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Expert users of property-based testing often labor to craft random generators that encode detailed knowledge

about what it means for a test input to be valid and interesting. Fortunately, the fruits of this labor can also

be put to other good uses. In the bidirectional programming literature, for example, generators have been

repurposed as validity checkers, while Python’s Hypothesis library uses them to shrink and mutate test inputs.

To unify and generalize these uses (and more), we propose reflective generators, a new foundation for

random data generators that can “reflect” on an input value to calculate the random choices that could have

been made to produce it. Reflective generators combine ideas from two existing abstractions: free generators
and partial monadic profunctors. They can be used to implement and enhance the aforementioned shrinking

and mutation algorithms, generalizing them to work for any values that could have been produced by the

generator, not just ones for which a trace of the generator’s execution is available. Beyond shrinking and

mutation, reflective generators simplify and generalize a published algorithm for example-based generation;

they can also be used as checkers and partial value completers, and test data producers like enumerators and

fuzzers.
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1 INTRODUCTION
Property-based testing, popularized by Haskell’s QuickCheck library [Claessen and Hughes 2000],

draws much of its bug-finding power from generators for random data. These programs are carefully

crafted and encode important information about the system under test. In particular, QuickCheck

generators like the one in Figure 1a capture what it means for a test input to be valid—here, ensuring
that a tree satisfies the binary search tree (BST) invariant by keeping track of the minimum and

maximum allowable values in each sub-tree. This generator is not just a program for generating

BSTs, it defines BSTs in the sense that its range is precisely the set of BSTs.

Developers of tools like Hypothesis [MacIver et al. 2019]—arguably the most popular PBT

framework, with 6,500 stars on GitHub and an estimated 500,000 users [Dodds 2022]—capitalize

on this observation and repurpose generators for other tasks, including test-case shrinking and
mutation. These algorithms do not operate directly on data values; rather, shrinking or mutating

a value is accomplished by shrinking or mutating the random choices that produced that value,

and then re-running the generator on the modified choices [MacIver and Donaldson 2020]. This

amounts to treating generators as parsers, taking unstructured randomness and parsing it into
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200:2 Goldstein and Frohlich et al.

bst :: (Int, Int) -> Gen Tree

bst (lo, hi) | lo > hi = return Leaf

bst (lo, hi) =

frequency

[ ( 1, return Leaf ),

( 5, do

x <- choose (lo, hi)

l <- bst (lo, x - 1)

r <- bst (x + 1, hi)

return (Node l x r) ) ]

(a) QuickCheck generator.

bst :: (Int, Int) -> Reflective Tree Tree

bst (lo, hi) | lo > hi = exact Leaf

bst (lo, hi) =

frequency

[ ( 1, exact Leaf),

( 5, do

x <- focus (_Node._2) (choose (lo, hi))

l <- focus (_Node._1) (bst (lo, x - 1))

r <- focus (_Node._3) (bst (x + 1, hi))

return (Node l x r) ) ]

(b) Reflective generator.

Fig. 1. Generators for binary search trees.

structured values—a perspective formalized in terms of free generators [Goldstein and Pierce 2022].

Viewing generators as parsers has two advantages: (1) shrinking and mutation can be implemented

generically, rather than once per generator, and (2) the modified data values will automatically

satisfy any preconditions that the generator was designed to enforce (e.g., the BST invariant), since

they are ultimately produced by pushing modified choices through the generator.

Ideally, Hypothesis’s type-agnostic, validity-preserving algorithms should completely subsume

more manual ones. Unfortunately, the current Hypothesis approach assumes that the shrinker, for

example, is given access to the original random choices that the generator made when producing

the value it is shrinking; this doesn’t work when shrinking is separated (in time or space) from

generation. In particular, Hypothesis can’t shrink values that it did not generate in the first place—

e.g., because they were provided as pathological examples or from crash reports. More subtly,

Hypothesis’s shrinking also breaks if the value was modified between generation and shrinking, or

saved without also saving a record of the choices.

To use Hypothesis-style shrinking on an arbitrary value, the shrinker needs some way of

reconstituting a set of random choices that produce that value. Luckily, inspiration for how to do this

can be drawn from the grammar-based testing literature, specifically Inputs from Hell [Soremekun

et al. 2020], which describes a way to produce test inputs that are similar to an existing one. Starting

with a grammar-based generator [Godefroid et al. 2008], they first use the grammar to parse a

value, determining which productions must be expanded to produce that value. Then, they bias the

generator to expand those productions more often, thus resulting in more values that are similar to

the example. In essence, this approach determines which generator choices lead to a desired value

by going backward, parsing the value with the same grammar that (could have) generated it.

The Inputs from Hell approach works well for grammar-based generators, but does not apply to

generators that enforce validity. For this, we need a more general solution—one that works with the

kinds of monadic generators used in QuickCheck, which can enforce arbitrary validity conditions.

Such a solution can be found in the bidirectional programming literature. Xia et al. [2019] describe

partial monadic profunctors, which enrich standard monads with extra operations for describing

bidirectional computations. This infrastructure, along with the parsing-as-generation perspective

of free generators, enables exactly the kind of bidirectional generation needed to extract random

choices from a monadically produced value.

Our main contribution, reflective generators, is a language for writing bidirectional generators that
can “reflect” on a value to analyze which choices produce that value (see Figure 1b). They subsume

the grammar-based generators of Inputs from Hell, and, critically, they enable Hypothesis-style

shrinking and mutation for arbitrary values in the range of a monadic generator. Furthermore, since
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reflective generators are built on freer monads, they can be interpreted numerous ways besides

generation and reflection. We discuss three more use cases that demonstrate the versatility of

reflective generators as testing utilities.

Following a brief tour through some background (§2), we offer the following contributions:

• We present reflective generators, a framework that fuses free generators and partial monadic
profunctors into a flexible domain-specific language for PBT generators that can reflect on a

value to obtain choices that produce it. (§3)

• Wedevelop the theory of reflective generators, definingwhat it means for reflective generators

to be correct along a number of axes and comparing their expressive power to other generation

abstractions. (§4)

• We demonstrate the core behavior of reflective generators by generalizing prior work on

example-based generation. Our implementation subsumes the Inputs from Hell algorithm and

extends it to work with monadic generators. (§5)

• We apply reflective generators to manipulate user-provided values. Reflective generators

enable generator-based shrinking and mutation algorithms to work even when the random-

ness used to generate test inputs is not available. We show that our shrinkers are at least as

effective as other automated shrinking techniques. (§6)

• We leverage the reflective generator abstraction to implement other testing tools: checkers

for test input validity, “completers” that can randomly complete a partially defined value,

and test input producers like enumerators and fuzzers. (§7)

We conclude by discussing related work (§8) and future directions (§9).

2 BACKGROUND
The abstractions we present in this paper rely on a significant amount of prior work. In this section,

we review the structures that make reflective generators possible: monadic random generators

(§2.1), free generators (§2.2), and partial monadic profunctors (§2.3).

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

do { x <- m; f x } = m >>= f

type Gen a = Int -> a

(a) Definitions for monadic generators.

data Freer f a where

Return :: a -> Freer f a

Bind :: f a

-> (a -> Freer f b)

-> Freer f b

data Pick a where

Pick :: [(Weight, Choice, Freer Pick a)]

-> Pick a

(b) Definitions for free generators.

class Profunctor p where

lmap :: (d -> c) -> p c a -> p d a

rmap :: (a -> b) -> p c a -> p c b

class Profunctor p => PartialProf p where

prune :: p b a -> p (Maybe b) a

class (forall b. Monad (p b), PartialProf p)

=> PMP p

(c) Definitions for partial monadic profunctors.

Fig. 2. Background definitions.
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200:4 Goldstein and Frohlich et al.

2.1 Monadic Random Generators
The idea of testing executable properties using monadic generators was popularized by QuickCheck

and has endured for more than two decades. The core structures used by QuickCheck are shown in

Figure 2a, where Gen represents the type of random generators. It treats the input Int as a random

seed and uses it to produce a value of the appropriate type. Generators like the one in Figure 1a are

easy to write because they are monads [Moggi 1991]; this structure provides a neat interface for

chaining effectful computations.

2.2 Free Generators
Interfaces like the Monad type class can be reified into “free” structures that represent each operation
as a data constructor, allowing it to be interpreted in multiple ways. There are several such free

structures for the monad interface; [BCP: cite the others?] [HG: Yeah, we should... I don’t have the

exhaustive list in my head though. Sam? If you don’t I can spend 20 minutes reading] we focus on

the freer monad [Kiselyov and Ishii 2015] structure shown in Figure 2b, which reifies the return
operation as the constructor Return and (>>=) as Bind. The extra type constructor f ranges over

the operations that are specific to each given monad, for example, the Get :: State s s and

Put :: s -> State s () operations for State.
Free generators [Goldstein and Pierce 2022] are an instance of this scheme, instantiating f as

the type constructor Pick (Figure 2b), which represents a choice between sub-generators. Pick is

used to implement familiar QuickCheck-style combinators like choose, which generates an integer

in a given range, and oneof, which randomly selects between a list of generators. Goldstein and

Pierce use free generators to draw a formal connection between random generation and parsing,

interpreting the same free generator as both a generator and a parser.

2.3 Partial Monadic Profunctors
Profunctors are a standard construction from category theory, generalizing ordinary functors—

structure-preserving maps—to allow for both covariant and contravariant mapping operations.

They are realized as the Profunctor class (Figure 2c), popularized in Haskell by Pickering et al.

[2017], where the mapping operations are called rmap and lmap respectively. The quintessential
example of a profunctor is the function type constructor (->). This makes sense, since b -> a is
contravariant in b and covariant in a. In that case, rmap implements post-composition (of some

function a -> a') and lmap implements pre-composition (of a function b' -> b). Indeed, it is
often useful to think of profunctors as function-like: a value of type p b a “examines a value of

type b to produce a value of type a” (potentially doing some other effects).

A monadic profunctor is a profunctor that is also a monad (i.e., a profunctor p such that for any b,
p b is a monad). Xia et al. [2019] use this extra structure to implement composable bidirectional

computations. For example, consider the classic bidirectional programming example of a parser

and a pretty printer, which invert one-another. These dual functions can be implemented using the

same monadic profunctor:

data Biparser b a = { parse :: String -> (a, String); print :: b -> (a, String) }

This Biparser is a single program that gets “interpreted” in two different ways. As a parser, it

ignores the b parameter entirely, and simply acts as a parser in the style of Parsec [Leijen and

Meijer 2001] to produce a value of type a. As a pretty printer, it still needs to produce a value of

type a—after all, the two interpretations share the same code—but now there is no input String
to parse. Instead, the pretty printer interpretation has a value of type b it uses as instructions to
produce both the a and a String. This scheme makes much more sense when the profunctor is
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aligned, that is of type Biparser a a; in that case, a properly written pretty printer acts as an

identity function, taking a value and reproducing it while also recording its String representation.

Xia et al. call the first type of interpretation, which ignores its contravariant parameter and just

produces an output, a “forward” interpretation, and the second, which acts as an identity function

and follows the structure of its contravariant parameter, a “backward” interpretation. We say parse
goes forward and print goes backward. This is an arbitrary choice, but it is helpful as an analogy

for the way that certain monadic profunctors are duals of one other.

Writing a Biparser, or any other monadic profunctor, is a game of type alignment. In general,

aligned programs are desirable, but aligning the types gets tricky around monadic binds. Suppose

we have an aligned p a a and we want to get an a out and continue with a function of type

a -> p b b (whose codomain is also aligned). We cannot simply use (>>=) whose type is:

(>>=) :: p b a -> (a -> p b b) -> p b b

The problem is the first argument: we have a value of type p a a but we need one of type p b a
since p b is the type of the monad. Luckily, the lmap operation (§2c) makes it possible to take

an aligned profunctor, p a a and turn it into a p b a by providing an annotation of type b -> a
that says how to focus on some part of a value of type b that has type a. We can thus build up a

Biparser by writing a program that looks essentially like a standard monadic parser, but with

monadic binds annotated with calls to lmap that fix the alignment.

This story is almost complete, but it leaves out cases where annotations need to be partial.

Consider a Biparser like this one, which parses either a letter or a number:

letter :: Biparser Char Char

number :: Biparser Int Int

data LorN = Letter Char | Number Int

lOrN :: Biparser LorN LorN

lOrN = Letter <$> lmap ??? letter <|> Number <$> lmap ??? number

The first annotation should be of type LorN -> Char, but there is no total function of that

type: what happens if the LorN is a Number? The more appropriate annotation type would be

LorN -> Maybe Char. Xia et al. make this possible with partial monadic profunctors (PMPs), which

add one more operation, prune, to capture failure. (We have renamed it prune instead of the

original “internaliseMaybe”.) Unlike monadic profunctors, which can only be annotated with

total functions using lmap, PMPs can be annotated with partial functions. The combinator comap
demonstrates this generalized annotation:

comap :: PMP p => (c -> Maybe b) -> p b a -> p c a

comap f = lmap f . prune

When a PMP like print branches (e.g., in lOrN) the execution follows both sides (e.g., trying to

pretty print both a Letter and a Number). The partial annotations tell the computation when to

prune a branch, keeping the search space small and ensuring that PMPs like print are efficient.

A concrete example of a partial profunctor is the partial arrow constructor:

newtype PartialArr a b = PartialArr {unPA :: a -> Maybe b}

This follows on naturally from the intuition that (->) is a profunctor. In fact, these are also PMPs,

you can find the relevant instances in Appendix A.

PMPs are complex, and they can be used in a wide variety of ways. We recommend Composing
Bidirectional Programs Monadically [Xia et al. 2019] for a more thorough explanation.
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3 THE REFLECTIVE GENERATOR LANGUAGE
Reflective generators combine free generators with PMPs, enabling a host of enhanced testing

algorithms. In this section, we explain the intuition behind reflective generators (§3.1), describe

their implementation (§3.2), and discuss their various interpretations (§3.3).

The basic structure of a reflective generator comes from adding the partial monadic profunctor

operations, lmap and prune, to the Pick datatype. We call this extended type R (for Reflective) and

implement it like this:

type Weight = Int

type Choice = Maybe String

data R b a where

Pick :: [(Weight, Choice, Freer (R b) a)] -> R b a

Lmap :: (c -> d) -> R d a -> R c a

Prune :: R b a -> R (Maybe b) a

The Pick constructor here has two small changes from the free generator presentation: we add

an extra contravariant type variable b, and we modify the choice type to optionally elide choice

labels.
1
Then Lmap captures contravariant annotations (there is no need to explicitly represent

rmap, as we will be able to encode it using the monad structure), and Prune represents its PMP

counterpart with an analogous type. A reflective generator is then a freer monad over R b:

type Reflective b a = Freer (R b) a

3.1 Intuition
The type Reflective b a of reflective generators should be understood to mean a program that

can “reflect on a value b, recording choices, while generating an a.”
Like PMPs, reflective generators use annotations to fix the types around monadic binds. More

intuition of how these should be defined follows from the intuitive interpretation of the types:

the goal is to take a generator that reflects on choices in an a and turn it into one that reflects on

choices in a b. Here’s the key: it suffices to show how to focus on a part of the b that contains an
a, because that focusing turns a choices into b choices. Put another way, the annotation should

embed a mapping of type b -> a or b -> Maybe a that focuses on the a part of the b. To see this

in action, consider the example in Figure 1b, paying attention to the first bind in the Node branch,

do

x <- focus (_Node._2) (choose (lo, hi))

...

where ... continues on to produce the rest of the tree. The call to choose results in a Reflective
Int Int, but the type of the enclosing monad is Reflective Tree; as discussed in §2.3 we need to

add an annotation on the bind that focuses on an Int in a Tree to get a Reflective Tree Int. In
the example, we annotate with focus (_Node._2) (this syntax is introduced in the next section)

but the following is equivalent:

comap (\ t -> case t of { Leaf -> Nothing; Node _ x _ -> Just x })

As with PMPs like Biparser, the process of reflecting on choices is all about the interaction

between binds and comaps. A value flows through the program, and, at each bind, the comap focuses
on the part of the value that the left side of the bind should reflect on. If the focusing fails, that

1
As in Parsing Randomness, we represent weights in Pick as integers for simplicity. Formally they are required to be strictly

positive; this will be necessary to prove Theorem 4.4.
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branch gets pruned—there is no way to produce the desired value—but if it succeeds, then the left

side can reflect on that part of the value, extracting some choices, and reflection can continue on

the right side.

With this intuition in mind, we can move onto the technical details of reflective generators.

3.2 Implementation
We next describe how reflective generators are implemented and what we’ve done to make them

feel familiar and easy to work with. (In §9, we discuss plans to validate this belief with a proper

user study.)

The Full Story. The actual type R defined in the Haskell artifact is a bit more complicated than

the one explained above. The actual implementation looks like:

data R b a where

Pick :: [(Weight, Choice, Freer (R b) a)] -> R b a −− as before
Lmap :: (c -> d) -> R d a -> R c a −− as before
Prune :: R b a -> R (Maybe b) a −− as before
ChooseInteger :: (Integer, Integer) -> R Integer Integer

GetSize :: R b Int

Resize :: Int -> R b a -> R b a

First, we add a constructor ChooseInteger for picking integers from an arbitrary range. Techni-

cally, this is implementable via Pick by simply enumerating all of the integers in the desired range,

but doing so is inefficient if the range is large. Adding a separate function for choosing within a

range of integers allows us to bootstrap other generators over large ranges, and it it makes it easy

to implement much more efficient interpretation functions later on.

Second, we add two constructors, GetSize and Resize, that are analogous to similar opera-

tions implemented by QuickCheck. Maintaining size control is critical for ensuring generator

termination, and, although it is possible to implement sized generators by passing size parameters

around manually, internalizing size control cleans up the API of the combinator library and makes

generators more readable.

In future sections, we often elide parts of definitions pertaining to these operations, to streamline

the presentation, but they do present a couple of theoretical complications that we note in §4.

Building a Domain-Specific Language. We implement a variety of combinators that make reflective

generators easier to read and write, aiming for an interface that captures the full power of reflective

generation without straying too far from familiar QuickCheck syntax.

The most important reflective generator operation is Pick, so we provide a number of choice

combinators that are built on top of it:

pick :: [(Int, String, Reflective b a)] -> Reflective b a

labeled :: [(String , Reflective b a)] -> Reflective b a

frequency :: [(Int , Reflective b a)] -> Reflective b a

oneof :: [Reflective b a] -> Reflective b a

choose :: (Int, Int) -> Reflective Int Int

The most flexible, pick, just passes through to the Pick constructor, wielding its full power. The
rest are simplifications of this operation that represent common use cases. A bit simpler, labeled
takes only choice labels and no weights—it sets all weights to 1. Finally, frequency, oneof, and
choose have the same API as their counterparts in QuickCheck, forgoing choice labels.
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A brief aside on choice labels: whether or not a user decides to label the choices in a generator

depends on two factors. First, it depends on how the generators will be used. In §5.1, we discuss a

use case that relies heavily on choice labels, and in §6 we discuss one that ignores them. Second,

whether or not a particular sub-generator is labeled can impact the behavior of use cases that pay

attention to labels; in §5.1 we discuss intentionally eliding labels as a way of marking parts of

the generator whose distributions should not be tuned. As a general rule, we recommend labeling

choices in generators, and all generators provided by the reflective generators library are labeled by

default, but it is convenient to be able to elide labels when upgrading from a QuickCheck generator.

Choice operators alone are not enough to build a reflective generators, we need infrastructure to

glue them together. The bulk of these glue operations follow from the fact that reflective generators

are, as expected, PMPs:
2

instance Profunctor Reflective where

lmap _ (Return a) = Return a

lmap f (Bind x h) = Bind (Lmap f x) (lmap f . h)

rmap = fmap

instance PartialProfunctor Reflective where

prune (Return a) = Return a

prune (Bind x f) = Bind (Prune x) (prune . f)

Both lmap and prune commute over Bind and do nothing to a Return (see the laws in §4), so these

implementations are straightforward. Behind the scenes, the Functor, Applicative, and Monad
operations are implemented for free from the freer monad.

Using lmap and prune on their own is a bit tedious, so we give two combinators that make

common use cases much simpler. The focus combinator makes it possible to replace pattern

matches in lmap annotations with lenses [Foster 2009].

focus :: Getting (First b) c b -> Reflective b a -> Reflective c a

focus p = lmap (preview p) . prune

The curious reader can dig into the gory details of the types
3
involved, but it suffices to understand

focus as a notational convenience that gives a terse syntax for pattern matches:

focus (_Node._2) g = (lmap (\ case { Node _ x _ -> Just x; _ -> Nothing }) . prune) g

This call to focus identifies the part of the value that g produces: the second argument to the Node
constructor. The neat thing about this setup is that _Node, a lens that “pattern matches” on a node,

can be automatically generated from the Tree datatype, and _2, which extracts the second element

of a k-tuple, is included in the lens library. Together they can match on and extract the part of the

value that the reflective generator needs to focus on.

Another convenient helper built from lmap and prune is exact, which operates like return but

ensures that the returned value is exactly the expected one:

exact :: Eq a => a -> Reflective a a

exact a = (lmap (\ a' -> if a == a' then Just a else Nothing)

. prune) (Pick [(1, Nothing, return a)])

2
Technically, these definitions are not legal Haskell, since both partially apply the Reflective type constructor, which is

not supported by GHC. In the Haskell artifact we implement the operations as normal functions (rather than type-class

methods).

3
https://hackage.haskell.org/package/lens-5.2/docs/Control-Lens-Getter.html
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bst :: (Int, Int) -> Reflective Void Tree

bst (lo, hi) | lo > hi = return Leaf

bst (lo, hi) =

frequency

[ ( 1, return Leaf),

( 5, do

x <- voidAnn (choose (lo, hi))

l <- voidAnn (bst (lo, x - 1))

r <- voidAnn (bst (x + 1, hi))

return (Node l x r) ) ]

Fig. 3. An intermediate generator with Void as its contravariant type, using voidAnn.

Using this function (or manually pruneing) at the leaves of a reflective generator is critical: without
it, the generator may incorrectly claim to be able to produce an invalid value.

We saw above that combinators like oneof, frequency, and choose align closely with the

QuickCheck API to make upgrading easier. We provide one more combinator to simplify the

upgrade process, voidAnn, which can be used in place of an annotation:

voidAnn :: Reflective b a -> Reflective Void a

voidAnn = lmap (\ x -> case x of)

The Void type in Haskell is uninhabited, and thus a reflective generator of type Reflective Void a
can only be used in limited cases, but voidAnn makes it possible to perform the upgrade from

Figure 1 in stages. First, go from Figure 1a to Figure 3, then go from Figure 3 to Figure 1b by

replacing Void with the correct output type, replacing voidAnn annotations with ones that do

appropriate focusing, and replacing return with exact where appropriate. All three generators
are shown together in Appendix B. Experienced reflective generator writers do the upgrade in a

single step, but when starting out it may be easier to take a detour through a simpler intermediate

generator.

There are a number of other combinators implemented in the artifact, including getSize, resize,
standard generators for base types, and higher-order combinators for lists and tuples.

3.3 Interpretation
Like free generators, reflective generators do not do anything interesting until they are interpreted.
An interpretation describes how the inert syntax of the generator program should be executed. As

with PMPs, most reflective generator interpretations can be thought of as working either “forward,”

simply producing an output of their covariant type, or “backward,” reflecting on a value (and

reproduce it en passant) while tracking choices. Unlike PMPs, reflective generators do not explicitly

pair a forward and a backward interpretation together—in fact, the interpretation in §7.2 actually

uses both directions at once. Still, directionality of interpretations is often a useful intuition.

The simplest “forward” interpretation turns a reflective generator into a standard QuickCheck

generator, shown in Figure 4 The free monad part of the syntax is implemented as expected, with

Return implemented as return in the Gen monad, and Bind as the monad’s bind. The rest of the

syntax is similarly straightforward, with Lmap and Prune doing nothing and Pick interpreted as a

weighted random choice.

Of course, the value of reflective generators lies in their ability to run “backward,” focusing on

sub-parts of a value and reflecting on how they are constructed. This process can be seen using

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 200. Publication date: August 2023.



200:10 Goldstein and Frohlich et al.

generate :: Reflective b a -> Gen a

generate = interp

where

interpR :: R b a -> Gen a

interpR (Pick gs) = QC.frequency [(w, interp g) | (w, _, g) <- gs]

interpR (Lmap _ r) = interpR r

interpR (Prune r) = interpR r

interp :: Reflective b a -> Gen a

interp (Return a) = return a

interp (Bind r f) = interpR r >>= interp . f

Fig. 4. The “generate” interpretation.

the reflect function in Figure 5, which interprets a generator to determine which choices could

lead to a given value. For example, it would behave as follows when run on bst (adapted to record

choices):

ghci> reflect bst Leaf

[["leaf"]]

ghci> reflect bst (Node Leaf 4 Leaf)

[["node","4","leaf","leaf"]]

Here, the constructor choice is indicated with "leaf" or "node", and the number choice by printing

the number. A list of lists is produced so that all possible choice traces are covered. (In these examples,

there just happens to be only one trace of choices that could have led to the provided values.)

When interpreting Pick the computation splits, each branch representing making one particular

choice. In each branch, Lmap nodes focus on parts of the value being reflected on; if the focusing

fails, a following Prune node will filter that branch out of the computation. The monad structure,

Return and Bind, threads the list of recorded choices through the computation, so the final result

is a list of the different branches of the computation that were not pruned, along with the choices

made in each of those branches.

These two interpretations demonstrate the essence of reflective generators, but they are far from

the only ones—in total we discuss seven use cases of our different interpretations, all of which can

be found in our artifact, and we expect there are use cases for many more. As a user, this gives an

amazing amount of flexibility, since a single reflective generator can be interpreted in all of these

ways.

4 THEORY OF REFLECTIVE GENERATORS
In this section, we describe more of the theory underlying reflective generators. We discuss various

formulations of correctness, including defining what it means to correctly interpret a reflective

generator and what it means to correctly write an individual reflective generator (§4.1). Next, we

explore an interesting property of reflective generators—overlap—which has implications for gener-

ator efficiency (§4.2). Finally, we discuss the expressive power of reflective generators, comparing

it to grammar-based generators and to standard monadic ones (§4.3).
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reflect :: Reflective a a -> a -> [[String]]

reflect g = map snd . interp g

where

interpR :: R b a -> (b -> [(a, [String])])

interpR (Pick gs) = \ b -> −− Record choices made.
concatMap

( \ (_, ms, g') ->

case ms of

Nothing -> interp g' b

Just lbl -> map (\ (a, lbls) -> (a, lbl : lbls)) (interp g' b)

) gs

interpR (Lmap f r) = \ b -> interpR r (f b) −− Adjust b according to f.
interpR (Prune r) = \ b -> case b of −− Filter invalid branches.

Nothing -> []

Just a -> interpR r a

interp :: Reflective b a -> (b -> [(a, [String])])

interp (Return a) = \ _ -> return (a, [])

interp (Bind r f) = \ b -> do −− Thread choices around.
(a, cs ) <- interpR r b

(a', cs') <- interp (f a) b

return (a', cs ++ cs')

Fig. 5. The “reflect” interpretation.

4.1 Correctness
Both interpretations and individual reflective generators can be written incorrectly—the types

involved are not strong enough. Here, we describe algebraic properties that the programmer should

prove (or test) to ensure good behavior.

Correctness of Interpretations. Reflective generators should obey the laws of monads [Moggi

1991], profunctors, and PMPs:

(M1) return a >>= f = f a

(M2) x >>= return = x

(M3) (x >>= f) >>= g = x >>= (\ a -> f a >>= g)

(P1) lmap id = id

(P2) lmap (f' . f) = lmap f . lmap f'

(PMP1) lmap Just . prune = id

(PMP2) lmap (f >=> g) . prune = lmap f . prune . lmap g . prune

(PMP3) (lmap f . prune) (return y) = return y

(PMP4) (lmap f . prune) (x >>= g) = (lmap f . prune) x >>= (lmap f . prune) . g

Some of these are definitionally true for all reflective generators, thanks to the structure of freer

monads:

Lemma 4.1. Reflective generators always obey (M1), (M3), (PMP3), and (PMP4).
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Proof. By induction on the structure of the generator, using the definitions of return and (>>=)
from Kiselyov and Ishii [2015] and the definitions of lmap and prune from §3.2. See Appendix C. □

The other equations do not hold in general: they must be established for each interpretation.

We say an interpretation of a reflective generator is lawful if it implements a PMP homomorphism

to some lawful partial monadic profunctor. Concretely:

Definition 1. An interpretation

J·K :: Reflective b a -> p b a

is lawful iff p obeys the laws of monads, profunctors, and partial monadic profunctors and there

exists an R-interpretation

J·KR :: R b a -> p b a

such that the following equations hold:

JReturn aK = return a

JBind r fK = JrKR >>= \ x -> Jf xK
JLmap f rKR = lmap f JrKR
JPrune rKR = prune JrKR

An alternative approach would be to simply define an interpretation of a reflective generator as a

PMP homomorphism along with an interpretation for Pick, rather than giving the programmer

the freedom to implement lawless interpretations. From a programming perspective, this would

behave like a tagless-final embedding [Kiselyov 2012]. We found this tagless-final approach more

tedious to program with, but it is available to users if desired (see Appendix D).

The generate instance is indeed lawful, modulo one technical caveat. The classic Gen “monad”

itself is not actually a lawful monad, but it is lawful up to distributional equivalence [Claessen

and Hughes 2000]—i.e., generators that produce equivalent probability distributions of values are

equivalent, even if they are not equal as Haskell terms. The same caveat applies to the other laws.

Theorem 4.2. The generate interpretation is lawful up to distributional equivalence.

Proof. Since Lmap and Prune are both ignored, the other laws are trivial. □

The reflect interpretation is also lawful, ignoring the map snd projection that discards the accu-

mulator values.

Theorem 4.3. The reflect interpretation is lawful.

Proof. We choose

p b a = b -> [(a, [String])] = ReaderT b (WriterT [String] []) a

which is simply a stack of three monads (reader, writer, and list). Lawfulness follows straight-

forwardly, by aligning the definition of reflect with the lawful implementations of the monad,

profunctor, and partial profunctor operations for this combined monad. □

Correctness of a Reflective Generator. The proofs of lawfulness for each of the interpretations we

want to use can be carried out once and for all, but there is also some work to do for each individual

reflective generator, to ensure that its various interpretations will behave the way we expect. We

next characterize what it is for a reflective generator to be correct and comment on testing for

correctness using QuickCheck.

Our correctness criteria is based on similar notions to those of Xia et al. [2019]. We formulate

correctness using two interpretations. The generate interpretation is the canonical “forward”
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interpretation, characterizing the set of values that can be produced by a reflective generator when

it ignores its contravariant parameter. The canonical “backward” interpretation should characterize

the generator’s operation as a generalized identity function, taking a value and reproducing it—

reflect is almost the right interpretation, but it does extra work to keep track of choices. Thus,

we define:

reflect' :: Reflective b a -> b -> [a]

The reflect' interpretation has the same behavior as reflect, but it skips the code that tracks
choices. It also has a more general, unaligned type. (Alignment is an artificial restriction anyway;

reflect could also be given an unaligned type, but the alignment better-communicates the intended

use.) The full code for this and all other interpretation functions can be found in our artifact.

We define soundness and completeness of a reflective generator as follows:

Definition 2. A reflective generator g is sound iff
a ∼ generate g ==> (not . null) (reflect' g a).4

Where a ∼ γ means “a can be sampled from QuickCheck generator γ .”

In other words, if the generate interpretation can produce a value, then the reflect' interpretation
can reflect on that value without failing.

Definition 3. A reflective generator g is complete iff
(not . null) (reflect' g a) ==> a ∼ generate g.

In other words, if the reflect' interpretation successfully reflects on a value, then that value

should be able to be sampled from the generate interpretation.

As there is no way to check a ∼ generate g directly, completeness is impossible to test. Luckily,

Xia et al. give an alternative. First they define weak completeness:

Definition 4. A reflective generator g is weak complete iff
a ∈ reflect' g b ==> a ∼ generate g.

Weak completeness is still impossible to test, but it is compositional, meaning it is true of a generator

if it is true of its sub-generators. Since the only kind of sub-generator reflective generators can be

built from is Pick, we can prove this once and for all:

Lemma 4.4. All reflective generators are weak complete.

Proof. By induction on the structure of the generator; see Appendix E. (Note that this relies on

the weights in every Pick being strictly positive.) □

Xia et al. also gives a so-called pure projection property, which is testable (albeit sometimes

intractably
5
):

Definition 5. A reflective generator satisfies pure projection iff

4
The definition we give for soundness is morally correct, but it will occasionally fail (spuriously) if tested using QuickCheck.

The problem is size: QuickCheck varies the generator’s size parameter while testing, but it does not know to vary the size of

the reflect' interpretation to match. Concretely, this means that QuickCheck may test

a ∼ resize 100 (generate g) ==> (not . null) (reflect' g a).

which is effectively evaluating two different generators. To get around this, we should instead test

a ∼ generate (resize n g) ==> (not . null) (reflect' (resize n g) a).

for all n in a reasonable range.

5
The precondition of this property is often difficult to satisfy, leading to discards, but since needs only be tested once for

given generator, the user can likely afford a while trying to falsify it.
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a' ∈ reflect' g a ==> a = a'.

To complete the picture, we prove the following:

Theorem 4.5. Any weak-complete reflective generator satisfying pure projection is complete.

Proof. Assume (not . null) (reflect' g a), so there is some a' in reflect' g a. By pure
projection, a = a' so a is in reflect' g a. then by weak completeness we have a ∼ generate g
as desired. □

The take-away is that testing completeness of a reflective generator directly is impossible, but

testing pure projection suffices, where tractable. When determining the correctness of a reflective

generator, one should definitely test soundness and, where tractable, test pure projection.

External Correctness of a Reflective Generator. The notions of soundness and completeness above

are internal, focused on only the reflective generator itself, but we can also define external soundness
and completeness with respect to some predicate on the generator’s outputs.

We define the following properties:

Definition 6. A reflective generator g is externally sound with respect to p iff

x ∈ gen g ==> p x.

Definition 7. A reflective generator g is externally complete with respect to p iff

p x ==> (not . null) (reflect x g).

Unlike internal soundness and completeness, external soundness and completeness may not

be reasonable to check for every reflective generator. Sometimes there is no external predicate

to check against; other times there may be a predicate, but the generator may intentionally be

incomplete. But it is interesting and useful that both of these are testable; normal QuickCheck

generators cannot test their own completeness.

4.2 Overlap
One last theoretical property of a reflective generator worth noting is its overlap.

Definition 8. A reflective generator’s overlap for a given value is the number of different ways

that the value could be produced.

Many reflective generators naturally have an overlap of 1, meaning that there is only one way to

generate any given value, but some generators benefit from higher overlap. For example, a generator

might pick between two high-level strategies for generating values for the sake of distribution

control.

But overlap can cause problems for backward interpretations that care about examining all ways

of producing a particular value (e.g., probabilityOf which we will define in §7). In these cases,

overlap may lead to exponential blowup or even non-termination. For example, consider the three

generators in Figure 6. The first, g1, generates natural numbers, each in exactly one way:

ghci> reflect g1 (S (S (S (S (S Z))))) −− 5
[["S","S","S","S","S","Z"]]

The second, gE, can generate numbers in exponentially many ways; specifically, it can generate a

number by generating any sum of 1s and 2s that add to the desired total:

ghci> length (reflect gE (S (S (S (S (S Z)))))) −− 5
8

ghci> length (reflect gE (S (S (S (S (S (S ...))))))) −− 10
89
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g1 = labelled [ ("Z", exact Z), ("S", fmap S (focus _S g1)) ]

gE =

labelled

[ ("Z", exact Z),

("S", fmap S (focus _S gE)),k

("2", fmap (S.S) (focus (_S._S) gE))

]

gI =

labelled

[ ("Z", exact Z),

("S", fmap S (focus _S gI)),

("inf", gI)

]

Fig. 6. Reflective generators with unit, exponential, and infinite overlap.

Computing reflect gE of a large number could take a very long time, which may be a problem

for some use cases. Finally, we have gI which includes the option to make a no-op choice, "inf":

ghci> length (reflect gI (S (S (S (S (S Z)))))) −− 5
...

Calling reflect gI does not terminate—there are infinitely many ways to generate 5. However,
we conjecture that any generator with infinite overlap can be made into one that does not, by

ensuring that any loop is guarded by some change to the generated structure.

4.3 Expressiveness
Reflective generators fall on a spectrum between simple grammar-based generators and complex

monadic ones. Here, we show off the different kinds of data constraints that reflective generators

can express and discuss a few idioms that they cannot express.

Grammar-Based and Monadic Generators. Grammar-based generators [Godefroid et al. 2008]

use a context-free grammar describing the program’s input format as the basis for generating test

inputs. For example, the following grammar fragment defines a generator of expression parse trees:

term -> factor | term "*" factor | term "/" factor

Read as a generator, this says “to generate a term, choose either a factor, a "*" node, or a "/"
node.” Grammar-based generators are useful for generating inputs to a program with a context-free

input structure, like expression evaluators, JSON minifiers, or even some compilers. They are often

used in fuzzing, which we will discuss more in §6.3, for this reason. But grammar-based generators

cannot ensure that the values they generate satisfy context-sensitive constraints. One might, for

example, want to ensure that the left-hand side of a division does not evaluate to zero:

term -> factor | term "*" factor | term "/" nonzero(factor)

A complete generator of these expressions would require evaluation to take place during generation,

which is not possible as part of a context-free grammar. And this is just the tip of the iceberg: there

are a host of context-sensitive constraints that a generator might need to satisfy.

Enter monadic generators. As described in §2.1, monadic generators were introduced with

QuickCheck and are a domain-specific language for writing generators that produce values satisfy-

ing arbitrary computable constraints. Monadic generators can generate binary search trees [Hughes

2019], well-typed terms in a simply-typed lambda calculus, and more. Monadic generators subsume

context-free generators, for example, the following generator subsumes the term generator above:

term = oneof [fmap Factor factor, liftM2 Mul term factor, liftM2 Div term factor]

And with a bit more effort, we can exclude the parse trees with a divide-by-zero error:
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term = oneof [ fmap Factor factor, liftM2 Mul term factor,

do f <- factor

if eval f == 0 then liftM2 Mul term (return f) else liftM2 Div term (return f) ]

There is technically one more rung on this ladder: Hypothesis generators. While they are not

computationally more powerful than monadic ones, they are implemented in Python and can thus

perform arbitrary side-effects while generating. See Appendix F for an example of a Hypothesis

generator. As we move on to analyzing reflective generators’ expressiveness, we continue to focus

on pure generators, but incorporating an extra monad argument (and thus, arbitrary effects) to

reflective generators is compelling future work.

What Reflective Generators Can Do. As a start, reflective generators are certainly at least as

powerful as grammar-based generators.

Claim 1. Every grammar-based generator can be turned into a reflective generator via an analogous

procedure to the one for monadic generators.

Justification. A grammar can be made into a monadic generator in the following way. For

every rule S → α1 | · · · | αn , we can write a generator

s = oneof [liftMi C1 T(α1), ..., liftMj Cn T(αn )]

where C1 through Cn are fresh data constructors, and T translates each production by turning

non-terminals into the appropriate sub-generator and turning terminals into terminals into Haskell

strings. To turn that monadic generator into a reflective generator, simply add focus annotations

that extract each argument from each constructor (C). □

For example, this is the term generator that results from translating the grammar-based generator

to a reflective generator:

term = oneof [

fmap Factor (focus _Factor factor),

liftM2 Mul (focus (_Mul._1) term) (focus (_Mul._2) factor),

liftM2 Div (focus (_Div._1) term) (focus (_Div._2) factor) ]

In fact, reflective generators can implement all of the examples we previously listed as the

motivation for monadic generators (see the binary search tree generator in Figure 1b and the STLC

generator fragment below). There are also a variety of examples in §5.1 and §6 that are expressible

by monadic generators and not context-free ones.

To see how reflective generators fare in a complex case, consider a reflective generator for terms

in a simply-typed lambda calculus (STLC). The STLC generator is built from two sub-generators:

type_ :: Reflective Type Type

expr :: Type -> Reflective Expr Expr

(The underscore prevents type_ from being interpreted as a keyword.) The STLC generator works

by picking a type, then generating a value of that type. The monadic version of the generator

would simply write type_ >>= expr. But this does not work for a reflective generator; it needs an

annotation. Specifically, what’s needed is a mapping from Expr to Type that can focus on the type

in the expression. Pleasingly, this focusing is precisely type inference! The type-correct reflective

generator is: comap typeOf type_ >>= expr.
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What Reflective Generators Can’t Do. Given that reflective generators seem to be able to ex-

press so much, it may be easier to characterize what they can’t express. The biggest limita-

tion of reflective generators is that they cannot represent any approach to generation that fun-

damentally loses information about previously generated data. For example, in the generator

lmap ??? g >>= \ _ -> g', the annotation is missing because there is no valid annotation to

write: the value generated by g cannot be “focused” on as part of the final structure. Why might this

come up? One case is when the generator generates a value and then computes some un-invertible

function on it; there would be no way to recover the original value to analyze the choices made

when producing that value.

We have run across very few generators that fundamentally require an un-invertible function,

but one interesting examples is some formulations of System F [Girard 1986; Reynolds 1974]. It

is possible (though challenging) to write a monadic generator for System F [Pałka et al. 2011],

but impossible to do so for reflective generators. The problem can be seen when referring back

to the reflective generator for STLC terms, which uses type inference to recover a type from an

expression. If we tried to translate this generator to one for System F, we would have a problem:

type inference for System F is undecidable! Thus, the generator may fail to run backward, even if it

works correctly when run forward. Of course, in practice one could write a reflective generator

for System F terms which would work modulo some time-outs, but this is a neat example of the

dividing line between monadic and reflective generators.

System F is a rare example of a fundamental limitation of reflective generators, but there are a

few common generation idioms that reflective generators need to work around. First, reflective

generators cannot use the QuickCheck combinator “suchThat”, which samples a value and then,

if it does not satisfy a some predicate, throws it away, increases the size parameter, and samples

another. The size manipulation is the problem here: to correctly reflect on a value, the backward

direction would need to keep trying generators, recording and throwing away choices, until one

succeeds; as far as we know this is not possible with the current structure. The solution is simply

to avoid suchThat in favor of generators that satisfy predicates constructively—this would be

our recommendation anyway, since suchThat can be extremely slow in complex cases. Second,

reflective generators do not support a relatively common idiom where generators pick an integer

and then use that integer to bias the generation distribution in some way. This is problematic

because there is no way to recover that integer in the backward direction. One could theoretically

encode this pattern via pick: instead of do { i <- choose (0, n); k i }, write a pick with n
equally-weighted branches that each call k on a different value of i. But this is inefficient, so, in

practice, a larger rewrite might be required to get the desired distribution of values.

Bottom line: reflective generators have some ergonomic limitations, but they are almost as

powerful as monadic generators in practice.

5 EXAMPLE-BASED GENERATION
In this section, we demonstrate the power of reflective generators in the context of a clever

generation technique that was an early inspiration for their design: example-based generation

(§5.1). We replicate and generalize the prior work using reflective generators (§5.2).

5.1 Inputs from Hell
Inputs from Hell [Soremekun et al. 2020] (IFH) describes an approach to random testing that starts

with a set of user-provided example test inputs and randomly produces values that are either quite

similar to or quite different from those examples—the idea being that similar values represent

“common” inputs and that different ones represent interestingly “uncommon” inputs. By drawing

test cases from both of these classes, IFH is able to find bugs in realistic programs.
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The IFH approach is based on grammar-based generation. Examples provided by the user are

parsed by the grammar, and the resulting parse trees are used to derive weights for a probabilistic

context-free grammar (pCFG) that generates the actual test inputs. For example, given a simple

grammar for numbers

num -> "" | digit num digit -> "1" | "2" | "3"

and the example 12, the IFH technique might derive the following pCFGs:

num -> 33% "" | 66% digit num digit -> 50% "1" | 50% "2" | 0% "3" −− common
num -> 66% "" | 33% digit num digit -> 0% "1" | 0% "2" | 100% "3" −− uncommon

Each production is given a weight based on the number of times it appears in the parse tree for the

provided example (more or less weight, depending on whether the goal is to generate common

or uncommon inputs). The first grammar puts more weight on the 1 and 2, since it is trying to

generate more inputs like the initial example, whereas the second puts more weight on 3 because

it is trying to generate inputs unlike 12.

5.2 Reflecting on Examples
This process—parse the input, analyze the parse tree, and re-weight the grammar—is fairly straight-

forward to implement in the setting of grammar-based generation, but the IFH work does not

extend to monadic generators. As we discuss in §4.3, this is a significant limitation. Reflective

generators can bridge this gap by recapitulating the ideas in IFH but using a reflective generator

for IFH’s parsing and generation steps.

Implementation. We define three functions, corresponding to the parsing, analysis, and re-

weighting operations for grammars in the IFH paper:

reflect :: Reflective a a -> a -> [[String]]

analyzeWeights :: [[String]] -> Weights

genWithWeights :: Reflective b a -> Weights -> Gen a

We have already seen reflect: it reflects on a generated value and produces lists of choices that

were made to produce that value. With the choice sequences in hand, analyzeWeights aggregates

the choices together to produce a set of weights that say how often to expand one rule versus

another. This allows a new interpretation, genWithWeights, to generate new values by making

choices with the weights calculated from the user-provided examples.

When a reflective generator looks like a grammar (as with term in §4.3), this process replicates

the IFH algorithm exactly. But we have seen that reflective generators are far more powerful than

grammar-based generators, so the new algorithm both replicates and generalizes IFH, enabling
example-based generation for a much larger class of generators.

These interpretations rely heavily on choice labels, which we discuss briefly in §3.2. These labels

are used by reflect and genWithWeights to track the choices that should be weighted higher or

lower based on the examples. This means that, rather than building reflective generators with oneof
or frequency, the programmer should use labeled or pick. Recall that the reflective generators
library provides base generators that are labeled as well. However, there is some flexibility here: if

the programmer would prefer some choices not be re-weighted based on examples, they can simply

elide the labels. This is another way that the reflective generators approach generalizes IFH.

Example-Based Generation in Action. Soremekun et al. [2020] use the IFH tuning algorithm as

part of a comprehensive testing regime; by contrast, we have found them to be most useful as a

quick way to tune a generator to yield a reasonable distribution of sizes and shapes.
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To see this in action, consider a generator for JSON documents (the payload) along with a short

hash of the document that can be used as a checksum:

withHashcode :: Reflective String String

The full generator can be found in Appendix G. This is inspired by a generator for JSON documents

from the IFH paper, the reflective version of which is shown in full in Appendix H. Note that, while

the JSON part of the generator is equivalent to a context-free one, withHashcode is not (since it
has to compute the hash during generation).

To demonstrate how these also achieve the goal of IFH-style generators (that the weighted

generator is preferable to its unweighted counterpart), we sampled 10 JSON documents that

were used in the IFH experiments, ranging from ∼200-1,200 bytes long, and used them to weight

withHashcode in the style of IFH. We generated 1,000 documents from that weighted generator, as

well as from the unweighted generator, and compare the results in Figure 7.
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Fig. 7. Analysis of withChecksum tuned by example in the style of Inputs from Hell.

Figure 7a demonstrates that the weighted generator is far preferable to the unweighted version

in terms of its length distribution. The unweighted distribution, shown in orange, is skewed to the

left (smaller values) and has a huge spike. Inspecting the data revealed that the payloads of these

values are all either {} or [], both relatively uninteresting and certainly not worth generating

hundreds of times! In contrast, the weighted generator has a varied length distribution. It generates

very few trivial values, instead producing a wide distribution that covers more of the input space.

Figure 7b focuses on the samples’ character distributions. We counted the occurrences of each

character across all 10 of the example documents, resulting in a probability distribution over char-

acters. Then, for each sample, we computed the Jensen-Shannon divergence
6
[Lin 1991], between

6
Jensen-Shannon divergence is closely related to the more common Kullback-Leiber (KL) divergence [Kullback and Leibler

1951], but it works better for distributions with differing support because its value is never infinite.
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unlabeled = oneof

[ exact Leaf,

Branch

<$> focus (_Branch._1) unlabeled

<*> focus (_Branch._2) unlabeled ] (10(1(100)0))

Fig. 8. A Hypothesis-inspired reflective generator and a tree that the generator might produce.

the example distribution and the character distribution of the sample and plotted those divergences

in a violin plot. JS divergence measures the difference between two probability distributions, so it

is a simple way of getting a sense of how similar or different the characters in the samples are from

the ones in the examples. The plots show that the unweighted samples are farther from the the

example distribution than the weighted samples.

Without this example-based tuning, the developer of withHashcodewould need to think carefully
about the distribution that they want and even harder about how to alter the generator weights to

get there. With example-based tuning, they simply need to assemble 10 or so examples, compute

weights from those, and then use those weights for generation instead.

6 VALIDITY-PRESERVING SHRINKING AND MUTATION
The example-based generation in the previous section illustrates some of the benefits of reflecting

on choices. In this section, we explore those benefits further, using them to implement test input

manipulation algorithms like shrinking and mutation. In this section, we discuss the “internal

test-case reduction” algorithms implemented in the Hypothesis framework for PBT (§6.1), show

that reflective generators make these algorithms much more flexible (§6.2), and finally sketch the

ways that these ideas also apply to test-case mutation (§6.3).

6.1 Test-Case Reduction in Hypothesis
Shrinking is the process of turning a large counterexample into a smaller one that still triggers a

bug. Shrinking is critical in PBT because bugs are often tickled by very large inputs that are nearly

impossible to use for debugging—shrinking makes it much easier to understand which specific bits

of the value are actually necessary to trigger the bug.

In QuickCheck, users can either use GHC’s Generics [Magalhães et al. 2010] to derive a shrinker

automatically for a given type, or they can write a shrinker by hand. The former is effective in

simple cases, as we will see below, but it is not very general—these automatic shrinkers only

know about the type structure, so they cannot ensure that the shrunken values satisfy important

preconditions nor adequately shrink less structured data like strings. The latter is totally general,

but many users find writing shrinkers by hand confusing and error-prone.

This unsatisfying situation led MacIver and Donaldson [2020] to design Hypothesis’s “internal

test-case reduction,” which gives the best of both worlds. It solves the generality issue without

requiring user effort or understanding. The key insight is that the generator itself already has all of

the information needed to produce precondition-satisfying inputs, so the generator should be used

as part of the shrinking process. The accompanying clever trick is to shrink the random choices
used to generate a value, rather than shrinking the value itself.

Concretely, Hypothesis represents its input randomness as a bracketed string of bits. For example

(10(1(100)0)) produces the tree in Figure 8. The first bit says to expand the top-level node, the

second says that the left-hand subtree is a leaf, and so on. Each level of bracketing delineates some
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choices that are logically nested together (in this case, on a particular level of the tree). Hypothesis

aims to shrink these bitstrings by finding the shortlex minimum string of choices that results in a

valid counterexample; shortlex order considers shorter strings to be less than longer strings, and

follows lexicographic ordering otherwise (brackets are ignored for the purpose of ordering). In

practice, shortlex order turns out to be an effective proxy for complexity of generated test cases:

smaller bitstrings tend to produce smaller test cases.

The actual shrinking procedure uses a number of different passes, each of which attempts to

shorten the choice string, swap 1s with 0s, or both, resulting in a shortlex-smaller choice string.

The passes are described in the Hypothesis paper and available in the open source codebase
7
.

6.2 Reflective Shrinking
The downside of the Hypothesis approach is that this style of shrinking only works if the random

bitstring that produced the target value is still available—without it, there is nothing to shrink.

But there are many reasons one might want to shrink a value for which one does not have a

corresponding bitstring. In particular, shrinking can be useful for understanding externally provided

values that were not produced by the generator at all; for example, if a user submits a bug report

containing a printout of some large input that caused a crash, it might be much easier to debug

the problem with the help of a shrinker. Similarly, internal shrinking does not work if the value

has been modified at all between generation and shrinking, as might be desirable when doing

fuzzing-style (see §6.3) testing where test inputs are mutated to explore values in a particular region.

Luckily, reflective generators can help.

Extracting Bracketed Choices Sequences. We implement reflective shrinking via yet another inter-
pretation of reflective generators, with the following type:

data Choices = Choice Bool | Draw [Choices]

choices :: Reflective a a -> a -> [Choices]

The Choices type describes rose trees with two types of nodes: Choice, which represents a single-

bit choice, and Draw which represents some nested sequence of choices;
8
this type is isomorphic

to the bracketed choice sequences that Hypothesis uses. The choices function takes a reflective

generator and a value and produces the choice sequences that result in generating that value.

The implementation of choices is similar to that of reflect. It performs a “backward” inter-

pretation of the generator, keeping track of choices as it disassembles a value. This interpretation

ignores choice labels, since Hypothesis shrinks at a lower level of abstraction. Instead, the inter-

pretation of a Pick node determines how many bits would be required to choose a branch (by

taking the log of the length of the list of sub generators) and then assigns the appropriate choice

sequences to each branch. For example:

choices (oneof [exact 1, exact 2, exact 3]) 2 = [Draw [Choice False, Choice True]]

(10(1(100)0)) => (1(100)0)

(100)

(a) Shrinks from subTrees.

(10(1(100)0)) => (10(00000))

(10(0000))

(10(000))

(10(00))

(10(0))

(10)

(b) Shrinks from zeroDraws.

(10(1(100)0)) => (0111000)

(1010100)

(c) Shrinks from swapBits.

Fig. 9. Shrinking strategies.

Shrinking Strategies. With an appropriate bracketed choice

sequence in hand, shrinking can begin. We implemented a rep-

resentative subset of the shrinking passes described in the Hy-

pothesis paper: one pass tries shrinking to every available child

sequence of the original, a second replaces Draw nodes with

zeroes, and a third swaps ones and zeroes to produce lexically

7
https://github.com/HypothesisWorks/hypothesis

8
In the Haskell artifact, we use a slightly more complicated type, caching size information to make shortlex comparisons

faster.
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Table 1. Average size of shrunk outputs after reflective shrinking, compared with Hypothesis shrinking,
QuickCheck’s genericShrink, and un-shrunk inputs. (Mean and two standard-deviation range.)
∗Hypothesis experiments not re-run, data taken from [MacIver and Donaldson 2020].

Reflective Hypothesis
∗

QuickCheck Baseline

binheap 9.15 (8.00–10.30) 9.02 (9.01–9.03) 9.14 (8.12–10.16) 14.89 (7.01–22.77)

bound5 3.06 (0.60–5.52) 2.08 (2.07–2.10) 17.75 (0.00–62.32) 131.48 (0.38–262.59)

calculator 5.03 (4.54–5.52) 5.00 (5.00–5.00) 5.07 (4.21–5.92) 13.75 (1.60–25.90)

parser 3.70 (2.21–5.20) 3.31 (3.28–3.34) 3.67 (2.69–4.64) 40.04 (0.00–127.51)

reverse 2.00 (2.00–2.00) 2.00 (2.00–2.00) 2.00 (2.00–2.00) 2.67 (0.76–4.57)

smaller choices strings. The results of subTrees, zeroDraws,
and swapBits are shown in Figures 9a, 9b, and 9c accordingly.

Replicating Hypothesis Evaluation. To check that we repli-

cated Hypothesis shrinking correctly, we replicated one of the

experiments from the Hypothesis paper. MacIver and Donaldson

borrowed five examples from the SmartCheck repository [Pike

2014] that represent a varied range of shrinking scenarios. Each

example comes with a property, a buggy implementation, and

a QuickCheck generator; the goal was to run the property to

find a counterexample and shrink that counterexample to the

smallest possible value.

We upgraded the existing QuickCheck generators to reflective

ones, making minor modifications where necessary: we replaced

uses of suchThat with generators that satisfied invariants con-

structively, modified some of the approaches to distributionman-

agement, and added appropriate reflective annotations. These

modifications are based on the observations from §4.3. Then, we ran each experiment 1,000 times

and reported the average size of the resulting counterexamples in Table 1. Note that the QuickCheck

and baseline numbers come from the generate interpretation of the upgraded reflective generator,

rather than the original generator.

We find that reflective shrinkers perform just as well as QuickCheck’s genericShrink in all

cases, and significantly better in bound5. With a few caveats, reflective shrinkers also match

Hypothesis. They exhibit a higher variance in the size of counterexamples that they produce, likely

because they only implement a subset of Hypothesis’s shrinking strategies, but nevertheless their

counterexamples are on average within 1 unit of Hypothesis (and usually much closer). The worst

experiment relative to Hypothesis is bound5; in that example, we suspect the difference is due to

differing strategies for generating integers, rather than anything to do with shrinking directly.

A Realistic Example. As a final demonstration that reflective shrinkers are useful, we return to a

modified version of the JSON example used in §5. We define a generator for “package.json” files,
which are used as a configuration format in Node.js. Programs that process these files may be used

by millions of users, so a user may indeed find a bug in the program that a PBT regime did not.

Imagine a scenario where a user finds a bug where a program behaves incorrectly only when

the file specifies a specific version of a specific package. In this case, shrinking would be extremely

helpful: it would help the developers of the program isolate the exact lines in the JSON file that

cause a problem. But shrinking a JSON file like this is impossible for both genericShrink and

Hypothesis. The former does not work because the format is too unstructured: the generator
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produces JSON strings, rather than a Haskell datatype, so the best the shrinker could do is shorten

the string (which would result in invalid JSON). The latter does not even start to shrink, since the

JSON file came from a user, and therefore there is no random bitstring to shrink.

A reflective shrinker, however, works perfectly. Appendix I shows two JSON documents, the

first a full “buggy” version and the second a shrunk version. The shrunk JSON document could

point a developer to the precise issue with their program.

6.3 Reflective Mutation
HypoFuzz, a tool for coverage-guided fuzzing [Fioraldi et al. 2020] of PBT properties, is a newer and

lesser-known part of the Hypothesis ecosystem. Like Crowbar [Dolan and Preston 2017], HypoFuzz

uses a PBT generator to aid the fuzzer. Fuzzers try to maximize code coverage by keeping track of

a set of interesting inputs and mutating them, attempting to explore similar values and hopefully

continue to cover new branches of the program. “Mutating well” can be challenging, since naïve

mutations will rarely produce valid values; HypoFuzz gets around this concern with the same trick

Hypothesis uses for fuzzing: mutate the randomness, not the value.

Internal mutation has all of the same benefits and drawbacks as internal shrinking. On the

positive side, it is type agnostic, easy to use, and guarantees validity of the mutated values. On the

other side, it assumes that the randomness used to produce a given value is available. It may seem

like this drawback is less of an issue for mutation than it is for shrinking, since the fuzzer can just

keep track of the random choices associated with each value it wants to mutate, but this is not

true of the initial set of seed inputs. For optimal fuzzing, the seeds are provided by the user and

represent some set of initially interesting values that the fuzzer can play with. but this does not

work with Hypothesis-style mutation: the seeds needed for this style are not user-comprehensible

values but choice sequences! Once again, reflective generators provide a compelling solution. We

can simply extract a choice sequence from each seed using the choices interpretation.

7 IMPROVING THE TESTINGWORKFLOW
So far we have seen reflective generators in the context of example-based generation, shrinking, and

mutation. In this section, we explore several more useful interpretations, demonstrating reflective

generators’ power and flexibility.

7.1 Reflective Checkers
The “bigenerators” in the original work on PMPs [Xia et al. 2019] can be viewed as a special case of

reflective generators. Rather than rather than reflect on a value and produce choices, a bigenerator

simply checks whether a value is in the range of the generator, effectively checking if the value

satisfies the invariant that the generator enforces. Reflective generators can do this too, by reflecting

on the generator’s choices and asking whether or not there exists a set of choices that results in

the desired value.

Going further, a reflective generator can calculate the probability of generating a particular

value with the generate interpretation. We implement this in our artifact as an interpretation,

probabilityOf, which tracks the different ways of generating a particular value and the likelihood

of choosing those different ways. Obviously this works best when the generator’s overlap is low

(see §4.2)—in cases where overlap is exponential or infinite this may be slow or fail to terminate.

7.2 Reflective Completers
A rather different use case for reflective generators is generation based on a partial value. For
example, imagine a binary search tree with holes:
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Node (Node _ 1 _) 5 _

Reflective generators provide a way to randomly complete a value like this, filling the holes with
appropriate randomly generated values:

Node (Node Leaf 1 Leaf) 5 Leaf

Node (Node Leaf 1 (Node Leaf 3 Leaf)) 5 (Node (Node Leaf 6 Leaf) 7 Leaf)

This technique lets the user pick out a sub-space of a generator, defined by some value prefix,

and explore that sub-space while maintaining any preconditions that generator enforces. We

accomplish this with some carefully targeted hacks, representing a partial value as a value containing

undefined: [HG: TODO: Cite Natasha][Sam: is an acknowledgement at the end the best way to do

this as we have nothing to point at][HG: I chatted with her on Slack—the plan was to put nothing

for now, and cite the IFL paper if it gets accepted. If it doesn’t, we could always cite an arXiv

version? Or just ack] Node (Node undefined 1 undefined) 5 undefined.
Suppose, now, that this value were passed into a backward interpretation of bst from §1—where

would things fail? The key insight is that the only place a reflective generator manipulates its

focused value is when re-focusing. In other words, the only place a backward interpretation can

crash on a partial value is while interpreting Lmap. Capitalizing on this insight, we wrap the standard
Lmap interpretation in a call to catch, Haskell’s exception handling mechanism:

complete :: Reflective a a -> a -> IO (Maybe a)

...

interpR (Lmap f x) b =

catch

(evaluate (f b) >>= interpR x)

(\(_ :: SomeException) -> fmap (: []) (QC.generate (generate (Bind x Return))))

As long as no exception occurs, the code works as before. If there is ever an exception, the current

value is abandoned and the rest is generated via the generate interpretation. In other words,

complete mixes both backward and forward styles of interpretation to achieve its goals.

This trick works best for “structural” generators that only do shallow pattern matching in Lmaps,
things fall apart if the backward direction needs to evaluate the whole term. The clearest example

of this is comap typeOf type_ >>= expr (recall, it generates a type and then a program of that

type); in the backward direction, this generator immediately evaluates the whole term to compute

its type. For this generator, complete would just generate a totally fresh program.

Users may be able to work around this by making their predicates lazier. For example, one

could imagining writing an optimistic type checking algorithm optimisticTypeOf that maxi-

mizes laziness by blindly trusting user-provided type annotations. The user could then use the

reflective generator comap optimisticTypeOf type_ >>= expr to complete an incomplete term

like App (Ann (Int :-> Int) undefined) (Ann Int undefined). The completer would suc-

cessfully determine that the type of the whole expression is Int, and then it would have enough

information to complete the undefineds with well-typed expressions.

7.3 Reflective Producers
Weighted random generation in the style of QuickCheck is not the only way to get test inputs:

both enumeration [Braquehais 2017; Runciman et al. 2008] and guided generation [Fioraldi et al.

2020; Zalewski 2022] have been explored as alternatives. Indeed, much of the PBT literature has

moved from talking about generators to talking about producers of test data, where the specific
strategy does not matter [Paraskevopoulou et al. 2022; Soremekun et al. 2020]. We use the language

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 200. Publication date: August 2023.



Reflecting on Random Generation 200:25

of “generators” here because it is familiar and concrete, but reflective generators might better be

considered as reflective producers because they can also be used in these other styles.

A reflective generator can be made into an enumerator by interpreting Pick as an exhaustive

choice rather than a random one. We implement an interpretation

enumerate :: Reflective b a -> [[a]]

for “roughly size-based” enumeration, leaning heavily on the combinators and techniques found

in LeanCheck [Braquehais 2017]. We say “roughly” because, whereas LeanCheck enumerators

allow the user to define their own notion of size for each enumerator, reflective generators are

limited to a single notion of size based on the number and order of choices needed to produce

a given value. A thorough evaluation of this discrepancy would require its own study, but early

experiments are promising. For example, enumerate (bst (1, 10)) reaches size-4 BSTs before
its 10th enumerated value and matches the size order of an idiomatic LeanCheck enumerator given

in Appendix J.

While fuzzing is sometimes treated as a separate topic from PBT—focused on finding crash failures

by generating inputs external to a system rather than finding more subtle errors in individual

functions—a number of recent projects have attempted to bridge the gap, and reflective generators

may offer a useful unifying framework for such efforts. We already saw that reflective mutators are

helpful in the context of HypoFuzz-style mutation; reflective generators can also be used to interface

with an external fuzzer in the style of Crowbar [Dolan and Preston 2017], which is designed to

get its inputs from popular fuzzers like AFL or AFL++ [Fioraldi et al. 2020; Zalewski 2022]. Since

Crowbar already uses a free-monad-like structure to represent its generators, we can imagine

writing an equivalent reflective generator interpretation that works the same way. More generally,

reflective generators can be used in any producer algorithm that uses a generator as a parser.

8 RELATEDWORK
This work builds on the ideas of free generators [Goldstein and Pierce 2022] and partial monadic

profunctors [Xia et al. 2019]. Free generators are, in turn, built on top of freer monads [Kiselyov

and Ishii 2015], which were initially invented as a better way to represent effectful code in pure

languages. While our implementation remains faithful to the basic conception of freer monads,

there are many insights from Kiselyov and Ishii that we have not yet explored. Likewise, PMPs are

part of the long tradition of bidirectional programming [Foster 2009], and it remains to be seen if

there are stronger ways to tie reflective generators to work on other bidirectional abstractions.

The concrete realization of reflective generators is also related to the implementation of Crow-

bar [Dolan and Preston 2017]. Both libraries use a syntactic, uninterpreted representation for

generators, although the Crowbar version does not incorporate any ideas from monadic profunc-

tors and uses a different type for bind that does not normalize as aggressively.

The idea of reflective generators was originally sparked by the tools developed in Inputs from
Hell [Soremekun et al. 2020], and these tools in turn tie into the broader world of grammar-based

generation [Aschermann et al. 2019; Godefroid et al. 2008, 2017; Holler et al. 2012; Srivastava and

Payer 2021; Veggalam et al. 2016; Wang et al. 2019]. Grammar-based approaches are less expressive

than monadic ones, since they can only generate strings from a context-free grammar, and therefore

cannot generate complex data structures with internal dependencies.

Replicating example distributions is a classic problem in probabilistic programming [Gordon

et al. 2014]. While the goals of probabilistic programs are usually quite different from those of PBT

generators, there is some overlap in the formalisms used to express these ideas. In particular, one

representation of probabilistic programs in the functional programming literature [Ścibior et al.

2018] uses a free monad that is similar to free and reflective generators.
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Reflective shrinking and mutation build heavily on ideas in the Hypothesis framework [MacIver

and Donaldson 2020; MacIver et al. 2019], but there are other approaches to automated shrinking.

As mentioned in §6, QuickCheck provides genericShrink, which provides a competent shrinker

for any Haskell type that implements Generic. While genericShrink is a decent starting point, it

fails to shrink unstructured data (like strings) and values with complex preconditions. Another

alternative is provided by Hedgehog [Stanley [n. d.]], another Haskell PBT library. Hedgehog

shrinking is similar to Hypothesis shrinking, using the structure of the generator to enable autoamtic

validity-preserving shirnking. It has the same limitation: externally provided values cannot be

shrunk.

9 CONCLUSION AND FUTURE DIRECTIONS
Reflective generators are a powerful abstraction for producing and manipulating test inputs. We

have developed their theory and demonstrated their utility in a variety of testing scenarios, in-

cluding example-based generation, shrinking, mutation, precondition checking, value completion,

enumeration, fuzzing, and more. We plan to build on reflective generators, automating their creation

and improving their usability.

Automation and Synthesis of Annotations. The Lmap annotations in reflective generators can be

arbitrarily complex, but in practice they are usually simple, predictable functions that operate on

the input’s structure. We hope that, in a large variety of cases, the annotations can be synthesized.
We plan to work with Hoogle+ [James et al. 2020], using its type-based synthesis algorithm to

obtain candidate programs for the annotations with no user intervention. This is an especially

compelling opportunity because it is easy to tell whether annotations are correct: they must be

sound and complete, as described in §4. When synthesizing multiple annotations at the same time,

the system can even use the number of examples that pass or fail the soundness and completeness

properties as a way to infer which annotations are correct and which need to be re-synthesized—if

changing an annotation increases the number of passing tests, it is more likely to be correct; if the

change causes more tests to fail, it is likely wrong. If this idea works, it could make transitioning

from QuickCheck generators to reflective generators almost entirely automatic.

Usability. We have taken care to design an API for reflective generators that aligns with existing

QuickCheck functions and minimizes programmer effort. Our own experience writing reflective

generators studies has been positive, and, except for the aforementioned limitations (§4.3), we ran

into no issues upgrading existing generators. The automation techniques hypothesized above could

make reflective generators even more usable. Still, we certainly do not constitute a representative

sample of PBT users: the usability of reflective generators should be studied empirically.

There is a growing push in the PL community to incorporate ideas and techniques from human-

computer interaction (HCI) [Chasins et al. 2021], and this is a perfect opportunity to join that

movement.We plan to collaborate with HCI researchers on a thorough usability analysis of reflective

generators. Inspired by prior work [Coblenz et al. 2021], we hope our analysis will be useful for

both assessing and refining our design.
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APPENDIX
A PARTIAL ARROWS ARE PMPS

instance Profunctor PartialArr where

dimap f g (PartialArr p) = PartialArr (fmap g . p . f)

instance Monad (PartialArr a) where

return b = PartialArr (Just . const b)

(PartialArr p) >>= k = PartialArr (\a -> join (fmap (\x -> unPA (k x) a) (p a)))

−− Same as the one for (−>), but dealing with the maybe
−− bind for (−>): f >>= k = \ r −> k ( f r ) r

prune :: PartialArr b a -> PartialArr (Maybe b) a

prune (PartialArr p) = PartialArr (join . fmap p)

B GENERATOR UPGRADE PROGRESSION
Original:

bst :: (Int, Int) -> Gen Tree

bst (lo, hi) | lo > hi = return Leaf

bst (lo, hi) = frequency

[ ( 1, return Leaf ),

( 5, do

x <- choose (lo, hi)

l <- bst (lo, x - 1)

r <- bst (x + 1, hi)

return (Node l x r) ) ]

Midpoint:

bst :: (Int, Int) -> Reflective Void Tree

bst (lo, hi) | lo > hi = return Leaf

bst (lo, hi) = frequency

[ ( 1, return Leaf),

( 5, do

x <- voidAnn (choose (lo, hi))

l <- voidAnn (bst (lo, x - 1))

r <- voidAnn (bst (x + 1, hi))

return (Node l x r) ) ]

Final:

bst :: (Int, Int) -> Reflective Tree Tree

bst (lo, hi) | lo > hi = exact Leaf

bst (lo, hi) = frequency

[ ( 1, exact Leaf),

( 5, do

x <- focus (_Node._2) (choose (lo, hi))

l <- focus (_Node._1) (bst (lo, x - 1))

r <- focus (_Node._3) (bst (x + 1, hi))

return (Node l x r) ) ]

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 200. Publication date: August 2023.



Reflecting on Random Generation 200:29

C PROOFS OF LEMMA 4.1 (LAWS)
This appendix proves the equations from Lemma 4.1.

(M1) return a >>= f = f a

(M3) (x >>= f) >>= g = x >>= (\ a -> f a >>= g)

(PMP3) (lmap f . prune) (return y) = return y

(PMP4) (lmap f . prune) (x >>= g) = (lmap f . prune) x >>= lmap f . prune . g

Using the following relevant definitions:

data Freer f a where

Return :: a -> Freer f a

Bind :: f a -> (a -> Freer f c) -> Freer f c

data R b a where

Pick :: [(Weight, Choice, Reflective b a)] -> R b a

Lmap :: (c -> d) -> R d a -> R c a

Prune :: R b a -> R (Maybe b) a

ChooseInteger :: (Integer, Integer) -> R Integer Integer

GetSize :: R b Int

Resize :: Int -> R b a -> R b a

type Reflective b = Freer (R b)

instance Monad (Reflective b) where

return = Return

Return x >>= f = f x

Bind u g >>= f = Bind u (g >=> f)

prune :: Reflective b a -> Reflective (Maybe b) a

prune (Return a) = Return a

prune (Bind x f) = Bind (Prune x) (prune . f)

lmap :: (c -> d) -> Reflective d a -> Reflective c a

lmap f = dimap f id

dimap :: (c -> d) -> (a -> b) -> Reflective d a -> Reflective c b

dimap _ g (Return a) = Return (g a)

dimap f g (Bind x h) = Bind (Lmap f x) (dimap f g . h)

Proofs of (M1) and (M3). Immediate, by definition. □

Proof of (PMP3). By rewriting.

(lmap f . prune) (return y)

= {− def . return −}
(lmap f . prune) (Return y)

= {− def . prune (Return case ) −}
lmap f (Return y)

= {− def . lmap −}
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dimap f id (Return y)

= {− def . dimap (Return case ) −}
Return y

= {− def . return −}
return y

Thus (PMP3) holds. □

Proof of (PMP4). By induction over the structure of x.

Case x = Return a:

(lmap f . prune) (Return a >>= g)

= {− def . >>= (Return case ) −}
(lmap f . prune) (g a)

= {− re−bracket −}
(lmap f . prune . g) a

= {− def . >>= (Return case ) −}
Return a >>= (lmap f . prune . g)

= {− def . return −}
return a >>= (lmap f . prune . g)

= {− PMP3 −}
(lmap f . prune) (return a) >>= (lmap f . prune . g)

= {− def . return −}
(lmap f . prune) (Return a) >>= lmap f . prune . g

Case x = Bind r h:

(lmap f . prune) (Bind r h >>= g)

= {− def . >>= −}
(lmap f . prune) (Bind r (h >=> g))

= {− def . prune + lmap −}
Bind (Lmap f (Prune r)) (lmap f . prune . (h >=> g))

= {− IH −}
Bind (Lmap f (Prune r)) (lmap f . prune . h >=> lmap f . prune . g)

= {− def . >>= −}
(Bind (Lmap f (Prune r)) (lmap f . prune . h)) >>= (lmap f . prune . g)

= {− def . prune + lmap −}
(lmap f . prune) (Bind r h) >>= lmap f . prune . g

Thus (PMP4) holds. □
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D POLYMORPHIC INTERPRETATION FUNCTION

interpret ::

forall p d c.

(PartialProf p, forall b. Monad (p b)) =>

(forall b a. [(Weight, Choice, Reflective b a)] -> p b a) ->

Reflective d c ->

p d c

interpret p = interp

where

interp :: forall b a. Reflective b a -> p b a

interp (Return a) = return a

interp (Bind r f) = do

a <- interpR r

interpret p (f a)

interpR :: forall b a. R b a -> p b a

interpR (Pick xs) = p xs

interpR (Lmap f r) = lmap f (interpR r)

interpR (Prune r) = prune (interpR r)

E PROOF OF LEMMA 4.4 (WEAK COMPLETENESS)
Recall that a reflective generator g is weak complete iff

a ∈ reflect' g b ==> a ∼ generate g.

We claim that every reflective generator is weak complete, where the definition of reflect' is as

follows:

reflect' :: Reflective b a -> b -> [a]

reflect' = interp

where

interp :: Reflective b a -> b -> [a]

interp (Return x) _ = return x

interp (Bind r f) b = interpR r b >>= \x -> interp (f x) b

interpR :: R b a -> b -> [a]

interpR (Lmap f r') b = interpR r' (f b)

interpR (Prune r') b = maybeToList b >>= \b' -> interpR r' b'

interpR (Pick gs) b = gs >>= (\ (_, _, g) -> interp g b)

Proof. By mutual induction over the structure of Freer and R.
Given a reflective generator g and a value a:

Case g = Return a':
Assume a ∈ reflect' (Return a') b
reflect' (Return a') b = [a'], thus a = a'.
By definition, a' ∼ return a', so a ∼ return a' = reflect' (Return a').

Case g = Bind r f:
Assume a ∈ reflect' (Bind r f) b.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 200. Publication date: August 2023.



200:32 Goldstein and Frohlich et al.

Thus, a ∈ (interpRreflect′ r b >>= \ x -> reflect' (f x) b).
Thus, ∃a' such that a' ∈ interpRreflect′ r b and a ∈ reflect' (f a') b.
By IHR, a' ∼ interpRgenerate r.
By IH, a ∼ generate (f a').
Thus, a ∈ (interpRgenerate r >>= \ x -> generate (f x)).
Thus, a ∈ generate (Bind r f).

Simultaneously, given an R r and a value a:

Case r = Lmap f r':
Assume a ∈ interpRreflect′ (Lmap f r') b.
Thus, a ∈ interpRreflect′ r' (f b).
By IHR, a ∼ interpRgenerate r'.
Thus, a ∼ interpRgenerate (Lmap f r').

Case r = Prune r':
Assume a ∈ interpRreflect′ (Prune r') b.
Thus, a ∈ maybeToList b >>= \ b' -> interpRreflect′ r' b'.
Thus, ∃b' such that a ∈ interpRreflect′ r' b'
By IHR, a ∼ interpRgenerate r' b'.
Thus, a ∼ interpRgenerate (Prune r').

Case r = Pick gs:
Assume a ∈ interpRreflect′ (Pick gs) b.
Thus, a ∈ (gs >>= \ (_, _, g) -> reflect' g b).
Thus, ∃g' such that (_, _, g') ∈ gs and a ∈ reflect' g' b.
By IH, a ∼ generate g'.
Thus, a ∼ QC.frequency [(w, interp g) | (w, _, g) <- gs].
(Recall, we assume weights are positive.)

Thus, a ∼ interpRgenerate (Pick gs).

This completes the proof. □

F HYPOTHESIS GENERATOR EXAMPLE
This Hypothesis generator produces valid binary search trees, and can be used for integrated

shrinking in the style of MacIver and Donaldson [2020]. Since this is just a normal Python function,

the generator can use side-effects if desired.

@st.composite

def bsts(draw, lo=-10, hi=10):

if lo > hi:

return Leaf()

else:

if not draw(st.integers(min_value=0, max_value=3)):

return Leaf()

x = draw(st.integers(min_value=lo, max_value=hi))

return Node(x, draw(bsts(lo, x - 1)), draw(bsts(x + 1, hi)))
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G JSONWITH HASH CODE GENERATOR

withHashcode :: Reflective String String

withHashcode = do

let a = "{\"payload\":"

let b = ",\"hashcode\":"

let c = "}"

consume a >>- \_ ->

start >>- \payload -> do

let hashcode = take 8 (show (abs (hash payload)))

consume b >>- \_ ->

consume hashcode >>- \_ ->

consume c >>- \_ ->

return (a ++ payload ++ b ++ hashcode ++ c)

where

hash = foldl' (\h c -> 33 * h `xor` fromEnum c) 5381

consume s = lmap (take (length s)) (exact s)

A reflective generator for JSON objects with a hashcode, not expressible with a grammar-based

generator. The generator produces a payload, then computes its hash, and then assembles the larger

JSON object containing both.

H GENERATOR FOR JSON DOCUMENTS
This reflective generator encodes the full grammar of JSON documents. While it is complex and

unweildy, we would not necessarily expect a programmer to write this themselves. It follows

the structure of the grammar exactly, so it could be produced automatically from a more concise

representation of the grammar.

Note: We slightly simplified the grammar from the IFH repository, skipping a few rules for

unicode support that were not used by any of the provided examples.

token :: Char -> Reflective b ()

token s = labeled [(['\'', s, '\''], pure ())]

label :: String -> Reflective b ()

label s = labeled [(s, pure ())]

(>>-) :: Reflective String String

-> (String -> Reflective String String)

-> Reflective String String

p >>- f = do

x <- p

lmap (drop (length x)) (f x)

−− start = array | object ;
start :: Reflective String String

start =

labeled

[ ("array", array),

("object", object)
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]

−− object = "{" "}" | "{" members "}" ;
object :: Reflective String String

object =

labeled

[ ("'{' '}'", lmap (take 2) (exact "{}")),

( "'{' members '}'",

lmap (take 1) (exact "{") >>- \b1 ->

members >>- \ms ->

lmap (take 1) (exact "}") >>- \b2 ->

pure (b1 ++ ms ++ b2)

)

]

−− members = pair | pair ',' members ;
members :: Reflective String String

members =

labeled

[ ("pair", pair),

( "pair ',' members",

pair >>- \p ->

lmap (take 1) (exact ",") >>- \c ->

members >>- \ps ->

pure (p ++ c ++ ps)

)

]

−− pair = string ':' value ;
pair :: Reflective String String

pair =

string >>- \s ->

lmap (take 1) (exact ":") >>- \c ->

value >>- \v ->

pure (s ++ c ++ v)

−− array = "[" elements "]" | "[" "]" ;
array :: Reflective String String

array =

labeled

[ ("'[' ']'", lmap (take 2) (exact "[]")),

( "'[' elements ']'",

lmap (take 1) (exact "[") >>- \b1 ->

elements >>- \ms ->

lmap (take 1) (exact "]") >>- \b2 ->

pure (b1 ++ ms ++ b2)

)

]
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−− elements = value ',' elements | value ;
elements :: Reflective String String

elements =

labeled

[ ("value", value),

( "value ',' elements",

value >>- \el ->

lmap (take 1) (exact ",") >>- \c ->

elements >>- \es ->

pure (el ++ c ++ es)

)

]

−− value = " f " "a" " l " " s " "e" | string | array | " t " "r " "u" "e" | number
−− | object | "n" "u" " l " " l " ;
value :: Reflective String String

value =

labeled

[ ("false", lmap (take 5) (exact "false")),

("string", string),

("array", array),

("number", number),

("true", lmap (take 4) (exact "true")),

("object", object),

("null", lmap (take 4) (exact "null"))

]

−− string = "\"" "\"" | "\"" chars "\"" ;
string :: Reflective String String

string =

labeled

[ ("'\"' '\"'", lmap (take 2) (exact "\"\"")),

( "'\"' chars '\"'",

lmap (take 1) (exact ['"']) >>- \q1 ->

chars >>- \cs ->

lmap (take 1) (exact ['"']) >>- \q2 ->

pure (q1 ++ cs ++ q2)

)

]

−− chars = char_ chars | char_ ;
chars :: Reflective String String

chars =

labeled

[ ("char_", (: []) <$> focus _head char_),

("char_ chars", (:) <$> focus _head char_ <*> focus _tail chars)

]
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−− char_ = digit | unescapedspecial | letter | escapedspecial ;
char_ :: Reflective Char Char

char_ =

labeled

[ ("letter", letter),

("digit", digit),

("unescapedspecial", unescapedspecial),

("escapedspecial", escapedspecial)

]

letters :: [Char]

letters = ['a' .. 'z'] ++ ['A' .. 'Z']

−− letter = "a" | .. | "z" | "A" | .. | "Z"
letter :: Reflective Char Char

letter = labeled (map (\c -> ([c], exact c)) letters)

unescapedspecials :: [Char]

unescapedspecials = ['/', '+', ':', '@', '$', '!', '\''

, '(', ',', '.', ')', '-', '#', '_']

−− unescapedspecial = "/" | "+" | ":" | "@" | "$" | "!" | "\"
−− | "(" | "'" | "," | "." | ")" | "−" | "#" | "_"
unescapedspecial :: Reflective Char Char

unescapedspecial = labeled (map (\c -> ([c], exact c)) unescapedspecials)

escapedspecials :: [Char]

escapedspecials = ['\b', '\n', '\r', '\\', '\t', '\f']

−− escapedspecial = "\\ b" | "\\ n" | "\\ r " | "\\/" | "\\\\" | "\\ t " | "\\\"" | "\\ f " ;
escapedspecial :: Reflective Char Char

escapedspecial = labeled (map (\c -> ([c], exact c)) escapedspecials)

−− number = int_ frac exp | int_ frac | int_ exp | int_ ;
number :: Reflective String String

number =

labeled

[ ("int_", int_),

("int_ exp", int_ >>- \i -> expo >>- \ex -> pure (i ++ ex)),

("int_ frac", int_ >>- \i -> frac >>- \f -> pure (i ++ f)),

("int_ frac exp"

, int_ >>- \i -> frac >>- \f -> expo>>- \ex -> pure (i ++ f ++ ex))

]

−− int_ = nonzerodigit digits | "−" digit digits | digit | "−" digit ;
int_ :: Reflective String String

int_ =
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labeled

[ ("nonzero digits", (:) <$> focus _head nonzerodigit <*> focus _tail digits),

("digit", (: []) <$> focus _head digit),

( "'-' digit",

(\x y -> x : [y])

<$> focus _head (exact '-')

<*> focus (_tail . _head) digit

),

("'-' digit digits", (:) <$> focus _head (exact '-')

<*> focus _tail ((:) <$> focus _head digit <*> focus _tail digits))

]

−− frac = "." digits ;
frac :: Reflective String String

frac = label "'.' digits" >> (:) <$> focus _head (exact '.') <*> focus _tail digits

−− exp = e digits ;
expo :: Reflective String String

expo =

label "e digits"

>> ( e >>- \e' ->

digits >>- \d ->

pure (e' ++ d)

)

−− digits = digit digits | digit ;
digits :: Reflective String String

digits =

labeled

[ ("digit", (: []) <$> focus _head digit),

("digit digits", (:) <$> focus _head digit <*> focus _tail digits)

]

−− digit = nonzerodigit | "0" ;
digit :: Reflective Char Char

digit =

labeled [("nonzerodigit", nonzerodigit), ("'0'", exact '0')]

−− nonzerodigit = "3" | "4" | "7" | "8" | "1" | "9" | "5" | "6" | "2" ;
nonzerodigit :: Reflective Char Char

nonzerodigit =

labeled (map (\c -> ([c], exact c)) ['1', '2', '3', '4', '5', '6', '7', '8', '9'])

−− e = "e" | "E" | "e" "−" | "E" "−" | "E" "+" | "e" "+" ;
e :: Reflective String String

e =

labeled

[ ("'e'", lmap (take 1) (exact "e")),
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("'E'", lmap (take 1) (exact "E")),

("'e-'", lmap (take 2) (exact "e-")),

("'E-'", lmap (take 2) (exact "E-")),

("'e+'", lmap (take 2) (exact "e+")),

("'E+'", lmap (take 2) (exact "E+"))

]

I EXAMPLE OF REDUCED PACKAGE.JSON

{

"name": "reflective-generators",

"description": "What a great project",

"scripts": {

"start": "node ./src/server.js",

"build": "babel ./src -out-dir ./dist",

"test": "mocha ./test"

},

"repository": {

"type": "git",

"url": "https://example.com"

},

"keywords": [

"reflective",

"generators"

],

"author": "test",

"license": "mit",

"devDependencies": {

"babel-cli": "^6.24.1",

"babel-core": "^6.24.1",

"babel-preset-es2015": "^6.24.1"

},

"dependencies": {

"express": "^4.15.3",

"reflective": "^0.0.1"

}

}

{

"name": "a",

"description": "a",

"scripts": {

"start": "a",

"build": "a",

"test": "a"

},

"repository": {

"type": "a",

"url": "a"

},

"keywords": [],

"author": "a",

"license": "a",

"devDependencies": {},

"dependencies": {

"express": "^4.15.3"

}

}

J LEANCHECK BST ENUMERATOR

leanBST :: (Int, Int) -> [[Tree]]

leanBST (lo, hi) | lo > hi = [[Leaf]]

leanBST (lo, hi) =

cons0 Leaf

\/ ( choose (lo, hi) >>- \ x ->

leanBST (lo, x - 1) >>- \ l ->

leanBST (x + 1, hi) >>- \ r ->

delay [[Node l x r]]
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)

where

(>>-) = flip concatMapT

choose = concatT [zipWith (\i x -> [[x]] `ofWeight` i) [0 ..] [lo .. hi]]
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