the function itself. The reason
behind it is higher-order functions. In fact, as functions can be
arguments and return values in functional programming, their cov-
erage cannot faithfully reflect the execution details, which means
that simple statistics-based formulae used by the existing SBFL
approaches are far from good. At the same time, similar to the
analysis in Section 5.3.1, complex function calls in Haskell also
weaken the performance. In this case, many innocent functions (e.g.,
bulletListStart, definitionListItem, symbol in file “pandoc/s-
rc/Text/Pandoc/Readers/RST.hs”) are assigned with very high sus-
piciousness scores accordingly.
Finding 2: After inspecting some cases in our HaFLa bench-
mark, we find that some Haskell features (e.g., type classes,
higher-order functions, complex function calls) do have im-
pacts on fault localization, and although these gaps exist, our
approaches could achieve good results.

6 BRIDGING THE GAP THROUGH LEARNING
According to Section 5, the simple adaption approaches proposed
in Section 3.2 are not satisfactory on Haskell, indicating that more
work is needed to bridge the gap between programming languages
in fault localization. Instead of defining a new formula, we propose
to learn how to compute suspiciousness scores for Haskell through
the fault localization results of other programming languages.

6.1 Approach
The proposed learning-based fault localization approach for Haskell
transfers the fault localization knowledge for imperative languages

to Haskell through machine learning. For any Haskell program, the
learning-based fault localization approach first builds a predictive
model based on the fault-localization data of another programming
languages (e.g., imperative languages like Java), and then uses this
model to predict whether each function of the Haskell program
is faulty based on the coverage information of this program. In
particular, for ease of fault localization knowledge transferring,
instead of using the coverage information itself, we utilize the
existing fault localization knowledge for imperative languages, i.e.,
reusing their suspiciousness score computing formulae since they
are demonstrated to be effective to some extent.

6.1.1 Feature and Label Design.
In the learning-based approach, we take each program element

as an instance in the training and testing sets. Ideally, we use the
coverage information as the features of an instance. However, to
fully utilize the knowledge of existing coverage-based fault local-
ization approaches for imperative programming languages, we use
the suspiciousness scores of various SBFL formulae as the features.
That is, for each program element, we compute its suspiciousness
scores with various formulae, each of which is regarded as a feature
for the program element. Moreover, we remove the feature whose
values are small, i.e., the formulae does not contribute too much, in
the process of feature selection. Additionally, if a program element
is faulty, we label it 1; Otherwise, we label it 0.

6.1.2 Learning Algorithm.
In the learning-based approach, we use Gradient Boosting [11],

an ensemble method that produces a predictive model from an
ensemble of weak predictive models. Specifically, we use Gradient-
BoostingRegressor [35] to construct our predictive model, which
can predict the probability of an element to be faulty. Then, ele-
ments in a subject can be ranked according to their probabilities.
Moreover, in implementation, we set parameters as follows: the
learning rate is 0.05, the loss is ls, and the criterion is friedman_mse.

Through the learnt predictive model on imperative languages,
we can predict whether each function is faulty and produce a ranked
list of suspicious functions based on their probability of being faulty,
which can be viewed as the final suspiciousness scores computed by
the learning-based approach. That is, the proposed learning-based
fault localization approach builds the connection between coverage
information and suspiciousness scores via another formula.

6.2 Evaluation
We evaluate whether the learning-based approach further improves
fault localization results, compared with the adaption approaches.
In particular, we study the performance of the learning-based ap-
proach for Haskell benchmark HaFLa by using the fault localization
results on Defects4J [21], a large-scale benchmark in Java.

6.2.1 Setup.
Because we cannot obtain enough data in Haskell, in our experi-

ment, we use method-level Java data as training data and observe
the results in HaFLa benchmark. We use Defects4J to generate
training data. Defects4J [21] is a famous real-world fault dataset in
Java, containing hundreds of reproducible real faults on real-world
projects. This dataset currently has two version: an original version
(i.e., V1.2.0) and a recently released version (i.e., V2.0.0) [14] with

82

Bridging the Gap between Different Programming Paradigms in Coverage-based Fault Localization Internetware 2022, June 11–12, 2022, Hohhot, China

extra faults. To learning from a larger dataset, we use its latest
version in this paper. Detailed information of this benchmark can
be found on our website [16].

For each project of Defects4J, we perform on-the-fly bytecode
instrumentation using ASM [7] and Java Agent7 to collect the
coverage information. Then, we detail the feature as follows. For
each method in Java, we keep its three suspiciousness scores (i.e.,
Ochiai, DStar, Tarantula) and the largest 9 suspiciousness scores for
its statements inside, forming a feature of length 12 in total; For each
function in Haskell, we keep its three suspiciousness scores (i.e.,
Ochiai, DStar, Tarantula) and the largest 9 suspiciousness scores
for its expressions inside, forming a feature of length 12 in total. To
keep important information while avoiding redundancy, we only
select finite suspiciousness scores. If a method/function contains
less than 3 statements/expressions, which means we cannot get 12
values, the remaining positions are filled with 0.

6.2.2 Results and Analysis.
The results of the learning-based approach are presented in the

last column of Table 1, the last rows of Table 2 and Table 3. Table 1
shows the results on real faults. From the table, the performance
of the proposed learning-based approach is better than the other
approaches except for P3, P5, and P14. Moreover, on these faults, the
fault localization results of the proposed learning-based approach
is very close to the best results. This observation is as expected
since the learning-based approach takes as input most valuable
information generated by the compared adaption approaches. How-
ever, the learning-based approach does not perform the best on
three real faults, indicating that the connection between coverage
information and suspiciousness score calculation is more complex
than expected. That is, exploring good learning-based approaches
is a promising direction for future research.

According to Tables 2 and 3, our learning-based approach outper-
forms all the other approaches in seeded faults. In other words, our
learning-based approach performs better in seeded faults than real
faults, indicating that the connection between coverage information
and suspiciousness score calculation on seeded faults may be some-
how easier to learn. Specifically, overall, 458 out of 1,014 (45.17%)
faults are located within Top-5 and 86 out of 1,014 (8.48%) faults
are located within Top-1. The improvement of the learning-based
approach over PBA_TB in Top-5, Top-10, and Top-50 is 4.10%, 4.31%,
and 6.59%, respectively. Additionally, we get consistent conclusion
from the results on each subject.
Finding 3: Our learning technique uses Java data for train-
ing and Haskell data for testing. The results show that learn-
ing further bridges the gaps between different programming
paradigms and produces promising results.

7 THREATS TO VALIDITY
The internal threats to validity lie in the implementation of the
approaches and the experiment scripts. To reduce this threat, the
authors of this paper review the code and scripts, construct the
benchmark, and implement and evaluate the proposed approaches

7https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-
summary.html

by using existing tools [7, 13, 23, 35]. The external threats to va-
lidity lie in the projects, faults, and test cases. As the first piece of
fault localization work on Haskell, we manually build a benchmark
consisting of three real Haskell projects with test cases (involving
31 real faults and 1,014 mutation faults). Due to the lack of sufficient
and general tool support for Haskell, we spent almost four man-
months on this benchmark construction. Since this benchmark is
not yet large enough, in the future we will add more real projects.
The construct threats to validity lie in the measurement. To reduce
this threat, we choose widely-used metrics [26, 38, 47] and more
metrics like Mean First Rank and Mean Average Rank [30] will be
used in the future.

8 RELATEDWORK
Fault Localization [8, 32, 43, 46] aims to diagnose faulty program
elements automatically and has been extensively studied to facili-
tate software debugging. Fault localization techniques often lever-
age various static and/or dynamic program analysis information to
compute suspiciousness scores (i.e., probability of being faulty) for
each program element. Program elements are then ranked in the
descending order of their suspiciousness scores, based on which
manual fault-fixing or automated program repair [12, 40, 45] can fur-
ther be applied. Despite this rich literature, most existing techniques
and studies are conducted on imperative programming languages.
Consequently, this paper is the first work that focuses on the fault
localization problem in functional programming and tries to bridge
the gaps between functional and imperative programming.
Functional ProgrammingTesting is rarely investigated although
testing is important in the software development of functional pro-
gramming [41]. QuickCheck [10] is a testing tool that facilitates
developers write property-based tests. Braquehais and Runciman
[6] propose a tool called FitSpec that provides automated assistance
in the task of refining sets of test properties for Haskell functions.
Grieco et al. [15] propose a fuzzer that leverages QuickCheck-style
random test generation to automatically test programs that manipu-
late common file formats by fuzzing. Mista et al. [29] propose some
probabilistic formulae and design heuristics capable of automati-
cally adjusting probabilities in order to synthesize generators in
QuickCheck. Besides property-based testing, Le et al. [23] present
MuCheck, a mutation testing tool for Haskell programs which im-
plements mutation operators that are specifically designed for func-
tional programs. To our best knowledge, there is no existing work
targeting fault localization in Haskell. Therefore, we are the first
to attempt to solve it and our work could encourage more future
work on functional programming testing.

9 CONCLUSION
In this work, we present the first work that identifies the fault lo-
calization problem in functional programming languages and make
the first attempt to bridge the gap between different programming
paradigms in coverage-based fault localization. We build the first
fault localization benchmark in Haskell called HaFLa. Then, we
explore a series of adaption and learning approaches of SBFL and
conduct a study to evaluate the effectiveness of them. The results
show that the adaption is necessary and useful, and the learning
approach shows the promises of the direction.

83

https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html

Internetware 2022, June 11–12, 2022, Hohhot, China Feng Li, Meng Wang, and Dan Hao

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China under Grant No. 61872008.

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. 2009. A

practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780–1792.

[2] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation
of similarity coefficients for software fault localization. In 2006 12th Pacific Rim
International Symposium on Dependable Computing (PRDC’06). IEEE, 39–46.

[3] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis. 177–188.

[4] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effective-
ness of Unified Debugging: An Extensive Study on 16 Program Repair Systems. In
2020 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 907–918.

[5] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub star? un-
derstanding repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[6] Rudy Braquehais and Colin Runciman. 2016. FitSpec: refining property sets for
functional testing. In Proceedings of the 9th International Symposium on Haskell.
1–12.

[7] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002).

[8] Bruno Castro, Alexandre Perez, and Rui Abreu. 2019. Pangolin: an SFL-based
toolset for feature localization. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 1130–1133.

[9] Yufeng Cheng, MengWang, Yingfei Xiong, Dan Hao, and Lu Zhang. 2016. Empiri-
cal evaluation of test coverage for functional programs. In 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST). IEEE, 255–265.

[10] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming. 268–279.

[11] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational statistics
& data analysis 38, 4 (2002), 367–378.

[12] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program re-
pair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 19–30.

[13] Andy Gill and Colin Runciman. 2007. Haskell program coverage. In Proceedings
of the ACM SIGPLAN workshop on Haskell workshop. 1–12.

[14] Greg4cr. 2022. Defects4J – version 2.0. https://github.com/rjust/defects4j.
[15] Gustavo Grieco, Martín Ceresa, and Pablo Buiras. 2016. QuickFuzz: An automatic

random fuzzer for common file formats. ACM SIGPLAN Notices 51, 12 (2016),
13–20.

[16] HaFLa. 2022. HaFLa Homepage. https://github.com/Spiridempt/HaFLa.
[17] Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L Wadler.

1996. Type classes in Haskell. ACM Transactions on Programming Languages and
Systems (TOPLAS) 18, 2 (1996), 109–138.

[18] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[19] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273–282.

[20] Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised report.
Cambridge University Press.

[21] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[22] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654–665.

[23] Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. 2014.
Mucheck: An extensible tool for mutation testing of haskell programs. In Pro-
ceedings of the 2014 international symposium on software testing and analysis.
429–432.

[24] Feng Li, Jianyi Zhou, Yinzhu Li, Dan Hao, and Lu Zhang. 2021. AGA: An Acceler-
ated Greedy Additional Algorithm for Test Case Prioritization. IEEE Transactions
on Software Engineering (2021).

[25] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.

169–180.
[26] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem for

fault localization. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 1–30.

[27] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. 2005.
Scalable statistical bug isolation. Acm Sigplan Notices 40, 6 (2005), 15–26.

[28] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automated program repair refine fault localization? a
unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 75–87.

[29] Agustín Mista, Alejandro Russo, and John Hughes. 2018. Branching processes
for quickcheck generators. ACM SIGPLAN Notices 53, 7 (2018), 1–13.

[30] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. IEEE,
153–162.

[31] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on software engineering and method-
ology (TOSEM) 20, 3 (2011), 1–32.

[32] Frolin S Ocariza Jr, Guanpeng Li, Karthik Pattabiraman, and Ali Mesbah. 2016. Au-
tomatic fault localization for client-side JavaScript. Software Testing, Verification
and Reliability 26, 1 (2016), 69–88.

[33] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605–628.

[34] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 609–620.

[35] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[36] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 155–165.

[37] Deuslirio Silva-Junior, Plinio S Leitao-Junior, Altino Dantas, Celso G Camilo-
Junior, and Rachel Harrison. 2020. Data-flow-based evolutionary fault localization.
In Proceedings of the 35th Annual ACM Symposium on Applied Computing. 1963–
1970.

[38] Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273–283.

[39] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and
Shing-Chi Cheung. 2019. Historical spectrum based fault localization. IEEE
Transactions on Software Engineering (2019).

[40] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
1–11.

[41] Manfred Widera. 2006. Why Testing Matters in Functional Programming. In 7th
Symposium on Trends in Functional Programming, University of Nottingham, TFP.

[42] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The DStar method
for effective software fault localization. IEEE Transactions on Reliability 63, 1
(2013), 290–308.

[43] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[44] Xiaofeng Xu, Vidroha Debroy, W Eric Wong, and Donghui Guo. 2011. Ties within
fault localization rankings: Exposing and addressing the problem. International
Journal of Software Engineering and Knowledge Engineering 21, 06 (2011), 803–827.

[45] Yuan Yuan and Wolfgang Banzhaf. 2018. Arja: Automated repair of java pro-
grams via multi-objective genetic programming. IEEE Transactions on Software
Engineering 46, 10 (2018), 1040–1067.

[46] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and
Rasheed Abubakar Rasheed. 2020. Multiple fault localization of software pro-
grams: A systematic literature review. Information and Software Technology 124
(2020), 106312.

[47] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting
spectrum-based fault localization using pagerank. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 261–272.

[48] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through
automated predicate switching. In Proceedings of the 28th international conference
on Software engineering. 272–281.

[49] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang. 2019.
An empirical study of fault localization families and their combinations. IEEE
Transactions on Software Engineering (2019).

84

https://github.com/rjust/defects4j
https://github.com/Spiridempt/HaFLa

	Abstract
	1 Introduction
	2 Preliminary: Coverage-based Fault Localization
	3 Coverage-based Fault Localization for Haskell
	3.1 Gaps between Different Programming Paradigms
	3.2 Adaption Approaches from Imperative to Functional Programming Languages

	4 Benchmark Construction
	4.1 Projects
	4.2 Real Faults
	4.3 Seeded Faults
	4.4 Coverage Collection

	5 Study of the Proposed Adaption Approaches
	5.1 Experimental Setup
	5.2 Results and Analysis
	5.3 Case Study

	6 Bridging the Gap through Learning
	6.1 Approach
	6.2 Evaluation

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

