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Embedding is a language development technique that implements the object language as a library in a host
language. There are many advantages of the approach, including being lightweight and the ability to inherit
features of the host language. A notable example is the technique of Higher-Order Abstract Syntax (HOAS),
which makes crucial use of higher-order functions to represent abstract syntax trees with binders. Despite its
popularity, HOAS has its limitations. We observe that HOAS struggles with semantic domains that cannot be
naturally expressed as functions, particularly when open expressions are involved. Prominent examples of
this include incremental computation and reversible/bidirectional languages.

In this paper, we pin-point the challenge faced by HOAS as a mismatch between the semantic domain
of host and object language functions, and propose a solution. The solution is based on the technique
of unembedding, which converts from the finally-tagless representation to de Bruijn-indexed terms with
strong correctness guarantees. We show that this approach is able to extend the applicability of HOAS while
preserving its elegance. We provide a generic strategy for Embedding by Unembedding, and then demonstrate
its effectiveness with two substantial case studies in the domains of incremental computation and bidirectional
transformations. The resulting embedded implementations are comparable in features to the state-of-the-art
language implementations in the respective areas.
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1 INTRODUCTION
Programming languages solve problems in an expressive and flexible way.When there is a particular
problem to be solved, a domain-specific language (DSL) is desirable as it specializes to the problem
domain in question. DSLs can be embedded, that is created, as a library within another host language,
to save implementation effort and allow guest language users access to host language features. A
host language feature that is desirable to reuse is its binding constructs.

Binders are important because they introduce variables, with common binders including let and
𝜆-abstractions. A brute force implementation of binders is cumbersome and error prone. A popular
alternative for embedding a languagewith binders is Higher-Order Abstract Syntax (HOAS) [Church
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succ x{x=3} - 4
forward evaluation

succ x�{x=3} 4
backward evaluation

Fig. 1. Example of Advanced Semantics: Reversible Computation

1940; Huet and Lang 1978; Miller and Nadathur 1987; Pfenning and Elliott 1988]. As the name
suggests, this technique uses higher-order functions to implement binders, essentially reusing the
host’s function binders as guest binders. There has been much development in this area, producing
many variants of HOAS including the finally-tagless style [Carette et al. 2009], which supports
extensibility in both syntax and semantics; or parametric HOAS (PHOAS) [Chlipala 2008], which
adds support for non-compositional semantics.

However, HOAS and its variants encounter issues when trying to embed languages with advanced
semantics that do not adhere to the traditional evaluation mode of taking open expressions and
mapping free variable assignments to results. For example, reversible/bidirectional computation,
exhibited in Fig. 1, suffers from this. Here, the open expression succ x can be evaluated forward
(or “traditionally”) by providing the values of the free variables (in this case the value of x) to get
the result; or it can be evaluated backward by providing the result to yield the assignment of x.
The problem lies in the attempt to embed guest functions with non-standard semantics as host
functions with standard semantics.
So far, this problem has remained undocumented. But we suspect that it is the root cause of

some of the struggles faced by language designers. Take the bidirectional programming literature
as an example. Much work has gone into this area, with the popular approach of lenses and
combinators [Foster et al. 2005, 2007] being awarded POPL’s most influential paper in 2015, 10 years
after its publication. But lenses (and all the follow on work) [Matsuda and Wang 2018a,d; Pacheco
and Cunha 2010] struggled to include bindings in an embedded setting, resulting in significant
difficulties in programming [Miltner et al. 2017]. There is a gap in the literature surrounding this
problem, and it is not limited to bidirectional programming. We also investigate the problem in
incremental computation, and speculate automatic differentiation, probabilistic programming, and
quantum programming as potential targets for future exploration.
This paper pin-points and solves the issue of embedding binders and interpreting open expres-

sions in domains where it was previously not possible. Our solution builds upon a technique known
as unembedding [Atkey 2009; Atkey et al. 2009], which converts from the HOAS representation to
de Bruijn-indexed terms. The crucial insight is that unembedding can be used to bridge the gap
between the elegant syntax of HOAS and advanced domain semantics that were previously out
of reach. The success of this solution is exhibited by our two substantial case studies, covering
state-of-the-art languages in two of the domains afflicted with this problem: incremental computa-
tion and reversible computation. The incremental computation example successfully unembeds the
cache-transfer-style (CTS) [Giarrusso et al. 2019] variant of the Incremental 𝜆-Calculus (ILC) [Cai
et al. 2014]. CTS builds upon the original language, which created incremental functional programs,
to create even more incremental programs. In the domain of reversible programming, we create
the first embedding of a bidirectional language with binders by embedding HOBiT [Matsuda and
Wang 2018d], a higher-order lens language.

We name our new embedding framework Embedding by Unembedding. It acts as the glue between
a familiar HOAS frontend and a system for managing environments, generalizing the original work
that converts to de Bruijn-indexed terms, to allow for binders in more interesting semantic domains.
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We design techniques to tame tedious management of environments and propose generic steps of
embedding with the new framework. Specifically, we make the following contributions:1

• We identify a long-standing problem of being unable to use HOAS for complex application
domains of languages with binders, pin-pointing the issue as a mismatch between host and
guest language function semantics (§2).

• We propose unembedding (§3) as a solution to this problem.
• We build a new embedding framework based on unembedding and the finally-tagless
style (§4).

• We conduct a case study by embedding Giarrusso et al.’s CTS (§5). The resulting language is
easy to use, with implementation details properly hidden from programmers and scales well
to higher-order constructs.

• We conduct another case study by embedding the bidirectional programming language
HOBiT [Matsuda and Wang 2018d] (§6). The resulting language is the first successful embed-
ding of a bidirectional language with binders.

We then discuss related work (§7) and future work (§8) before concluding (§9).

2 THE PROBLEMWITH HOAS
This section identifies and clarifies the problem with HOAS that our framework addresses. It
begins by covering the necessary background to understand the problem (§2.1), then highlights the
problem (§2.2).

2.1 Background: HOAS
The motivation for HOAS is that the manipulation of variables is cumbersome and sometimes hard
to get right [Church 1940; Huet and Lang 1978; Miller and Nadathur 1987; Pfenning and Elliott
1988]. To do it properly, a number of issues need carefully considered: if there were two expressions
bound to the same name, which expression is provided when that name is called (name duplication);
whether this changes if the binders are nested (nesting); what happens when a name is called
outside of its scope (out of scope referencing).
In an embedding setting, HOAS completely circumvents these problems by not implementing

binders, but reusing the host language’s binding infrastructure. It does this by encoding guest
binders as higher-order functions in the host.
For example, HOAS would embed a let binder as a function with the following type, for some

Exp (where Exp represents some arbitrary semantic domain in this shallow embedding example):

let’ :: Exp a → (Exp a → Exp b) → Exp b

Here, the guest binder is created using a higher-order host function, where the first argument is the
expression that gets bound, and the second is where the bound expression gets used. This allows
for guest level terms to be written using host binders:

term y = let’ y (\x → x)

This term expresses a let binder that does nothing, taking the variable y and doing nothing to it in
the body. The point is to highlight how x is available to name the bound expression and use it in
the body of the let, but no implementation effort was needed to control this naming, or its scoping,
or the other binder issues. This is the ease and elegance of HOAS: an implementer gains the full
expressivity of the host’s binders, without any of the effort.

1A proof-of-concept prototype implementation of Embedding by Unembedding, which also contains the examples used in
this paper, is available from https://doi.org/10.5281/zenodo.7990806.
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Given its convenience, HOAS is the foundation of some prominent embedding techniques
including finally-tagless style [Carette et al. 2009]. In Haskell, this consists of an embedding whose
functions are given by a typeclass [Gibbons and Wu 2014] (or alternatively in ML families by a
signature). Finally-tagless style is modular and extensible in both syntax and semantics: constructs
can be grouped into different or dependent typeclasses; new constructs can be added as new
typeclasses or methods; and new interpretations can be added as new typeclass instances. The let
expression example can switch to this style, allowing it to generalize over the semantics Exp:

class Let exp where
let’ :: exp a → (exp a → exp b) → exp b

While we have focussed on the finally-tagless [Carette et al. 2009] variant of HOAS, this problem
also affects parametric HOAS (PHOAS) [Chlipala 2008]. It may add support for non-compositional
semantics, however, it is still not easy to implement advanced semantics in PHOAS for the same
reason that it is hard for HOAS.

2.2 The Problem
With HOAS (and its variants), the semantics of the term under a binder in the guest language is
implemented as a host language function. This representation permits only one operation: the
application of the function. This is sufficient in many cases, but becomes a problem with complex
semantic domains, where additional manipulation of variable environment is required outside of the
standard instantiation of variables with function arguments. This is not just because these domains
often feature non-standard binding constructs, but more crucially, the way the open expressions
(found inside the binders) are treated differs from standard function bodies.

Take invertible computation as an example. An expressive language in this domain features
special backward case constructs and pattern matching (details in §6). Moreover, unlike the standard
computation model where an expression evaluates to a value under a value environment, the
backward semantics is commonly modelled as an interpretation of an open expression (with
the binder removed) and a given value to produce a value environment containing the bound
variables (see, e.g., [Yokoyama et al. 2011]). For example, the open expression succ x from Fig 1,
when executed backwards with the given value 4 produces a binding environment {x = 3}. It is
not obvious how this behaviour can be encoded by a function as HOAS requires.
A similar problem arises in the exploration of incremental computation, where recomputation

is avoided to achieve a performance gain. Cai et al. [2014]’s incremental 𝜆-calculus achieves
the goal by interpreting a function as a mapping from input changes to output changes. Open
expressions are instrumental here too, as they have clear notions of input and output as opposed
to closed ones. The situation is even more complicated with the state-of-the-art cache-transfer-
style (CTS) [Giarrusso et al. 2019] variant, which introduces a notion of “cache” to support non-
self-maintained computations [Cai et al. 2014]. We defer the details to the case study (§5). The
key to know here is that this “cache” is a state carried through and updated by the computation,
in addition to the already complex semantics of the open expressions. Again, HOAS struggles to
encode this behaviour.

These domains share a common characteristic that the complex semantics requires some kind of
manipulation of the environment. This is an interesting dilemma. On the one hand, HOAS gives us
a simple programming interface as it avoids manipulation of variables. On the other hand, some
semantics require access to environments, i.e., assignments to variables, which are hidden by HOAS
(for a good reason).
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In this paper, we advocate Embedding by Unembedding as a solution that works for both HOAS
and PHOAS, and allows the embedding of a guest language whose semantics differ from its host,
without sacrificing the desirable HOAS (or PHOAS) interface.

3 BACKGROUND: THE TECHNIQUE OF UNEMBEDDING
Embedding by Unembedding builds upon Unembedding [Atkey 2009; Atkey et al. 2009]. This section
elaborates on this technique, covering what it is, its original motivation, and why it is suitable for
our purposes (§3.1); how it leverages de Bruijn-indexed terms as a more amenable representation
for their purposes and how this generalizes to solve our embedding problem (§3.2); and the details
of how the technique works (§3.4).

3.1 What and Why
Unembedding is a technique that gives a round-tripping transformation from a finally-tagless [Carette
et al. 2009] language representation to de Bruijn-indexed terms. As the name suggests, the tech-
nique is in a sense the opposite of HOAS embedding, converting an embedded implementation
to an explicit Abstract Syntax Tree (AST) representation. The original motivation for this work
is supporting certain optimizations that require global analysis of the AST [Atkey et al. 2009], to
which de Bruijn-indexed terms are more amenable than the finally-tagless representation.

We observe that this technique has much greater applicability. Our iteration on their work distils
out the desirable qualities of the representation into a generalization that we will introduce later.

3.2 The de Bruijn Representation
We first introduce a representation of environments, as the explicit access to environments is the
advantage of de Bruijn representations over HOAS, and this explicit access is also crucial in our
generalization presented in this paper. An environment is a collection of values of different types.

The simplest way to achieve this in Haskell is as a tuple, but as this gets messy, a heterogeneous
list [Kiselyov et al. 2004] is more appropriate:

data VEnv (as :: [k]) where
VENil :: VEnv '[]

VECons :: a → VEnv as → VEnv (a ': as)

exEnv = VECons 1 (VECons 'a' VENil) :: VEnv '[Int,Char]

(Here, “':” and “'[]” are the type-level versions of the cons operator “:” and the nil “[]”, re-
spectively.) VEnv works the same way as a normal list, but with the addition of a type level list
(as), allowing it to hold values of different types as desired to implement an environment. For
example, exEnv stores both an Int and a Char. This environment of values is a good start, but
there are many other types of environment that may be required. For example, the guest types
might be distinguished from Haskell types using a wrapper type; or one might wish to store guest
expressions, as opposed to values, to represent open terms; or perhaps a value-level representation
of a type environment is desired. To accommodate these, a common approach2 is to generalize
VEnv to wrap a container around the stored values:

data Env (f :: k → Type) (as :: [k]) where
ENil :: Env f '[]

ECons :: f a → Env f as → Env f (a ': as)

Different instantiations of this container f create different environments:
2See, e.g., http://agda.github.io/agda-stdlib/Data.Star.Environment.html.
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type VEnv = Env Identity −− Value environment.
type EEnv exp = Env exp −− Expression environment.
type TEnv = Env Proxy −− Type environment.

The Identity container3 creates a value environment the same as VEnv; exp allows an environment
to store guest language expressions; Proxy4 creates a type environment.
This representation allows us to provide a unified interface for manipulation of environments.

For example, the environment infrastructure includes a way to index into environments:

lookEnv :: Env f as → Ix as a → f a

lookEnv (ECons v _) IxZ = v

lookEnv (ECons _ env) (IxS n) = lookEnv env n

data Ix (as :: [k]) (a :: k) where
IxZ :: Ix (a ': as) a −− At element in question.
IxS :: Ix as a → Ix (b ': as) a −− Element lies further into the env.

Here, lookEnv takes an environment and a witness of type Ix, which ensures that a type a occurs
in a type level list as. In the context of lookEnv, this corresponds to ensuring that the environment
contains the corresponding f a value. To extract the value, it walks down the environment to the
index at which the value lies using the witness type.

A de Bruijn representation of the Simply-typed 𝜆-Calculus (STLC) demonstrates this infrastruc-
ture:

data DSTLC (env :: [Type]) a where
DVar :: Ix env a → DSTLC env a

DLam :: DSTLC (a ': env) b → DSTLC env (a → b)

DApp :: DSTLC env (a → b) → DSTLC env a → DSTLC env b

Intuitively, DSTLC env a represents STLC terms that have type a and free variables in env. Hence,
DLam says that we can construct a function of type a → b from an expression of type b with an
extra free variable of type a. A variable is represented by its index (Ix env a) in the environment.
For example, x is represented by DVar IxZ assuming x appears first in the environment, and hence
(\x → x) is represented by DLam (DVar IxZ). Using indices, this representation gives a canonical
representation to 𝛼-equivalent terms. However, indices change when the environment grows e.g.,
(\x → (\y → x) x) is represented as this DSTLC term: DLam (DApp (DLam (DVar (IxS IxZ)
)) (DVar IxZ)).

3.3 The HOAS Representation
In contrast, since in HOAS the variables are represented by using the host’s bindings, there is no
corresponding method to DVar, as presented in Fig. 2 with representation of the STLC in the finally-
tagless style [Carette et al. 2009]. Here, the guest-level bindings are represented by the host-level
bindings; e.g., (\x → (\y → x) x) is represented as lam (\x → app (lam (\y → x)) x).
A caveat is that we can pass arbitrary functions to lam, which, without restrictions, includes those
that may not be STLC terms, and perhaps perform case analysis on their inputs. It is crucial to
3Identity is a container that does nothing, representing the identity functor/monad in Haskell.

It is defined: newtype Identity a = Identity a
4Proxy is a special Haskell type, that attaches a type to a placeholder constructor, holding no data, meaning that no values
end up in the environment, but the type level list is preserved.

It is defined: data Proxy a = Proxy
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class STLChoas exp where
lam :: (exp a → exp b) → exp (a → b)

app :: exp (a → b) → exp a → exp b

Fig. 2. STLC HOAS Representation

exclude such exotic terms [Chlipala 2008], e.g., by using the parametricity of exp, which also plays
a key role in the unembedding [Atkey 2009].

HOAS is useful for both language EDSL users and implementers, as it uses host-language binders
to represent guest-language binders. From the user’s perspective, compared with the naïve string
representation of variables, it allows us to use the host language’s variables for a guest language
variables, providing access to the host’s name checking and IDE’s support concerning variables (e.g.,
displaying their types and automatic completion). From the language implementer’s perspective,
it frees us from manipulation of names, including name checking, renaming, and substitution.
Some advantages, such as removing the need for name-checking and renaming, also apply when
comparing HOAS to de Bruijn terms. HOAS also has further advantages over de Bruijn terms,
especially from the user’s perspective, as variables are more intuitive than indices to program with
and enjoy IDE’s support. It is the goal of this paper is to extend the applicability to HOAS to more
semantic domains, while preserving these advantages as much as possible, and this unembedding
technique is the key to doing that.
The finally-tagless style of HOAS is preferable over plain HOAS because it addresses known

issues with plain HOAS: exotic terms and defining semantics.5 It is one of two state-of-the-art
variants that address the issues, with the other being PHOAS [Chlipala 2008]. The use of typeclasses
also has the additional advantages over PHOAS of extensibility (a typeclass can have subclasses)
and efficiency (no tags are required to distinguish AST nodes—this is why the representation is
called “tagless” [Carette et al. 2009]).

3.4 Converting between HOAS and de Bruijn
Unembedding achieves the best of both worlds: a language with the beloved user-friendly HOAS
interface that is also amenable to analysis, by converting between HOAS and de Bruijn representa-
tions of a language. We expand upon this, using a similar conversion to attach a HOAS interface to
a first-order representation that supports the semantics of interest.

The conversion from de Bruijn to an open HOAS term (OTHoas) falls out quite naturally. In the
𝜆-calculus example, DLam and DApp map directly to lam and app, and DVar looks up what to inline
in a value environment:

type OTHoas env a = forall exp. STLChoas exp ⇒ Env exp env → exp a

toHOAS :: DSTLC env a → OTHoas env a

toHOAS (DVar n) = \g → lookEnv g n

toHOAS (DLam t) = \g → lam (\x → toHOAS t (ECons x g))

toHOAS (DApp f p) = \g → app (toHOAS f g) (toHOAS p g)

Each line of the toHOAS function constructs a result of type OTHoas, in other words a function from
an environment to a guest term. The first line finds its guest term in the provided environment of
5Defining transformations from a plain HOAS tree to its semantics is problematic. This is because the negative occurrence
of the AST type in constructs such as 𝜆 requires a transformation in opposite direction. Even implementing the standard
semantics is not straightforward (see, e.g., [Fegaras and Sheard 1996]). Using a typeclass solves this issue because instantiating
a type parameter of the typeclass with its instance does not share the same issues as transformation.
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guest expressions (g) at the location specified by DVar n. The second is translating the 𝜆 construct, so
creates a lam term. The lam term requires a guest expression of the result type with an environment
extended by the variable it introduces. This is created by recursively converting the body of the 𝜆, t,
with the required extended environment. Application is converted by providing the app construct
with function and argument converted recursively.

Notice that, e.g., OTHoas [a,b] c is isomorphic to forall exp. STLChoas exp ⇒ exp a
→ exp b → exp c. Here, the universal quantification in OTHoas ensures that toHOAS cannot
produce exotic terms.

The other direction executes the unpacking of the HOAS representation into an explicit syntax
tree:

fromHOAS :: (forall exp. STLChoas exp ⇒ exp a) → DSTLC '[] a

fromHOAS h = runUSTLC h ENil

This is more involved because typing environment information needs to be recovered, necessitating
an appropriate interpretation of exp: USTLC (the application of runUSTLC to h triggers h to assume
this type). Since exp does not contain any information about the typing environment, the basic
idea of unembedding is to make this type a function from this information, in the form of a typing
environment, to the explicit DSTLC syntax tree:

newtype USTLC a = USTLC {runUSTLC :: forall env. TEnv env → DSTLC env a}

To complete USTLC as an interpretation of exp, lam and app must be defined over this type. The
interpretation of app is:

app :: USTLC (a → b) → USTLC a → USTLC b

app (USTLC u1) (USTLC u2) = USTLC (\g → DApp (u1 g) (u2 g))

The environment g is fed to each subexpression u1/u2 to allow the construction of a DApp term.
The interpretation of lam is trickier, which has the following form (where the type annotations are
just for readability):

lam :: (USTLC a → USTLC b) → USTLC (a → b)

lam k = USTLC $ \(g :: TEnv env) →
let ga = ECons Proxy g :: TEnv (a ': env) −− extend env

x = USTLC (\(g' :: TEnv env') → −− prepare arg for k
weakenManyDSTLC ga g' (DVar IxZ :: DSTLC (a:env) a)) :: USTLC a

in DLam (runUSTLC (k x) ga)

−− apply k to x with extended arg to get desired arg for DLam

This instantiates lam concretely into the USTLC type that behaves as a 𝜆: introducing a new vari-
able that can be referred to in its body by extending the environment. It extends env to a:env;
accordingly, it also prepares its value level representation ga :: TEnv (a ': env). Recall that
TEnv = Env Proxy. Thanks to the extension, we now can have a variable DVar IxZ :: DSTLC (a
:env) a, which needs to be converted to DSTLC env' a to prepare x :: USTLC a to be fed to the
lam’s argument k. This conversion is done by weakening,6 which performs appropriate shifting of
variables to adjust the environment from ga to the actual incoming one g'.

weakenManyDSTLC g1 g2 = weakenBy (compare g1 g2)

Here, compare and weakenBy have the following signatures.

6Note that at this assumes that the environment follows a last in, first out (LIFO) ordering.
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compare :: TEnv env1 → TEnv env2 → env1 ≤ env2

weakenBy :: env1 ≤ env2 → DSTLC env1 a → DSTLC env2 a

The function compare compares two type environments to have a witness that env2 is an extension
of env1 (more precisely, env2 = env ++ env1 for some env). Then, weakenBy performs weakening
by using the witness.

Of course, compare is a partial function, since env1 ≤ env2 may not hold in general (e.g., env1
= [a,b] and env2 = [b,a]). Here, the exclusion of exotic terms matters; the conversion from
the HOAS representation is meaningful only from polymorphic term. The universally quantified
exp in fromHOAS ensures that the HOAS representation h consists only of lam and app, and hence
only the operation on environments are extensions (using lam). As a result, since x appears in a
deeper position in k, it will receive an extended environment (g') than the outer one (ga) passed to
k x. This is why compare always succeeds in fromHOAS. Atkey [2009] proves this fact formally by
using the (Kripke) parametricity of h, together with the fact that toHOAS (fromHOAS h) ENil is
equivalent to h.7 That is, the two representations are isomorphic.

Thus, unembedding has unpacked the HOAS to create an explicit syntax tree. The original work
used this to support optimizations and code generation, especially those that require non-local
analysis of ASTs [Atkey et al. 2009; Matsuda and Wang 2018b; McDonell et al. 2013; Stewart 2010;
Werk et al. 2012]).8 Our key observation is that the unembedding technique has so much more
potential. The current work is purely syntactic, but by considering semantics, unembedding can
used to support the embedding of languages with advanced computation models.

4 EMBEDDING BY UNEMBEDDING
This section explores using unembedding for embedding languages with “complex semantic do-
mains” and introduces our Embedding by Unembedding framework. The exploration is conducted
with the STLC. With its standard semantics, it does not require our technique, but our primary
focus here is the explanation of our technique and preparation for later sections, where we embed
languages with more complex semantics that require Embedding by Unembedding.

The section begins by clarifying what languages we have observed Embedding by Unembedding
is applicable to (§4.1), before beginning a standard embedding of the STLC (§4.2), and investigating
where unembedding comes in useful (§4.3), and finishing in a summary of our technique (§4.4).

4.1 Applicability
We have observed that Embedding by Unembedding is applicable to languages that: are simply
typed; have constructs that are either “first” or “second” order;9 have compositional semantics; and
support a rule for weakening environments. These qualities constitute sufficient criteria. By “first”
or “second” order, we refer to two categories that we split language constructs into: those that
introduce binders (which we refer to as second-order), and those that do not (first-order). The typing

7The opposite direction fromHOAS (toHOAS t ENil) = t can be proved by the induction on twithout using parametricity.
8To be precise, Werk et al. [2012] and Stewart [2010] use the core conversion technique fromMcDonell et al. [2013], described
in https://github.com/mchakravarty/hoas-conv, which is operationally similar to the unembedding but independently
developed.
9We use the term “second-order” specifically in the sense of “second-order abstract syntax”, as used in the line of work by
Fiore et al. [1999], not in the sense of “second-order 𝜆 calculus” (System F).
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rules for each category of construct will adhere to the following general forms and compositional
semantics for a certain semantic domain S:10

{Γ ⊢ 𝑒𝑖 : 𝐴𝑖 }𝑖=1,...,𝑛
Γ ⊢ con 𝑒1 . . . 𝑒𝑛 : 𝐵

{Γ, 𝑥𝑖1 : 𝐴𝑖1, . . . , 𝑥𝑖𝑚𝑖
: 𝐴𝑖𝑚𝑖

⊢ 𝑒𝑖 : 𝐵𝑖 }𝑖=1,...,𝑛
Γ ⊢ con′ (𝑥11 . . . 𝑥1𝑚1 . 𝑒1) . . . (𝑥𝑛1 . . . 𝑥𝑛𝑚𝑛

. 𝑒𝑛) : 𝐶
Here, 𝑥11, . . . , 𝑥1𝑚1 , . . . , 𝑥𝑛1, . . . , 𝑥𝑛𝑚𝑛

are the variables bound by the construct con′. For example in
the STLC, the function application and the 𝜆 abstraction belong to the former and latter sorts of
constructs, respectively.

4.2 Embedding
Before utilizing unembedding, our embedding of the STLC must begin as any other: its syntax and
semantics need to be considered and pinned down.

Semantic Domain. Firstly, the semantic domain must be identified. This involves considering
what the meaning of the embedded language should be. Is it a reversible language where the
semantics should run “backwards” by mapping results to free variable assignments? Does it need to
support the translation of changes in the inputs to changes in the outputs to facilitate incremental
computation? A concrete way of doing this is by reifying it as a datatype in the host language.

As discussed, semantics where unembeddingwill come in useful are thosewhere open expressions
matter. That is, those that must be ready for interpreting the standard typing rule for variables:
Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴. This idea is encapsulated into the Variables typeclass below.

class Variables (sem :: [k] → k → Type) where
var :: sem (a ': as) a

weaken :: sem as a → sem (b ': as) a

If the reified semantic type is an instance of this class, then it is amenable to unembedding.
Variables represents the class of semantics (sem) that depend on some context ([k], a list of
types of kind k), have one particular variable in focus (k), and are able to be unembedded. The var
method ensures that we can interpret Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 (where Γ′ is empty in the above), and weaken
ensures that more variables can be added to a context for interpretations. By mixing the two, we can
interpret variables that appear in arbitrary positions in a context; e.g., weaken (weaken var) ::
Variables sem ⇒ sem (b ': c ': a ': env) a corresponds to Γ, 𝑥 : 𝐴,𝑦 : 𝐵, 𝑧 : 𝐶 ⊢ 𝑥 : 𝐴.
An astute reader may wonder why we only focus on weakening (weaken), when we could

have other manipulations (namely, exchange and contraction) that ensure that Γ is essentially a
set instead of a sequence. This is because weakening is the only manipulation of environments
used in Embedding by Unembedding. That is, Variables encapsulates only the minimal set of
operations needed, though we expect that the semantic domain must support general extensions
and rearrangements on contexts, their actions on the domain, and that semantic functions respect
such context manipulations.11

Example 4.1. The (standard) semantics of the STLC takes an environment of free variables to a
result. This is realized as a concrete Haskell datatype by wrapping up a function from a variable
environment to a result as a newtype.

newtype STLC env a = Sim { runSim :: VEnv env → a }

type VEnv = Env Identity

10The reader may notice that con is a special case of con′. We distinguish them for readability (con can be compared to app;
con′ can be compared to lam), and to highlight that unembedding enables the the ability to treat con′.
11We conjecture that this treatment essentially corresponds to the functor category [F, Set] in Fiore et al. [1999].
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Here, runSim is exactly the semantics of the STLC: a function from a value environment to a result.
The value environment is the Env type, where the type container is just Identity. The use of the
Env type provided by our framework helps make this semantic type an instance of the Variables
typeclass. For var, runSim can extract the first value from the VEnv. For weaken, a new Sim can be
constructed so that it just ignores the first element of the environment:

instance Variables STLC where
var :: STLC (a ': as) a

var = Sim (\(ECons (Identity x) _) → x)

weaken :: STLC as a → STLC (b ': as) a

weaken (Sim f) = Sim (\(ECons _ env) → f env)

Language Constructs. Semantics in hand, the next step considers how each of the language
constructs should behave in that domain. Each construct is represented in the semantic domain as
a function over the semantics of terms-in-context.

Example 4.2. The STLC only has two constructs: one first-order (app), and one second-order
(lam). The semantic function for a first-order construct such as app takes the form of a function
over the STLC type. Thus the semantic function for app should be a function with two arguments:
a function (f) and its argument (x), where its definition applies f to x. What differentiates this
semantic function from a normal Haskell function representing app is that f and x are wrapped up
in the STLC type:

appSem :: STLC env (a → b) → STLC env a → STLC env b

appSem fTerm aTerm = Sim (\g →
let f = runSim fTerm g −− Unpack function using g.

x = runSim aTerm g −− Unpack arg using g.
in f x) −− Apply.

Second-order constructs are slightly more involved, due to the semantics needing to operate on
the environment. In the example, lam takes a term of the STLC, represented by the STLC type, that
knows how to make the result should it have the argument in its environment, and produces a
function term:

lamSem :: STLC (a ': env) b → STLC env (a → b)

lamSem bTerm = Sim (\g x →
let g' = ECons (Identity x) g −− Add x :: a to env.
in runSim bTerm g') −− Use to make b.

The function term works by storing its argument into the environment and using the original body
to produce the result.

Syntax. While the semantic functions are an accurate representation of the semantics of the
language, they are not very usable. Users want an interface with binders and variable names, not
environments and indices, and language designers want to give them this with as little effort as
possible. This is why HOAS is typically used to represent the syntax of an embedded language.
This step is the same as any other finally-tagless embedding: creating a typeclass to represent

the language, where each construct is a method, and binders are achieved as host level functions.

Example 4.3. The STLC example can use STLChoas from Fig. 2.
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Gap. Now the embedded language has both syntax and semantics. All that remains is to connect
the two. Normally, this step is as simple asmaking the semantic type an instance of the finally-tagless
syntax. However, this is not straightforward when the semantic type explicitly uses environments.

The STLC example has been contrived such that its standard semantics do this needlessly,12 but
domains such as those of our case studies will require it. Thus something is needed to act as a
conduit between the HOAS syntax and interesting semantics. This something is unembedding.

4.3 Unembedding
Unembedding marries syntax and semantics, achieving a complex semantic domain without sacri-
ficing the user-friendly interface. It facilitates making the semantic type an instance of the HOAS
typeclass.

We create a framework around unembedding so that, on the surface, this connection can be done
in two steps: wrap the semantic type in provided wrapper type EnvI (for “environment indexed”);
apply provided lifting functions (liftFOn and liftSO) to the semantic functions to instantiate the
typeclass methods. Here, the only choice that needs to be made is what lifting function to use. The
framework provides a family of lifting functions: a variety for first-order constructs that cater to
different numbers of arguments, and one for second-order constructs.

Example 4.4. As an example of using lifting functions, consider STLC. Here this means that STLC
is wrapped in EnvI so that it can be an instance of STLChoas:

instance STLChoas (EnvI STLC) where
app = UE.liftFO2 appSem −− not a binder ⇒ FO, 2 args ⇒ FO2
lam = UE.liftSOn (ol1 :. End) lamSem −− binder⇒ SO

Here, app is defined as the lifting of appSem. Because app is first-order, one of the liftFO functions
is used, specifically liftFO2 because app has two arguments. As a second-order construct, lam is
different. Now its arguments can have arguments. To allow for this, liftSOn takes a description
of what arguments are expected: how many there are and how many arguments (bindings) they
themselves have. This description is a list, with each element representing an argument and how
many arguments it itself takes. In the case of lam, there is one argument that itself has one argument,
thus the singleton list of ol1 is needed.

Under the hood, our framework is managing a de Bruijn-index-like first-order representation
so that the involvement of the environment is not user-facing. This is a more general application
of the unembedding technique, where semantic functions replace de Bruijn terms. Recall that the
main challenge that Embedding by Unembedding tackles is the conflict of requirements between
the advanced and non-standard guest function semantics and the desire to use HOAS (and thus
standard host function semantics) to achieve this. The advanced semantics require an environment;
whereas HOAS expects none because the whole point of it is to defer the handling of binders to the
host language:

semAdv :: [k] → k → Type

semHOAS :: k → Type

This mismatch is a generalization of the one between de Bruijn indexed terms andHOAS expressions.
Thus, a wrapper type can be used to connect the semantic functions to their HOAS representation.
This wrapper type, is USTLC from §3, but with the first-order semantics (e.g. DSTLC) generalized
out as a parameter (sem):

12However, the technique would be useful if one interprets STLC in an arbitrary cartesian closed category [Elliott 2017].
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newtype EnvI sem a = EnvI { runEnvI :: forall env. TEnv env → sem env a }

Regarding implementation of first-order, non-binding constructs, recall that we pass around a
value-level representation of the typing environment, env, in the implementation of app in §3. This
actually serves as a common pattern. Hence, even without liftFO families, we can implement app
of the STLC similarly with appSem as below.

app (EnvI e1) (EnvI e2) = EnvI (\g → appSem (e1 g) (e2 g))

The implementation depends only on the number n of arguments of a construct. We provide
liftFOn to avoid this routine.

Implementation of second-order, binding constructs is analogous to the lam case in §3, with the
implementation of lam without liftSO following the same story, the only differences being the use
of var instead of DVar IxZ, and the use of lamSem instead of a constructor of de Bruijn terms, and
a more general implementation of weakenMany that uses weaken from the Variables typeclass.

lam k = EnvI $ \(g :: TEnv env) →
let ga = ECons Proxy g :: TEnv (a ': env)

x = EnvI (\g' → weakenMany ga g' var)

in lamSem (runEnvI (k x) ga)

In general, the lifting of a binding construct is done by: for each argument k of type b that binds
variables of types a1, . . . , an:

(1) Extend g to obtain ga :: TEnv (a1 ': ... ': an ': env).
(2) Prepare variables vi :: sem (a1 ': ... ': an ': env) ai in the semantic domain sem

by using var and weaken, and then convert them to xi :: EnvI sem ai by weakening:

weakenMany :: Variables sem ⇒
TEnv env → TEnv env' → sem env a → sem env' a

The function weakenMany implements our iteration on the original unembedding’s compare
and weaken, which repeatedly applies weaken from the Variables typeclass.

If we ignore manipulation of types, this pattern depends only on the number of bindings for each
argument of a construct. So, we provide liftSO to perform the routine lifting by knowing the num-
bers of bindings, as lam = liftSOn (ol1 :. End) lamSem. Though useful, the implementation
of liftSO is not in the scope of this paper, and thus we advise curious readers to see Appendix A.
While the implementation of the lifting functions is quite involved, in reality, this is just the

tedious management of environments that is tamed by the Embedding by Unembedding framework.
All the language designer actually has to do to connect their interesting semantics to a HOAS
frontend is use them.

4.4 Embedding by Unembedding
Embedding by Unembedding successfully embeds a languagewith binders and interesting semantics,
allowing for the interpretation of open expressions.

Open Expressions. The ability to interpret open expressions is a key feature provided through
Embedding by Unembedding that existing embedding techniques have not yet tackled.

The interpretation of open expression is provided generically for any semantics that are members
of the Variables typeclass:

runOpen :: Variables sem ⇒ (EnvI sem a → EnvI sem b) → sem '[a] b

runOpen f = let gA = ECons Proxy ENil
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x = EnvI $ \g' → weakenMany gA g' var

in runEnvI (f x) gA

In the specific case where there is only one free variable, runOpen takes an open term and transforms
it into the semantic type. Since the open term is expressed as a host level function, runOpen creates
the EnvI sem a argument to run it on. It does this by creating a type environment with just the
single free variable in it, and then creating a var expression where that environment is unified with
the incoming one. To ensure that there is indeed only one free variable runOpen must be wrapped
in runOpenSTLC similarly to the original unembedding.

runOpenSTLC :: (forall exp . STLChoas exp ⇒ exp a → exp b) → STLC '[a] b

runOpenSTLC f = runOpen f

The framework also provides a more general runOpenN for n free variables.

Example 4.5. Putting the embedded STLC to work builds on top of runOpenSTLC:

runSTLC :: STLC '[a] b → a → b

runSTLC t x = let g = ECons (Identity x) ENil in runSim t g

This function operates on the output of runOpen, interpreting the STLC term with one free variable
as a function from a to b: the standard semantics of the 𝜆-calculus. Here it is in action, evaluating
the application of the identity function to a free variable that has a value of three:

term :: STLChoas exp ⇒ exp b → exp b

term x = app (lam (\y → y)) x

> runSTLC (runOpenSTLC term) 3

3

The STLC expression is written as term, whose type is what runOpenSTLC expects. All that remains
is to use runSTLC to provide the value of the free variable.

Correctness. The correctness of Embedding by Unembedding—that runOpenSTLC implements
the standard semantics for this particular case—is understood as a generalization of Atkey [2009]’s
original unembedding followed by fusion [Gill et al. 1993]. Continuing to consider our STLC example,
unembedding maps the STLChoas representations to the DSTLC in the one-to-one manner, and the
semantics of DSTLC is given by replacing constructors with their corresponding semantic functions.
Thus, fusing the two process together by replacing DSTLC constructs with their corresponding
semantic functions in the methods of STLChaos for USTLC, we get an instance of STLChoas that
coincides with the semantics given for de Bruijn terms. This is what Embedding by Unembedding
is doing. In this process, we slightly extend the original discussion to show the correspondence in
open terms, namely HOAS representations of type forall exp. STLChoas exp ⇒ exp a →
exp b and de Bruijn terms of type DSTLC '[a] b, assuming the Kripke parametricity of the HOAS
representations (observe forall in the type). The correctness of the fusion can also be proved by
using the parametricity [Gill et al. 1993]. We can repeat the discussion on a case-by-case basis for
languages satisfying the criteria in §4.1.

Summary. The process of Embedding by Unembedding can be summarized into a recipe, where
each different part of the example constitutes a step:
Step 1. Identify and reify the semantic domain. (Shown for the STLC in Example 4.1)
Step 2. Prepare semantic functions for each construct. (Example 4.2)
Step 3. Provide a HOAS representation of the syntax. (Example 4.3)
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Step 4. Implement semantics though appropriate liftings. (Example 4.4, recall that all the language
designer had to do here was use the provided lifting functions and wrapper type.)

Step 5. Put the language to work! (Example 4.5)
Appendix B runs through the application of this recipe to another example: the ILC, the predecessor
of the incremental language that is the subject of our incremental computation case study.

An Extensible and Modular Approach. A major benefit of embedding is the ease of extending the
language, which is indeed the case in Embedding by Unembedding. In fact, our approach features
the state-of-the-art modularity and extensibility of the finally-tagless style. To add new constructs,
the recipe can just be repeated for the new constructs only, and the language can be created in a
modular manner, with different constructs grouped into different and dependant typeclasses. The
embedded language presented in §5 makes use of this advantage to design the core system simple
as possible and enables us to extend the core to incremental primitives for user-defined datatypes.
Also, we detail the adding of sequences13 to the ILC, which can be found in Appendix B.

Case Studies. Wewill now demonstrate Embedding by Unembedding on two domains that require
the technique to be embedded: incremental and reversible computation. These two domains could
not previously be embedded due to the limitations of HOAS. Limitations that are now solved by
Embedding by Unembedding.
Note that neither of our case studies feature 𝜆 binders. This is a consequence of the semantic

domains of the languages in question, not the unembedding technique. In the case of the CTS variant
of the ILC, the original work [Giarrusso et al. 2019] does not support the typed 𝜆 abstractions
and applications as seen in STLC, as their semantics (which was originally untyped) does not
respect types for them. We follow suit on choice of binder, avoiding 𝜆, as this is a domain specific
issue. In the case of our reversible case study, it is simply difficult to find a semantic domain that
appropriately encapsulates the semantics and supports abstractions (see, e.g., [Abramsky 2005;
Chen and Sabry 2021; Matsuda and Wang 2018d, 2020]). As such, we apply the same trick of
switching to a let binder, this time deviating slightly from the original language.

5 CASE STUDY: INCREMENTAL 𝜆-CALCULUS
The first non-trivial computation model we consider in this paper is incremental computation. This
domain is focussed on speeding up recomputation, something that is invaluable in our world of
big data [Acar and Chen 2013], and it is a technique that transcends language paradigms, with
research into the incrementalization of functional [Chen et al. 2014a], imperative [Hammer et al.
2009], and object orientated languages [Shankar and Bodík 2007].
Unlike normal computations, incremental computation aims to only recompute those outputs

that depend on the changes of the input in order to achieve efficiency. Generally, this involves
mapping input changes to output changes instead of recomputation. For example, when summing
a list, if just one element was incremented, it makes no sense to recompute the sum. It would be far
more efficient to just increment the initial sum of the list. Many models of incremental computation
exist. Our case study focusses on Cai et al. [2014]’s incremental 𝜆-calculus, specifically an improved
variant of it known as the cache-transfer-style (CTS) [Giarrusso et al. 2019], which propagates
changes to the input into changes of the output without using pointers or destructive operations.
This section will cover the unembedding of the CTS [Giarrusso et al. 2019]. (Appendix B also

walks through the unembedding of the original calculus.) It begins by introducing the CTS variant
(§5.1) and why it is of interest (§5.2), before exploring the interesting parts of the unembedding
(§5.3), including an evaluation of the performance of the embedded language.

13Sequences are a speedier version of lists in Haskell, and as ILC is about efficiency they are chosen.
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5.1 Cache-Transfer-Style Incremental Functions
An incremental function in CTS can be characterized by the following type:

∃𝐶.(𝐴 → (𝐵,𝐶), (Δ𝐴,𝐶) → (Δ𝐵,𝐶))

The first component (which we call an initializer) is a transformation from𝐴 to 𝐵 that also computes
a “cache” 𝐶 . The existential quantification tells us that the cache may differ between computations.
The cache is used and updated for the second component (which we call a Δ-translator) to translate
input changes Δ𝐴 into output changes Δ𝐵. Take the list reversal reverse as an example. When an
insertion to the 𝑖th position happens to the original input list xs, an insertion of the same element
happens to the (length xs − 𝑖)th position of the corresponding output. So the cache can be the
length of the original input. The cache may also be changed by the input change, which is the
reason for the 𝐶 in the output of the Δ-translator. Here, an insertion also changes the length of the
input.

5.2 Why Unembedding is Desired and Applicable
As mentioned in §2.2, the ability to handle open expressions is crucial to the change-propagation-
based incremental computation in general, not limited to Cai et al. [2014]’s original work and
the CTS version [Giarrusso et al. 2019]. Unlike closed expressions, open expressions have clear
inputs (value environments) and outputs (evaluation results), which makes the notions of input
changes and output changes clear. That is, we can view an open expression as a transformation
from value environments to resulting values and then consider the change propagation regarding
the transformation.

It is true that we can avoid the direct manipulation of open expressions for particular computation
models. For example, for the original ILC, where an incremental function has type (𝐴 → 𝐵,𝐴 →
Δ𝐴 → Δ𝐵), we can apply tupling [Chin 1993] to inject the incremental function in (𝐴,Δ𝐴) →
(𝐵,Δ𝐵). Thus, we have a simple HOAS implementation that interprets exp a = (a, Delta a)
using a type family Delta to represent changes on a. However, such a simplification is limited to
particular models; actually, the tupling approach does not scale to the CTS variant [Giarrusso et al.
2019] due to existentially-quantified caches.
The CTS example is of interest because it expands the applicability of the original ILC to effi-

ciently incrementalize more computations, and the addition of the cache that allows this precludes
standard embedding. Giarrusso et al. [2019]’s current system is not ready for a (shallowly) embedded
implementation because it targets an untyped calculus, assuming some global program transforma-
tions (namely, 𝜆-lifting and a variant of A-normalization [Flanagan et al. 1993]—essentially, the
call-by-value CPS transformation), which are not immediately ready for a shallowly embedded im-
plementation in a typed language. Their accompanied implementation provides a deeply-embedded
interface, which is designed for a demonstration of their idea, not user consumption: the abstract
syntax is 𝜆-lifted and A-normalized, with an interface that uses GADTs and exposes cache types,
and the semantics is given by Haskell code generation in strings.

Embedding by Unembedding marks a road to a (shallowly) embedded implementation. First, its
ability to access environments enables us to use the straightforward implementation that models
a guest term Γ ⊢ 𝑒 : 𝐴 in ∃𝐶.(JΓK → (J𝐴K,𝐶)) × ((ΔJΓK,𝐶) → (ΔJ𝐴K,𝐶)). Second, we are able
to represent the explicit sharing of computation naturally with a binding construct like let. This
is crucial; in let x = e in ... x ... x ..., interpretation of e happens twice in the guest
language, while in let’ e (\x → ... x ... x ...) the computation happens only once in the
evaluation of this expression. Third, we can represent their “higher-order” combinators as binding
constructs to enjoy higher-order programming without risking type safety. For example, consider
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the following, which implements an incremental computation of the cartesian product of given
two sequences.

cartesianRecreation xs ys = concatMap (\x → map (\y → pair x y) ys) xs

(Note that we have eluded the type of this example as it contains specifics that we will introduce
later.)

It is worth noting that there is a limitation on type safety coming from a gap in types: the original
CTS [Giarrusso et al. 2019] targets an untyped language, while we here consider a typed EDSL. This
gap becomes critical when we consider general 𝜆-abstractions and applications, and we thus do not
include 𝜆s in this section. We note, however, that we could have 𝜆s if we compromise type safety
to some extent to use dynamic types for caches involved in function values (see Appendix D.2).

5.3 Unembedding Details of Interest
Unembedding CTS is fairly standard, following the general recipe in §4.4. However, there are two
details of the unembedding that are worth exploring: the embedding of its binding construct, and
its optimization to the performant implementation necessitated by its domain. These features will
be considered in turn.

The Binding Construct. The core CTS language has first-order constructs: unit, pair, fst and
snd; and one second-order binding construct: let. The semantic domain is created as a direct
representation in Haskell of the type of CTS incremental functions:

data CTS env a = forall c. CTS (VEnv env → (a, c)) −− Initializer
((DEnv env, c) → (Delta a, c)) −− Translator

These semantics encapsulate two evaluation modes: standard evaluation, or the initializer, that
takes variable assignments (VEnv) to a result and an initial cache; and incremental evaluation, or
the Δ-translator, that takes how variables have changed (DEnv) along with a cache and produces
a change in the result (Delta a) along with a new cache. It involves two types of environment:
a value environment (VEnv), which slightly differs from the one already introduced in that its
container ensures that only types that have a notion of change, a Delta, are contained; and an
environment of changes (DEnv), which stores these Delta values.

The semantic domain CTS is an instance of Variables as below.

instance Variables CTS where
var = CTS (\(ECons (PackDiff x) _) → (x, ()))

(\(ECons (PackDiffDelta dx) _, _) → (dx, ()))

weaken (CTS f tr) = CTS f' tr'

where
f' (ECons _ g) = f g

tr' (ECons _ dg, c) = tr (dg, c)

Here, PackDiff and PackDiffDelta wrap the values in the container type for their VEnv and
DEnv environments; i.e., VEnv = Env PackDiff and DEnv = Env PackDiffDelta. The method
var extracts the head from both value and change environment with the unit cache, weaken applies
the initializer and the Δ-translator of the given CTS incremental function to the tails of the value
and change environments, respectively.

Following the recipe, the let construct is unembedded as a semantic function over CTS.

letSem :: Diff a ⇒ CTS env a → CTS (a ': env) b → CTS env b

letSem (CTS i1 tr1) (CTS i2 tr2) = CTS i tr
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where
i g =

let (x, c1) = i1 g −− Get x::a with i1.
(y, c2) =

i2 (ECons (PackDiff x) g) −− Get y::b with i2 on env with x added.
in (y, (c1, c2)) −− Result, y, is returned with new cache.

tr (dg, (c1,c2)) = −− Same story but for incremental evaluation.
let (dx, c1') = tr1 (dg, c1)

(dy, c2') = tr2 (ECons (PackDiffDelta dx) dg, c2)

in (dy, (c1', c2'))

Here, the constraint Diff a ensures that the type a has Delta a together with appropriate opera-
tions; this is actually what PackDiff and PackDiffDelta are wrapping. The function letSem is
implemented by defining the initializer (i) and the Δ-translator (tr). They both work the same way:
the first argument term is used to produce the a/Delta a, which is then added to the environment,
so that the second argument term can produce the desired b/Delta b. The caches from the two
argument terms are also combined. This is done in the simplest way: pairing them. Then, the
semantic function is linked to the following HOAS syntax

let_ :: Diff a ⇒ exp a → (exp a → exp b) → exp b

with the lifting function.

let_ = liftSOn (ol0 :. ol1 :. End) letSem

We omit the discussions on the first order constructs unit, pair, fst and snd because their
treatment is similar.

An astute reader would notice that we do not use caches in any essential ways in letSem. This
is also true for the other constructs above: none of unit, pair, fst and snd uses the cache in
any essential ways either. This is because these constructs are designed to glue together other
incremental constructs for particular domains that may use the cache (e.g., sequence manipulating
operations discussed below). Here, the extensibility of the finally-tagless representation [Carette
et al. 2009] comes in handy: we can keep the core part small and then extend the core afterwards
for problem domains of interest.

Being Performant. An unembedding of an incremental language would not fulfil its purpose if it
was not performant. As such, with this unembedding, we took care to ensure that the incremental
evaluation was faster than recomputation, and compared the performance of “eCTS” to the original.

The example we will compare against is (again) the cartesian product. To implement this function,
eCTS must first be expanded to include language constructs for manipulating sequences:

𝑒 F · · · | emp | concat 𝑎 | single 𝑒 | map (𝑥 .𝑒) 𝑒 ′

(concatMap from §5.2 can be implemented as the composition of concat and map). These constructs
come with the following typing rules.

Γ ⊢ emp : Seq 𝐴

Γ ⊢ 𝑒 : Seq (Seq 𝐴)
Γ ⊢ concat 𝑒 : Seq 𝐴

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ single 𝑒 : Seq 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 Γ ⊢ 𝑒 ′ : Seq 𝐴

Γ ⊢ map (𝑥 .𝑒) 𝑒 ′ : Seq 𝐵

Here, Seq 𝑎 is a type for sequences of 𝑎-typed values. Notice that map is treated as a second-order
construct, instead of a first-order construct involving function types. We do not encode 𝜆s directly
in the DSL, but instead rely on the host language (Haskell)’s 𝜆s in programming. The expansion is
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(a) changes to xs (b) changes to ys

Fig. 3. Experimental Results: incremental computation of cartesian xs ys when length xs = length ys = 200.
Key: scratch = recomputation, inc = incremental computation, inc-opt = optimized incremental computation
(optimizes away change propagation overhead).

achieved by repeating the recipe for these new constructs and adding their HOAS as a subclass of
the typeclass of the core language. Full details of our implementation can be found in Appendix D.
The treatment of map, and the modularity and expandability of the language demonstrate a

clear advantage of HOAS-based embedding [Carette et al. 2009]. We can extend the system more to
implement a realistic example. In Appendix D.3, we implement an incremental version of HaXML
filters [Wallace and Runciman 1999], where transformations are written based on filters of type
Tree → Tree and combinators working on filters are naturally higher-order functions.

Although the straightforward implementation discussed in this section has overheads, with
the help of meta-programming techniques, a preliminary evaluation shows that our language has
similar performance as the state of the art [Giarrusso et al. 2019]. The details of the implementation
can be found in Appendix D.4. The key point is that it is still based on the same embedding
approach, while using Template Haskell [Sheard and Jones 2002] to eliminate some of the overhead
of unembedding, variable accesses and cache composition/decomposition, and it tries to remove
the propagation of empty changes.

As a very preliminary experiment, wemeasure the performance of 𝑓 = 𝜆𝑧.cartesian (fst 𝑧) (snd 𝑧),
which is taken from the original CTS paper [Giarrusso et al. 2019] (though we measure multiple
changes instead of a single change as in the original paper). Specifically, for an input 𝑎0 and a
sequence of changes {da𝑖 }, we compare the elapsed time of (1) from-scratch computation that
computes {𝑏𝑖 = 𝑓 𝑎𝑖 }0≤𝑖≤𝑛 for each intermediate inputs 𝑎𝑖+1 = 𝑎𝑖 ⊕ da𝑖 , and (2) incremental
computation that first computes the result and a cache (𝑏0, 𝑐0) = 𝑓init 𝑎0, then propagates each
changes {(db𝑖 , 𝑐𝑖 ) = 𝑓tr (da𝑖 , 𝑐𝑖−1)}1≤𝑖≤𝑛 and finally apply the obtained changes 𝑏0 ⊕ db1 ⊕ · · · ⊕ db𝑛 .
The experimental result is shown in Fig. 3. It is conducted on 13-inch MacBook Pro with 2.3

GHz Intel Core i7-1068NG7 CPU and 32 GB memory, using GHC 8.10.7 running on macOS 12.2.1.
We use Data.Sequence.Seq in the package containers-0.6.5.1 to represent Seq. As we can see, the
naive implementation (inc in the figure) is expectedly slow; the overhead of change propagation
outweighs the recomputation cost. The interesting part is the comparison between inc-opt and
scratch: the incremental version is slower for small number of changes due to the overhead, but
as the number of changes grows, the potential of incremental computation becomes clear. It is
also interesting to observe that there is a difference between changing xs (Fig. 3a) and changing
ys (Fig. 3b). We think this is due to the effect of removing the unnecessary propagation of empty
changes: when xs is changed, only the outermap and concat are affected, while when ys is changed,
both inner and outer map and concat are affected, making the analysis less effective.
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This result is very similar to what is reported in the original CTS paper [Giarrusso et al. 2019].
In summary, the CTS version exhibits an incremental behaviour: taking more time to start-up (the
first execution) but a less or equal amount of time for update propagation, which is also the case
for us. Moreover, in CTS, the update propagation is comparably faster for changes to 𝑥𝑠 and seems
to take a constant time from their plot. On the other hand, the update propagation is slower for
changes to ys and takes a linear time to the input size (the length of 𝑥𝑠 and 𝑦𝑠). Again, this matches
our result.
We anticipate that further optimization (as future work) will be able to remove sufficient un-

embedding overhead to close the gap observed above, which will push the result beyond the
state-of-the-art in terms of performance.

6 CASE STUDY: BIDIRECTIONAL PROGRAMMING LANGUAGE
A bidirectional transformation is a piece of code that can be run in two directions and is expected to
satisfy some round-tripping properties (i.e., transforming data to another form and back returns
the original) [Foster et al. 2007]. This is a technique that allows a programmer to program two
related operations at the same time, saving programming time, maintenance effort, and avoids the
problem of separate implementations becoming out of sync.

The field of bidirectional programming has found numerous and wide-reaching applications for
these including: data synchronization [Foster et al. 2007], gradual development of programs [Wang
et al. 2010, 2013], deriving parsers from pretty-printers [Matsuda and Wang 2013, 2018b], Web/GUI
programming [Perez and Nilsson 2015; Rajkumar et al. 2013], model synchronization in software
engineering [Stevens 2008; Xiong et al. 2007; Yu et al. 2012], and view updating in database systems
[Bancilhon and Spyratos 1981; Fegaras 2010; Hegner 2004; Tran et al. 2020].
This domain is a challenge to embed, because to properly develop bidirectional transforma-

tions, one requires specialized programming languages that enforce the round-tripping properties,
preferably by construction.
In this section, we demonstrate that the approach of Embedding by Unembedding is able to

address the long-standing challenge of embedding bidirectional languageswith binders. In particular,
we consider a certain class of lenses as a semantic domain, where a class of lens combinators are
treated as semantic functions. The unembedding enables us to compose lenses as functions, in
order to give extra programming flexibility compared with the standard embedding of lenses as a
combinator language. The resulting embedded system is able to closely model the state-of-the-art
stand-alone language HOBiT [Matsuda and Wang 2018d], creating eHOBiT.

After introducing lenses (§6.1), and highlighting the suitability of unembedding in this case (§6.2),
this section showcases eHOBiT (§6.3), investigating its embedding, comparing it to the original,
and discussing alternative embedding approaches.

6.1 Lenses
Formally, a lens between s and v is defined as a pairs of functions:

data Lens s v = L {get :: s → v, put :: s → v → s}

Borrowing the terminology of the original application in databases [Bancilhon and Spyratos 1981;
Foster et al. 2007; Hegner 1990], s is called source and v is called view. The view is typically the
result of some query on the source. The basic idea of a lens is: put merges changes to the view
with the source. For example, for a lens fstL with get (x,y) = x, a corresponding put can be
defined as put (_,y) x = (x,y). The asymmetric nature of get and put separates bidirectional
transformations (lenses) from inverses, with the former being more general and able to handle
non-injective functions.
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6.2 Why Unembedding is Desired and Applicable
A lens must satisfy round-tripping to be considered as well-behaved [Foster et al. 2007]. Here
we use the system adopted by HOBiT, which is a slightly weaker version of the original round-
tripping [Bancilhon and Spyratos 1981; Foster et al. 2007; Hegner 1990]. The exact definition of the
round-tripping laws is not important here, which we leave to Appendix F.1. The point is that our
embedding is able to support the compositional reasoning of the property, and thus correctness by
construction. This combination of embedding, compositional reasoning, and binding constructs
has never been achieved in the bidirectional programming literature.

Open expressions matter in this domain, necessitating unembedding, because a natural approach
to a bidirectional language with binders is to interpret an open expression as a lens between value
environments and return values. For example, we interpret a guest term fstL x as a lens whose
get takes {x = (1,2)} and returns 1, and whose put takes the same x and 3 to return {x =
(3,2)}. This is similar to the case of reversible languages where we interpret open expressions as
bijections between environments and return values (see, i.e., Yokoyama et al. [2011]). With binding
expressions, we are not able to fix the number of free variables in giving its semantic domain. This
is why Embedding by Unembedding allows for eHOBiT.
HOBiT manipulates algebraic datatypes, and provides a bidirectional case expression, which

pattern-matches on a value and performs branching with the matched result in a bidirectional
(round-tripping) way [Matsuda and Wang 2018d]. We could include patterns in a core syntax of
a language to embedded, but this makes the system complicated. Instead, we focus on the core
behaviour of the case expressions: decomposition of products and branching based on tags of sum-
typed values. We mainly focus on the former, which has the guest syntax let (x,y) = e1 in e2,
and we call unpair. The latter construct can be handled similarly but contains subtlety in the
problem domain (see three branching lens combinators in Foster et al. [2007]).

6.3 Unembedding Details of Interest
The feature of interest is, yet again, the binding construct: unpair. Its successful implementation,
and more generally that of bidirectional case analysis, is what allows for the embedding of HOBiT.
As such, its addition to a simple applicative lens language will be detailed, before comparing the
new eHOBiT to the original.

Unpair. The simple bidirectional language that unpair will be added to consists of the following
first-order constructs: primitive operators (prim), unit and pair. (The full syntax and typing rules
for HOBiT can be found in Appendix C.2.)

The language is unembedding to the LensTerm semantic type:

newtype LensTerm env a = LT {runLT :: TEnv env → Lens (VEnv env) a}

type VEnv = Env Maybe

LensTerm realizes the idea of interpreting an open expression. It does this by building upon a lens
between value environments and return values with twomodifications: it takes TEnv env to perform
intensional analysis on the structure env (to implement var), and Maybe is used as a container type
of the environment to perform runtime linearity checking. We also use the functions: merge ::
VEnv env → VEnv env → VEnv env, which merges component-wise value environments with
checking of the linearity represented by Maybe and fails when it attempts to merge two Justs; and
unitEnv :: TEnv env → VEnv env, which returns the value environments filled with Nothing,
the unit element of merge. We shall omit its instance definition of Variables.

Fig. 4 shows the implementation of unpair’s semantic function. The main work is done by lenses
manipulating and reformatting the environments: rearrPair takes the first two elements of an
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unpairSem :: LensTerm env (a, b) → LensTerm (a ': b ': env) r → LensTerm env r

unpairSem t1 t2 = LT $ \g →
let l1 = runLT t1 g

l2 = runLT t2 (ECons Proxy (ECons Proxy g))

in letLens l1 (rearrPair l2)

rearrPair :: Lens (VEnv (a ': b ': env)) r → Lens (VEnv ((a, b) ': env)) r

rearrPair l = L get' put'

where

get' (ECons (Just (a, b)) g) = get l (ECons (Just a) (ECons (Just b) g))

put' (ECons (Just (a, b)) g) r =

let ECons m (ECons n g') = put l (ECons (Just a) (ECons (Just b) g)) r

in ECons (Just (fromMaybe a m, fromMaybe b n)) g'

letLens :: Lens (VEnv env) a → Lens (VEnv (a ': env)) b → Lens (VEnv env) b

letLens l1 l2 = L get' put'

where

get' g = get l2 (ECons (Just (get l1 g)) g)

put' g b = let a = get l1 g

ECons m g1' = put l2 (ECons (Just a) g) b

g2' = put l1 g (fromMaybe a m)

in merge g1' g2'

Fig. 4. Semantic Function for Unpairing

environment and pairs them; letLens is a lens that acts as a let for its two argument lenses. Since
these are lenses, this manipulation is implemented as a get and a put function. These lenses both
use fromMaybe to implement how HOBiT handles variables: an updated value of a variable defaults
to the original value if the variable is unused. The fromMaybe function achieves this defaulting
because when its first argument is Nothing, it returns its second argument. We are now ready to
give unpair its HOAS representation:

unpair :: exp (a, b) → (exp a → exp b → exp r) → exp r

together with implementation.

unpair = liftSOn (ol0 :. ol2 :. End) unpairSem

This unpair destructs products, so to perform case analysis on all types, we also implement a
function, branch, that does the same for sum types. Since algebraic datatypes can be expressed as
recursive sum-of-product forms, this is a fairly comprehensive approach.

Comparison of eHOBiT with HOBiT. To demonstrate the programmability and expressiveness of
the bidirectional EDSL, we perform a side-by-side comparison between HOBiT and our embedded
version (Fig. 5). This example features further streamlining of the syntax:

case_ :: HOBiT exp ⇒ String → exp a → [Br exp a r] → exp r

(−→) :: Pat '[] o a

→ (Func exp o (exp r), r → Bool, a → r → a) → Br exp a r
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linesB :: BString → B[String]
linesB str =

let (𝑓 , 𝑏) = breakNLB str
in case 𝑏 of

’\n’ : 𝑥 : 𝑟 →
𝑓 : linesB (𝑥 : 𝑟 )
with (> 1) ◦ length
by 𝜆𝑏 . ’\n’ : ’ ’ : 𝑏

→
𝑓 : [ ]
with (== 1) ◦ length
by 𝜆𝑏 . lastNL 𝑏

breakNLB :: BString → B(String, String)
breakNLBstr = . . .

(a) Original HOBiT code (Matsuda and Wang [2018d,
Fig. 2], with formatting)

linesB :: HOBiT e ⇒ e String → e [String]

linesB str =

unpair (breakNLB str) $ \f b →
case_ "linesB-case" b

[ consP (constP '\n') (consP varP varP) −→
(\x r → f `consB` linesB (x `consB` r),

(> 1) .length,

\_b _ → '\n' : ' ' : _b),

varP

−→ (\_ → consB f nilB,

(== 1) . length,

\_b _ → lastNL _b) ]

breakNLB :: HOBiT e

⇒ e String → e (String, String)

breakNLB str = . . .

(b) Embedded eHOBiT code in Haskell

Fig. 5. Comparison of linesB in HOBiT and eHOBiT to showcase the faithfulness of the embedding.

These methods are derived from unpair and branch, where Pat [] [a1, ..., an] a represents
patterns of type a that bind variables of types a1 ... an,14 and Func is a type family defined
as Func exp [a1, ..., an] (exp r) = exp a1 → ... → exp an → exp r. We leave the
details of its definition to Appendix F.2.
The code comparison implements the running example from the HOBiT paper [Matsuda and

Wang 2018d], which is a bidirectional version of the standard lines :: String → [String]
function in Haskell that splits an input string by newlines as lines "A\nB\nC" = ["A","B","C"].
An intricate behaviour of lines is that it ignores the last newline as lines "A\nB\nC\n" = ["A"
,"B","C"]. We faithfully implement this behaviour and the bidirectional version linesB detects
and preserves the existence of the last newline in the backward direction.
Unsurprisingly, HOBiT’s version comes with less syntactic overhead, but thanks to derived

functions including the pattern combinators, our EDSL version has a similar structure akin to the
originalHOBiT version. The syntactic overhead is not negligible, but is a reasonable price to pay for
accessing host’s functionalities, including typing checking, editor support, advanced compilation,
interoperability, and so on.

There are methods existing in the literature for using host-level pattern matching in embedded
DSLs, for example, that of McDonell et al. [2021]. The basic idea is to use host-level pattern matching
to generate branches. For example, a destructor for Either a b takes two branches: one of type
f :: exp a → exp r and the other of type g :: exp b → exp r in a finally-tagless EDSL.
The branches can be unified as Either (exp a) (exp b) → exp r, and host level patterns used
to write the unified branch as \case { Left a → f a; Right b → g b } . However, this
approach assumes that the number of branches is fixed for a datatype, and the workarounds they
suggest do not scale to recursive types like lists. Also, the approach does not work well with the
widely-adopted top-down matching. In our EDSL, case_ uses the top-down matching both in get
and put, which plays an important role in the linesB example (Fig. 5b).

14The first argument of Pat is used for the difference list encoding of bindings inspired by Polakow [2015].

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 189. Publication date: August 2023.



189:24 Kazutaka Matsuda, Samantha Frohlich, Meng Wang, and Nicolas Wu

Unembedding is also not tied to the specific way that we have expressed bidirectional branching.
Our (finally-tagless) embedding supports other approaches: the language can be extended rather
easily to include such variants.

7 RELATEDWORK
This section discusses work related to our framework; including places unembedding has previously
been used, similar techniques, further details pertaining to the bidirectional application domain,
and a review of languages that have been embedded in a similar manner.

Uses of Unembedding. Unembedding [Atkey 2009; Atkey et al. 2009] and similar techniques have
been used in embedding for intensional program manipulation such as code generation. The high-
performance array computing EDSL accelerate uses the technique to convert a surface language
to an internal representation based on de Bruijn terms, with sharing recovery [McDonell et al.
2013]. The technique has been used also for having a better interface for an SMT solver [Stewart
2010], and a better syntax for probabilistic programs to be converted to OpenCL code [Werk et al.
2012]. Matsuda and Wang [2018b] showed how unembedding can be used to embed a reversible
language FliPpr [Matsuda and Wang 2013, 2018c], in which users describe pretty-printers with
annotations to obtain parsers corresponding to the pretty-printers, in the form of context-free
grammars with semantic actions. In contrast, our contribution lies in demonstrating the usefulness
of the unembedding for implementing advanced semantics beyond code manipulation. We also
provide a general recipe for Embedding by Unembedding that others may build their embedding
implementation upon.

Intensional Analysis on Open HOAS Terms. Babybel [Ferreira and Pientka 2017] is a meta-
programming framework that supports manipulation of open terms in the HOAS representation,
based on contextual type theory [Pientka 2008]. Roughly speaking, a contextual type [Γ ⊢ 𝐴]
represents open guest terms that have type 𝐴 under context Γ. They also provide a first-class
substitution so that we can manipulate open terms without worrying about tedious shifting and
renaming (both affect Γ). There is certain similarity between theirs and ours: both use HOAS and
handle open terms. However, there is a critical difference: their HOAS lies in a guest language’s
intensional function space, while ours lies in the host language (Haskell)’s extensional one. For
example, terms like lam (\x → app (lam (\y → x)) x) is a guest term instead of a host term
in their system. This gives us intensional analysis on such guest terms: for example, they allow
patterns like lam (\x → m) to match against the previous term to bind m with an open term app
(lam (\y → x) x). Also, unlike the tagless final style [Carette et al. 2009] and PHOAS [Chlipala
2008], the clear separation between the guest and host systems does not require polymorphism to
avoid exotic terms. However, having guest terms with 𝜆s requires a separate embedding technique
(though 𝜆s are only binding constructs in the system), if we use the idea in main-stream languages
such as Haskell. For example, in Babybel, they use OCaml’s AST-level pre-processor (PPX) to
translate contextual-typed terms into de Bruijn indexed terms. In Haskell, we could use Template
Haskell [Sheard and Jones 2002], but Embedding by Unembedding, with future extensions, could
serve as another option.

Bidirectional EDSLs. Embedding bidirectional languages to benefit the host’s programmability
has been a longstanding problem faced by the research community. As discussed in §6, the standard
approach of representing bidirectional building blocks (such as lens [Foster et al. 2007]) as black
boxes is unsatisfactory for programmability, limiting programmers to unfamiliar combinators
and unconventional program structures. Many efforts have been made to address this problem.
Voigtländer [2009]’s semantic bidirectionalization interprets polymorphic functions as bidirectional
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transformations, which is convenient as programmers write host language’s polymorphic functions,
but with quite limited expressiveness—there is no way to specify refined bidirectional behaviours.
The applicative lens framework [Matsuda and Wang 2015, 2018a] extends semantic bidirectional-
ization to support prim, unit and pair in §6 to use the host language to compose lenses. However,
its expressiveness is still limited, as the approach does not scale to the lens combinators. The same
authors address the expressiveness issues in HOBiT [Matsuda and Wang 2018d], which until now
was a stand-alone language.

Applicative Lenses. By using the lens variant of runOpenN, runOpenAppLensN adapted from the
runOpenN provided by our framework and introduced in §4.4, we can construct a lens from a poly-
morphic function; e.g., we can convert reverse :: [a] → [a] into a lens by runOpenAppLensN
(foldr consB nilB . reverse) :: Lens [a] [a]. That is, we can mimic Voigtländer [2009]’s
semantic bidirectionalization. However, our EDSL is not limited to polymorphic functions; e.g.,
we can apply concrete lenses by prim :: HOBiT exp ⇒ Lens a b → exp a → exp b, a con-
struct that applies a lens to a result. In fact, this simple DSL is as expressive as the applicative
lens framework [Matsuda and Wang 2015, 2018a], which uses Yoneda embedding instead of the
unembedding, and thus does not scale to second-order constructs.

Similarly Embedded Languages. Kiselyov [2019] discussed an approach to implement nonde-
terministic computation by embedding a core first-order nondeterministic DSL (which can have
second-order constructs), without monads. Advantages of this approach is that one can focus on
a simple DSL, which is easier to reason about and supports various interpretations (e.g., abstract
interpretation and staged interpretation) that are not possible with monads. The HOAS represen-
tation of the syntax plays an important role, as it enables us to use host’s 𝜆s and higher-order
functions to define programs in the DSL. Embedding by Unembedding framework encourages
this design, as it enables us to embed a core first-order system with HOAS, where previously
such an implementation was not obvious, as demonstrated in §6 and §5. PyRo (https://pyro.ai/),
a popular probabilistic programming library in Python, shares a similar design [Bingham et al.
2021; Obermeyer et al. 2020] to Kiselyov [2019], though without using HOAS. This fact suggests a
potential application of Embedding by Unembedding.
For a comparison of the unembedded CTS with the original and work related to CTS, see

Appendix E.

8 FUTUREWORK
Embedding by Unembedding opens the door to embedding a whole new host of languages. We
plan to make use of this technique, push it to its limit, and work out where its boundaries lie. From
a practical perspective, our future work plans to put Embedding by Unembedding to work. Initially
on targets we feel ripe for embedding (e.g., automatic differentiation), but then onto those that may
present more of a challenge (perhaps in a linear setting). Then from a theoretical standpoint, we
feel that there is much to gain from exploring the theoretical underpinnings of this technique.

Automatic Differentiation. Another interesting application of Embedding by Unembedding is
automatic differentiation for higher-order languages. Having a correct automatic differentiation for
a higher-order language is a challenging topic [Ehrhard and Regnier 2003; Huot et al. 2020; Krawiec
et al. 2022; Mazza and Pagani 2021; Sherman et al. 2021; Vytiniotis et al. 2019; Wang et al. 2019],
especially for the reverse mode, and Embedding by Unembedding sheds a new light on it: we can
focus on the core first-order fragment while embedding allows us to use host-level higher-order
functions—a system as a whole constitutes a differential higher-order language. Specifically, we
can keep a straightforward and easy-to-reason semantics JR𝑎 → R𝑏K = R𝑎 → (R𝑏,R𝑏 ⊸ R𝑎) for

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 189. Publication date: August 2023.

https://pyro.ai/


189:26 Kazutaka Matsuda, Samantha Frohlich, Meng Wang, and Nicolas Wu

the reverse-mode automatic differentiation, where ⊸ denotes a linear transformation and thus
R𝑏 ⊸ R𝑎 represents the Jacobian matrix (at the input). By restricting the EDSL type to R or their
products, JΓK ≃ R𝑎 and J𝐴K ≃ R𝑏 hold for some 𝑎 and 𝑏 to allow the semantic domain as above.
Now, Embedding by Unembedding enables higher-order programming in a host language, without
risking correctness. As mentioned earlier, we conjectured that the unembedding essentially models
a system as a whole in a presheaf category. Thus, in this sense, the embedding-by-unembedding
approach would be similar to 𝜆𝑆 [Sherman et al. 2021], which uses a presheaf category to model their
higher-order differentiable language, but the unembedding has not been used for their accompanied
implementation. Exploring embedded differentiable programming languages is an interesting future
direction. One of the challenges in the application is performance—the overhead introduced by the
unembedding is unwelcome especially in this problem domain. We believe that staged programming
can remove the overhead (see Appendix D.4 for such a discussion for the incremental calculus).

Probabilistic Programming. We are also interested in building upon the work of Nguyen et al. to
see how Embedding by Unembedding compares to their use of effect handlers to implement the
advanced semantics of probabilistic languages, including using host language variables for random
or optimisable variables.

Linear Unembedding. A future direction is to develop a linear version of the unembedding. As
mentioned in §6, linear systems fit better for reversible and bidirectional computations. Since a
practical linear programming language is now available as Linear Haskell [Bernardy et al. 2018],
unembedding that utilizes the host’s linear parametricity attracts more practical interest. Another
interesting future direction is to apply Embedding by Unembedding to more practical situations.
One candidate is automatic differentiation.

Criteria for Unembedding. In §4.1, we mentioned that our approach can be applicable to simply-
typed languages where the typing rules and constructs have the designated forms and come with
compositional semantics. This description, while intuitive, has points to clarify: for example, why
a method lam :: (𝑒 𝑎 → 𝑒 𝑏) → 𝑒 (𝑎 → 𝑏) has a polymorphic type (abstracting a and b), while
we restrict a language to be simply typed; and what are the HOAS representations and semantic
functions that corresponds to a construct in general? Specifically, our target languages are the
second-order algebras [Fiore et al. 1999] as presented in Hamana [2018, 2019], where a symbol
(operator) can have a (predicative) polymorphic type. What this means and why this is the case is
the subject of future work.

Correctness. The correctness of our method, Embedding by Unembedding, intuitively says that
the interpretation via runOpen coincides with the interpretation of the corresponding de Bruijn
term. This is a generalization of the Atkey [2009] proof mentioned in §4.4, the formalization of
which and expansion to also cover PHOAS is future work. Although the original proof does not
cover PHOAS directly, showing that the PHOAS and the tagless-final style are isomorphic by using
parametricity [Reynolds 1983; Wadler 1989] is straightforward.

Categorical Exploration. We showed in §6 that embedding lenses by unembedding leads to an
EDSL as expressive as HOBiT [Matsuda and Wang 2018d]. This correspondence is not accidental.
For terminating computations, we conjecture that the idea of unembedding [Atkey 2009] is to
interpret HOAS terms in a presheaf [Cop, Set], i.e., the category of functors from the opposite
category of C to the category of the total (hence, terminating) functions, where C denotes the
semantic domain of the (non-HOAS) terms. HOBiT adopted a staged semantics [Matsuda and Wang
2018d] to evaluate away 𝜆s in the first stage and leave bidirectional constructs for the second stage.
It is known that the semantics of two-level languages can be modelled in a presheaf [Cop, Set]

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 189. Publication date: August 2023.



Embedding by Unembedding 189:27

(again, assuming termination of the first stage computation), where C denotes the semantic domain
for the second stage [Moggi 1998]. This suggests that a language with a presheaf semantics (such
as 𝜆𝑆 [Sherman et al. 2021]) might be embedded by unembedding just by embedding the “core part”
of the semantic domain (i.e., C). Formalization and further investigation of this is an interesting
future direction. What this means and why this is the case is the subject of future work.

Another conjectured relationship to category theory is a connection between the criteria in §4.1
and second-order algebras [Fiore et al. 1999; Hamana 2018]. The typing rule of the second-order
construct con′ in §4.1 has the same form as the one for an operator in a typed second-order algebra
used in Hamana [2018]. Fiore et al. [1999] discuss the semantics of second-order algebra in a functor
category [F, Set]. Here, F is a category of manipulations of indices, which can also be seen as
manipulation of environments, and in fact include weakening, exchange, and contraction. In §4.2,
we conjectured a connection between Variables and F; they both characterize manipulations
of environments, though Variables contains the minimal operations needed for Embedding by
Unembedding. Thus, it is plausible to conjecture that we can have a unified framework of Embedding
and Unembedding based on the second-order algebra and show that the finally-tagless [Carette
et al. 2009] HOAS is an initial representation of second-order algebras. Then, we also expect that a
language presheaf semantics such ones mentioned above can be modelled by a functor F→ Cop,
which can turn a presheaf [Cop, Set] into the functor category [F, Set] of interest.

9 CONCLUSION
In this paper, we propose an embedding method called “Embedding by Unembedding”, which is
based on the unembedding [Atkey 2009; Atkey et al. 2009] technique that originally gives a bijection
between the HOAS representation and the de Bruijn term representation of a language. We identify
that HOAS-based embedding does not directly support compositional semantics defined on terms-
in-contexts, and design a general strategy for embedding of DSLs targeting advanced semantic
domains. We also give two substantial case studies in the areas of incremental computation and
bidirectional transformation, showing the effectiveness and applicability of our general approach.
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A IMPLEMENTATION OF LIFTSO

A complication about the definition of liftSO is that it must deal with arbitrary number of
arguments of a construct, where each argument can bind arbitrary number of variables.
For uniform manipulation of arguments, we first introduce the kind Sig2 k, which describes

arguments of second order constructs:

data Sig2 k = [k] :{ k

Here, a type [a1,...,an] :{ b :: Sign2 k represents arguments that binds variables of types
[a1,...,an] and have type b. This type is intended to be lifted to the type level by Haskell’s
DataKinds. This enables the definition of a type for unembedded interpretations:
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data URep (sem :: [k] → k → Type) (s :: Sig2 k) where
UR :: TEnv as → (Env (EnvI sem) as → EnvI sem b) → URep sem (as ':{ b)

and one for corresponding semantic objects.

data TermRep (sem :: [k] → k → Type) (env :: [k]) (s :: Sig2 k) where
TR :: sem (Append as env) b → TermRep sem env (as ':{ b)

Here, URep takes an value-level representation of as in addition, as otherwise we cannot know
how many arguments we pass to a function of type (Env (EnvI sem) as → EnvI sem b) to
obtain a semantic object (sem (Append as env) b). Notice that type information is not available
in runtime in Haskell in general, unless we explicitly convey them. Together these allow for the def-
inition of liftSO (Fig. 6). Notice that the Env (URep sem) ss → EnvI sem r part represents an
unembedded interpretation (with value-level representation of binding types), while (forall env
. Env (TermRep sem env) ss → sem env r) the part represents the corresponding semantic
function.

However, it is almost certain that users do not want to use such constructors explicitly for lifting,
and hence we leverage Haskell’s type-level programming to abbreviate this pain. As seen in the
main body of the paper, lifting can be done as liftSOn (ol0 :. ol1 :. End) letSem, where
users only need to specify the numbers of variables bound by each argument of a construct. The
first step is to get rid of Env to represents arguments, and hence we prepare the following type
families for “curried” representations.

−− Corresponds to (forall env. Env (TermRep sem env) ss → sem env r)
type family FuncTerm (sem :: [k] → k → Type) (env :: [k])

(ss :: [Sig2 k]) (r :: k) | r → sem env r where
FuncTerm sem env '[] r = sem env r

FuncTerm sem env ((as ':{ a) ': ss) r = sem (Append as env) a

→ FuncTerm sem env ss r

−− Corresponds to Env (URep sem) ss → EnvI sem r
type family FuncU (sem :: [k] → k → Type) (ss :: [Sig2 k])

(r :: k) = res | res → sem r where
FuncU sem '[] r = EnvI sem r

FuncU sem ((as ':{ a) ': ss) r = Func (EnvI sem) as (EnvI sem a)

→ FuncU sem ss r

With these type families, we can define liftSOn as below

liftSOn :: forall sem ss r. Variables sem ⇒ Dim ss

→ (forall env. FuncTerm sem env ss r) → FuncU sem ss r

liftSOn ns f =

let h :: forall env. Env (TermRep sem env) ss → sem env r

h = fromFuncTerm f

in toFuncU ns (liftSO @sem h)

The function liftSOn takes Dim ss, which is used to provide a value-level representation of
asi required for URep, where ss = [as1:{b1,..., asn:{bn]. Specifying each asi is actually
tedious, but an observation suggests that the length of each asi is enough for runtime. The GADT
Dim is defined as below, leveraging the fact.
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liftSO :: forall sem ss r. Variables sem ⇒
(forall env. Env (TermRep sem env) ss → sem env r)

→ Env (URep sem) ss → EnvI sem r

liftSO f ks = EnvI $ \g → f (mapEnv (conv g) ks)

where conv :: TEnv env → URep sem s → TermRep sem env s

conv g (UR g1 k) = TR $ cnv g g1 k

cnv :: TEnv env → TEnv as → (Env (EnvI sem) as → EnvI sem a)

→ sem (Append as env) a

cnv g g1 k = let {ex_g = appendEnv g1 g; xs = mkXs g g1 ex_g}

in runEnvI (k xs) ex_g

mkXs :: TEnv env → TEnv as' → TEnv (Append as' env) → Env (EnvI sem) as'

mkXs _ ENil _ = ENil

mkXs p (ECons _ as) tg@(ECons _ tg')

= let x = EnvI $ \g' → weakenMany tg g' var

in ECons x (mkXs p as tg')

Fig. 6. Implementation of liftSO

data Dim (ss :: [Sig2 k]) where
End :: Dim '[]

(:.) :: OfLength as → Dim ss → Dim ((as ':{ a) ': ss)

data OfLength as where
LZ :: OfLength '[]

LS :: OfLength as → OfLength (a ': as)

The function liftSO uses the functions toFuncU and fromFuncTerm, which have the following
types.

toFuncU :: Dim ss → (Env (URep sem) ss → EnvI sem r) → FuncU sem ss r

fromFuncTerm :: FuncTerm sem env ss r

→ Env (TermRep sem env) ss → sem env r

We omit the definitions of them as they are straightforward.
We also provide constants olk defined as ol0 = LZ, ol1 = LS LZ, ol2 = LS ol1 ... for small k

for convenience.

B UNEMBEDDING THE INCREMENTAL 𝜆-CALCULUS
We clarify here that, unlike the cache-transfer-style variant [Giarrusso et al. 2019] (discussed in
Section 5), embedding ILC itself is possible even without the Embedding by Unembedding (tupling
can be applied as discussed in §5.2). Our primary focus here is to provide another example of the
unembedding technique.

B.1 Unembedding ILC
Step 1: Identify the semantic domain. The semantics of ILC depends on having infrastructure

for representing changes. §5 fully implements such an infrastructure, which we will borrow for
this example. The change infrastructure consists of a Diff typeclass, whose member a have an
associated Delta a type that represents changes (or deltas) that can be made to those types.
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With the ability to describe changes, ILC terms should be interpretable in two ways:
(1) Using standard evaluation, where variable assignments map to results.
(2) Using differential evaluation, where inputs and input deltas are mapped to output deltas.

These semantics can be packaged up into the following concrete datatype:

data ILC env a = Inc

{ sEval :: VEnv env → a, dEval :: VEnv env → DEnv env → Delta a }

Here, sEval performs the standard evaluation, mapping variable assignments (VEnv) to a result;
dEval does the differential evaluation, mapping the inputs (VEnv) and changes in them (DEnv) to
an output change. For readability, we simply (ab)use the Env constructors from §3 to manipulate
these environments, as their actual representations are not important in this section (we will revisit
them in §5).

Since both parts of this semantic type feature an environment, it is easy to see that it is a member
of the Variables typeclass. For var, sEval can extract the first value from the VEnv, and dEval
can ignore the VEnv and extract the first delta from DEnv. For weakenOne, new sEval and dEval
can be created that just ignore the first element of the environments:

instance Variables ILC where
var :: ILC (a : as) a

var = Inc (\ (ECons (PackDiff a) _) → a)

(\_ (ECons (PackDiffDelta da) _) → da)

weaken :: ILC as a → ILC (b : as) a

weaken (Inc s d) = Inc s' d'

where
s' (ECons _ g) = s g

d' (ECons _ vg) (ECons _ dg) = d vg dg

Step 2: Prepare semantic functions for each construct. (The core part of) ILC consists of: unit,
pair, fst_, snd_, and let_ constructs. Note that let_ is the only second-order construct of this
language.

The semantic function for unit is a single ILC type where the type in focus is (). This means that
both sEval and dEval ignore their arguments and just return () and the unit delta respectively:

unitSem :: ILC env ()

unitSem = Inc (const ()) (\_ _ → UnitDelta)

Such semantic functions can also have arguments, for example, pairSem :: ILC env a → ILC
env b → ILC env (a, b) takes one ILC term for the first element of the tuple, and one for
the second. It runs both argument expressions, pairing together both the value and delta results.
Those for fst_ and snd_ behave similarly: running the pair term and then throwing away either
the first or second element of the result. That for let_ is more interesting, as it is a second-order
construct meaning that it manipulates the environments. It is defined by creating new sEval and
dEval functions:

letSem :: Diff a ⇒ ILC env a → ILC (a ': env) b → ILC env b

letSem (Inc sa da) (Inc sb db)

= Inc (\g →
let x = sa g −− unpack a

e' = ECons (PackDiff x) g −− add a to env
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in sb e' −− extract b with new env
)

(\vg dg →
let x = sa vg −− unpack a

g' = ECons (PackDiff x) vg −− add a to env
da' = da vg dg −− unpack da
dg' = ECons (PackDiffDelta da') dg −− add da to env

in db g' dg' −− extract b with new env
)

Here, the differential evaluation uses both sa and da to create a-typed values and Delta a-typed
values to be added to the corresponding environments needed for db, which mirrors the standard
evaluation.

Step 3: Provide the HOAS representation of the syntax. For ILC, this means that the language
typeclass (ILChoas) has five methods. One for each construct:

class ILChoas exp where
unit :: exp ()

pair :: exp a → exp b → exp (a, b)

fst_ :: exp (a, b) → exp a

snd_ :: exp (a, b) → exp b

let_ :: Diff a ⇒ exp a → (exp a → exp b) → exp b

Notice how the types of each method match those of the semantic functions, but with ILC abstracted
out into e, and the environments omitted as the host language is handling them.

Step 4: Implement semantics through appropriate liftings. For ILC, this means that ILC is wrapped
in EnvI so that it can be an instance of ILChoas:

instance ILChoas (EnvI ILC) where
−− constructs without binders⇒ we use liftFO
unit = UE.liftFO0 unitSem −− 0 args⇒ 0
pair = UE.liftFO2 pairSem −− 2 args⇒ 2
fst_ = UE.liftFO1 fstSem −− 1 arg ⇒ 1
snd_ = UE.liftFO1 sndSem

−− our binding construct ⇒ we use listSO
let_ = UE.liftSOn (ol0 :. ol1 :. End) letSem

Here, unit is defined as the lifting of unitSem. Because unit is first-order, one of the liftFO
functions is used, specifically liftFO_0 because unit has no arguments. The rest of the first-order
constructs are defined similarly, differing only in their choice of lifting function, which depends
on how many arguments the construct in question has. As a second-order construct, let_ is
different. Now its arguments can have arguments. To allow for this, liftSO takes a description
of what arguments are expected: how many there are and how any arguments (bindings) they
themselves have. This description is a list, with each element representing an argument and how
many arguments it itself takes. In the case of let_, there are two arguments: the first taking no
arguments (ol0); the second taking one (ol1).
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Step 5: Put the language to work! Putting the embedded ILC to work builds on top of runOpenILC:

runILC :: Diff a ⇒ ILC '[a] b → a → (b, Delta a → Delta b)

runILC t x = let
vg = ECons (PackDiff x) ENil

r = sEval t vg

f da = let dg = ECons (PackDiffDelta da) ENil

in dEval t vg dg

in (r, f)

This runILC operates on the output of runOpen and produces two functions: an ordinary trans-
formation and its corresponding change translator. Note that both the input and output types are
members of the Diff typeclass meaning that they can have changes applied to them by the change
infrastructure.

This performs incremental computation! Consider this example term that for some tuple 𝑥 will
take the first element, and pair it with itself:

term x = let_ (fst_ x) (\y → pair y y)

It can be executed both normally by extracting the initial result, or incrementally by extracting the
change function:

> fst (runILC term (7,6))

(7,7)

> (snd (runILC term (7,6))) (PairDelta (DInt 3) (DInt 2))

PairDelta +3 +3

In the latter example, the input tuple gets three added to its first element, and two to its second.
This gets correctly translated to an output change where three would be added to both elements.

B.2 Extending ILC with Sequences
Embedding by Unembedding shares the modularity and extensibility of tagless-final style. To add
new constructs, the recipe can just be repeated, and the language can be created in a modular
manner, with different constructs grouped into different and dependant typeclasses. For example,
to add sequences15 to ILC the process unfolds as follows:

Step 1: Identify the semantic domain. When it comes to extending the language with constructs,
this step is ready done. There is already a semantic type for ILC.

Step 2: Prepare semantic functions for each construct. Introducing sequences expands the lan-
guage’s constructors with: empty, singleton, concat, and map. Reifying these constructs into the
embedding again consists of writing representative functions over the semantic type. For example,
empty is defined similarly to unit:

emptySem :: ILC env (Seq a)

emptySem = Inc

(const S.empty) −− const the empty sequence
(\_ _ → DSeq []) −− const the empty change on sequences

Its semantics lift the empty sequence and its Delta into the ILC type. The rest of the semantic
functions have the following types:
15Sequences are a speedier version of lists in Haskell, and as ILC is about efficiency they are chosen.
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singletonSem :: ILC env a → ILC env (Seq a)

concatSem :: ILC env (Seq (Seq a)) → ILC env (Seq a)

mapSem :: (Diff a, Diff b)

⇒ ILC (a : env) b → ILC env (Seq a) → ILC env (Seq b)

Exploring their definitions, brings to light different patterns in the way certain constructs behave
depending on whether they are constructors, destructors or binders. The constructor singleton is
similar to pair in that it takes an argument to produce the element of the list, then wraps it in the
functor. The destructor concat can be compared to fst_ or snd_, as it runs its argument and then
changes the structure of the result (being sure to propagate this change to the Delta type). map is
the most interesting as it can be defined in terms of let_ to deal with the environment:
mapSem f xs = letSem xs (mapSem' f)

Then mapSem' :: (...) ⇒ ILC (a : env) b → ILC (Seq a : env) (Seq b) behaves sim-
ilarly to concat, running the first term, then adjusting the result.

Step 3: Provide the HOAS representation of the syntax. This step is identical to adding more
constructs to a normal tagless-final embedding: adding a new typeclass with those constructs as
methods.

class ILChoas exp ⇒ ILCSeq exp where
empty :: exp (Seq a)

singleton :: exp a → exp (Seq a)

concat :: exp (Seq (Seq a)) → exp (Seq a)

map :: (Diff a, Diff b) ⇒ (exp a → exp b) → exp (Seq a) → exp (Seq b)

This typeclass has been made dependent on ILChoas so that it is clear that it is an extension of the
language. The correspondence between the method types and the types of the semantics functions
is again evident.

Step 4: Implement semantics through appropriate liftings. Instantiating ILC as member of this new
typeclass follows the same pattern: wrapping it in the EnvI type, then defining the methods as
the semantic functions using the provided lifting functions. Which lifting function to use is again
decided by whether the construct is first or second order and how many arguments it has:

instance ILCSeq (EnvI ILC) where
empty = UE.liftFO0 emptySem

singleton = UE.liftFO1 singletonSem

concat = UE.liftFO1 concatSem

map = UE.liftSOn (ol1 :. ol0 :. End) mapSem

Step 5: Put the language to work! New constructs allow for more exciting terms to interpret,
and with no change in semantics, runILC and runOpen can still be used together to produce an
initial result and a change function. For example, consider the term cartesian, which produces
the cartesian product of two sequences. It can be run in an expression where the free variables is a
pair of two sequences as described by caInc:

cartesian xs ys = concat (map (\x → map (\y → pair x y) ys) xs)

caInc = runILC (runOpen (\zs → cartesian (fst_ zs) (snd_ zs)))

> let (r, i) = caInc (S.fromList [1..3 :: Int], S.fromList [1..3 :: Int])

> r
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fromList [(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)]

> i (PairDelta (DSeq [Ins 0 0]) mempty)

DSeq [Ins 0 (0,1), Ins 0 (0,2), Ins 0 (0,3)]

When run on the sequence that enumerates 1 to 3 paired with itself, the initial result r is indeed
the cartesian product of those two sequences, and if the input tuple is updated to add 0 to the first
sequence, this change is correctly converted to add the pairs (0,1), (0,2), and (0,3) to the result.
Note that S. deliminates sequence functions from the Haskell Data.Sequence, and DSeq describes
changes on a sequence as a list of insertions (Ins), deletions or replacements.

Thus ILC has been embedded and extended with sequences. It is worth noting that there is a
known problem with the ILC. It is only efficient for certain “self-maintainable” functions. The full
details of this inefficiency can be found in the sequel ILC paper that introduces the CTS [Giarrusso
et al. 2019] variant, but long story short some functions written in ILC can introduce recomputation.
In fact, the map semantic function for ILC cannot be implemented without recomputation. Happily,
the CTS variant of ILC is able to be embedded, and that is exactly what our first case study in §5
does.

C SYNTAX AND TYPING RULES OF LANGUAGES TO EMBED
Here, we summarize the syntax and typing rules of the embedded languages discussed in the paper.

C.1 Syntax and Typing Rules of ILC/CTS DSL
The basic syntax is as below.

𝑒 F () | (𝑒1, 𝑒2) | fst 𝑒 | snd 𝑒

For each construct, we have the following type rules.

Γ ⊢ () : ()
Γ ⊢ 𝑒1 : 𝐴1 Γ ⊢ 𝑒2 : 𝐴2

Γ ⊢ (𝑒1, 𝑒2) : (𝐴1, 𝐴2)
Γ ⊢ 𝑒 : (𝐴1, 𝐴2)
Γ ⊢ fst 𝑒 : 𝐴1

Γ ⊢ 𝑒 : (𝐴1, 𝐴2)
Γ ⊢ snd 𝑒 : 𝐴2

Γ ⊢ 𝑒1 : 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝐵

In §5, we extend the language as

𝑒 F · · · | emp | concat 𝑎 | single 𝑒 | map (𝑥 .𝑒) 𝑒 ′

together with the typing rules below.

Γ ⊢ emp : Seq 𝐴

Γ ⊢ 𝑒 : Seq (Seq 𝐴)
Γ ⊢ concat 𝑒 : Seq 𝐴

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ single 𝑒 : Seq 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 Γ ⊢ 𝑒 ′ : Seq 𝐴

Γ ⊢ map (𝑥 .𝑒) 𝑒 ′ : Seq 𝐵

Constructs to add depend on problems; for examples, in §D.3, to realized an incremental (but
simplified) version of HaXML filters [Wallace and Runciman 1999], we add constructs for trees
together with additional operations (such as filter) on sequences.

C.2 Syntax and Typing Rules of HOBiT to Embed
The syntax for the embedded HOBiT is as below.

𝑒 F ℓ 𝑒 | () | (𝑒1, 𝑒2) | let (𝑥,𝑦) = 𝑒1 in 𝑒2 | case 𝑒0 {𝑥𝑖 .𝑒𝑖 with 𝜙𝑖 by 𝜌𝑖 }𝑖
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The constructs come with the following type rules.

Γ ⊢ 𝑒 : 𝐴 ℓ : Lens 𝐴 𝐵

Γ ⊢ ℓ 𝑒 : 𝐵 Γ ⊢ () : ()
Γ ⊢ 𝑒1 : 𝐴1 Γ ⊢ 𝑒2 : 𝐴2

Γ ⊢ (𝑒1, 𝑒2) : (𝐴1, 𝐴2)

Γ ⊢ 𝑒1 : (𝐴, 𝐵) Γ, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶
Γ ⊢ let (𝑥,𝑦) = 𝑒1 in 𝑒2 : 𝐶

Γ ⊢ 𝑒0 : 𝐴1 + · · · +𝐴𝑛 {Γ, 𝑥𝑖 : 𝐴𝑖 ⊢ 𝑒𝑖 : 𝐵 𝜙𝑖 : 𝐵 → Bool 𝜌𝑖 : 𝐴1 + · · · +𝐴𝑛 → 𝐵 → 𝐴𝑖 }𝑖
Γ ⊢ case 𝑒0 {𝑥𝑖 .𝑒𝑖 with 𝜙𝑖 by 𝜌𝑖 }𝑖 : 𝐵

We do not have injections (InL 𝑒/InR 𝑒) and unit decompositions (let () = 𝑒1 in 𝑒2) in the syntax
(and type rules), as the lens application construct ℓ 𝑒 is so strong to express them as derived forms.

D MORE DETAILS OF EMBEDDED INCREMENTAL LANGUAGE
D.1 Concrete Definition of mapSem'
Fig. 7 shows the definition of mapSem'. We say again that the fact that the changes (specifically,
DEnv) form a monoid structure plays an important role in the definition of mapSem'. We can split
changes on DEnv (Seq a: env) into ones on Seq a and ones on env, and process them separately
by transArg and transEnv, respectively. Notice also that the pair (h, htr) is a correct monoid-
respecting CTS incremental function, because they are obtained from (f, tr), which is also a
correct monoid-respecting CTS incremental function, by fixing e (and changes to them are also
fixed to deEmpty).

D.2 Pseudo Functions
The definition of mapSem' gives us a hint of handling second-order construct whose semantic
function treats an input open expression as “functions”. Recall that (h, htr) is a (correct monoid-
respecting) CTS incremental function, and dh can be thought as changes to the function (but affects
only h). Unlike the original calculi [Cai et al. 2014; Giarrusso et al. 2019] where htr is integrated
into dh, we couple it with the original function; such an integration makes the monoid structure
dependent on htr, and the resulting function change does not respect the monoid structure.

The idea can be captured by the following datatype.

data PFun c a b = PFun (a → (b, c)) ((Delta a, c) → (Delta b, c))

instance Diff b ⇒ Diff (PFun c a b) where
newtype Delta (PFun c a b) = DFun (c → (Delta b, c))

PFun f tr /+ (DFun df ) = PFun f' tr

where f' a = let (c, b) = f a; (c', db) = df c in (c', b /+ db)

(We omit the instance declaration of Monoid (Delta b) ⇒ Monoid (PFun c a b).) With PFun,
the definition of mapSem' becomes as Fig. 8, where the roles of h/htr/dh become more evident.

We can provide the semantic function for the application of PFun, but it is not much useful; recall
that the goal of PFun is to extract common patterns in the treatment of input open expressions for
“higher-order”-like functions such as map. It is worth noting that providing the HOAS representation
(and its unembedded implementation) for absPFunSem is impossible, due to the timing of choosing c.
In absPFunSem, choice of c can depends on env, and thus the result cannot be expressed as exists
c. CTS env (PFun c a b), where c is chosen without knowing env. Handling existential types

in the DSL might help, but this means that the DSL is no longer simply-typed and thus requires non
trivial extension of the unembedding that targets simply-typed system [Atkey 2009; Atkey et al.
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mapSem' :: (Diff a, Diff b) ⇒ CTS (a ': env) b → CTS (Seq a ': env) (Seq b)

mapSem' (CTS f tr) = CTS f' tr'

where

f' (ECons (PackDiff xs) g) =

let h x = f (ECons (PackDiff x) g)

(ys, cs) = S.unzip (fmap h xs)

in (ys, (cs, h))

tr' (ECons (PackDiffDelta dxs) dg, (cs, h)) =

let dgEmpty = mapEnv (\(PackDiffDelta _) → PackDiffDelta mempty) dg

htr (dx, c) = tr (ECons (PackDiffDelta dx) dgEmpty, c)

dh c = tr (ECons (PackDiffDelta mempty) dg, c)

(dys1, cs1) = transArg h htr (dxs, cs)

(dys2, cs2) = transEnv dh cs1

h' a = let (b, c) = h a; (dy, c') = dh c in (b /+ dy, c')

in (dys1 <> dys2, (cs2, h'))

transArg h htr (DSeq adxs, cs) = iterTr (transArgAtom h htr) (adxs, cs)

transArgAtom h _htr (Ins i x, cs) =

let (y, c) = h x

in (DSeq $ pure $ Ins i y, S.insertAt i c cs)

transArgAtom _h _htr (Del i, cs) =

(DSeq $ pure $ Del i, S.delet’At i cs)

transArgAtom _h htr (Rep i dx, cs) =

let ci = S.index cs i

(dy, ci') = htr (dx, ci)

in (rep i dy, S.update i ci' cs)

transEnv dh cs =

let (dys, cs') = S.unzip (fmap dh cs)

in (mconcat $ zipWith rep [0..] (toList dys), cs')

Fig. 7. An implementation of mapSem', where mapEnv :: (forall x. f x → g x) → Env f as → Env
g as is the mapping function for Env.

2009]. This issue can be addressed by using dynamic types to encapsulate c, which compromises
type safety to some extent.

D.3 Programming Example: Incremental HaXML Filters
To demonstrate the programmability of our embedded incremental language, we implement query
Q1 from Use Case “XMP” in XML Query Use Cases16 by using an incremental version of HaXML
filters [Wallace and Runciman 1999]. This query extracts books that are published by “Addison-
Wesley” after 1991, keeping their titles and years, as an input and output example in Fig 9.

We use the following rose tree type to express XML fragments.

data Tree = Elem (Fixed String) (Seq Tree)

| Attr (Fixed String) MyString | Text MyString

16https://www.w3.org/TR/xquery-use-cases/
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mapSem' g = mapSem (absPFunSem g)

absPFunSem :: Diff a ⇒ CTS (a : env) b → exists c. CTS env (PFun c a b)

absPFunSem (CTS f tr) = CTS f' tr'

where f' g = (PFun (\a → f (ECons (PackDiffDelta a) g ))

(\(da, c) → tr (ECons (PackDiffDelta da) dgEmpty, c))

, ( ))

where dgEmpty = mapEnv (\(PackDiffDelta _) → PackDiffDelta mempty) g

tr' (dg,_) = (DFun (\c → tr (ECons (PackDiffDelta mempty) dg, c)), ( ))

mapSem'' :: Diff b ⇒ (forall c.CTS env (PFun c a b)) → CTS (Seq a : env) b

mapSem'' (CTS f tr) = CTS f' tr'

where f' (ECons (PackDiffDelta as) g ) = let (ph@(PFun h ), c) = f g

(as, cs) = Seq.unzip (Seq.map h bs)

in (bs, (cs, c, ph))

tr' (ECons (PackDiffDelta (DSeq adas)) dg, (cs, c, ph@(PFun h htr))) =

let (DFun dh, c' ) = tr (dg, c)

(dbs1, cs' ) = iterTr (transArg h htr) (adss, cs)

(dbs2, cs'') = transEnv dh cs'

in (dbs1 <> dbs2, (cs'', c', ph /+ DFun dh))

Fig. 8. Construction of PFun and an example of its use: we abused the Haskell syntax to use the bare exists.

type MyString = Seq Char

Here, Fixed a represents a values, which are not changed in Δ-propagation.

data ADTree = DChild (Delta Tree) | DTag String

| DAttr String Delta MyString | DText Delta MyString

instance Diff Tree where
newtype Delta Tree = DTree [ADTree]

t /+ DTree ads = foldl applyADTree t ads

Here, applyADTree :: Tree → ADTree → Tree applies an atomic change to a given tree: DChild
dt applies dt to the children ts of Elem n ts, DTag n' replaces the element name n of Elem n ts

with n', DAttr k dv replaces the attribute name to k and changes v by dv of Attr k v, and DText
ds applies ds to s of Text s; they keep the original tree if it is not in a designated form. One
might notice that t /+ dt cannot change the top-most constructor of 𝑡 ; to do so, we remove the
node and insert a new one at the parent node of t. This simplifies implementations of some key
methods such as children :: exp Tree → exp (Seq Tree), where the change of the top-most
construct would trigger the removal of all the elements from the output (and thus it needs to keep
the length of the children as a cache if we would consider such changes).

We extend the language to include HaXML filters as Fig. 10, following the general recipe. Then,
incremental versions of HaXML filters [Wallace and Runciman 1999] are represented by the
following type.

type EFilter exp = exp Tree → exp (Seq Tree)

Also, the language comes with many derived filters and filter combinators; some important ones
are excerpted in Fig. 11.
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<bib>
<book year="1994">
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="1992">
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="2000">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>
<book year="1999">
<title>The Economics of Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>
</bib>

(a) Input
<bib>
<book year="1994">
<title>TCP/IP Illustrated</title>

</book>
<book year="1992">
<title>Advanced Programming in the Unix environment</title>

</book>
</bib>

(b) Corresponding Output

Fig. 9. Input and Output XMLs for Q1 (taken from https://www.w3.org/TR/xquery-use-cases/)

class CTSBase exp ⇒ CTSBool exp where

not :: exp Bool → exp Bool

if_ :: exp Bool → exp a → exp a → exp a

class CTSBool exp ⇒ CTSLiftPred exp where

liftPred :: (a → Bool) → exp a → exp Bool

class (CTSSeq exp, CTSBool exp) ⇒ CTSSeqE exp where

filter :: (exp a → exp Bool) → exp (Seq a) → exp (Seq a)

append :: exp (Seq a) → exp (Seq a) → exp (Seq a)

null :: exp (Seq a) → exp Bool

class (CTSSeqE exp, CTSBool e, . . . ) ⇒ CTSFilter exp where

children :: exp Tree → exp (Seq Tree)

makeElem :: String → exp (Seq Tree) → exp Tree

hasTag :: String → exp Tree → exp Bool

...

unsingle :: exp (Seq a) → exp a

Fig. 10. Extended Language for HaXML Filters
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keep :: CTSFilter exp ⇒ EFilter exp

keep = singleton

none :: CTSFilter exp ⇒ EFilter exp

none = \_ → empty

tag :: CTSFilter exp ⇒ String → EFilter exp

tag s = filter (hasTag s) . keep

(>>) :: CTSFilter exp ⇒ EFilter exp → EFilter exp → EFilter exp

f >> g = concat . (map g) . f

f /> g = f >> children >> g

with :: CTSFilter exp ⇒ EFilter exp → EFilter exp → EFilter exp

f `with` g = filter (not . null . g) . f

Fig. 11. Derived Filters and Filter Combinators (Excerpt)

q1 :: (CTSFilter exp, CTSLiftPred exp) ⇒ exp Tree → exp Tree

q1 = unsingle . q1fitler

q1filter :: (CTSFilter exp, CTSLiftPred exp) ⇒ EFilter exp

q1filter = mkElem "bib" [keep /> ((tag "book" `with` byAW `with` after1991)

>> mkElem "book" [keep /> attr "year", keep /> tag "title"])]

where

byAW = keep /> tag "publisher" /> text "Addison-Wesley"

after1991 = keep /> ifAttr "year"

(\s a → if_ (liftPred (\str → (read (toString str) :: Int) > 1991) s)

(keep a) (none a)) none

Fig. 12. Query Q1

Fig. 12 shows an implementation q1 of the query Q1 in our embedded DSL. Mostly, the code are
self-explanatory except some new derived methods: attr is a variant of tag for attributes, mkElem
a fs constructs Elem s tswhere ts are constructed by applying the filters fs, and ifAttr s k f
applies k v to the input if an input is such an attribute named s of value v, and otherwise applies f
to the input. Overall, q1filter is implemented quite concisely thanks to incremental filters in our
EDSL. However, one can find that the use of if_ breaks the abstraction using filters, indicated by
the explicit argument a. Notice that if_ requires exp a for then/else-clauses, and thus we cannot
pass expressions of type EFilter exp = exp Tree → exp Tree. This is actually a cost to pay
for not having higher-order functions in the DSL. For this particular case, the solution is simple:
we prepare families of if_ such as if2 :: CTSBool exp ⇒ exp Bool → (exp a → exp r )
→ (exp a → exp r ) → exp a → exp r.17
In the above implementation, we intentionally separated the liftPredmethod into CTSLiftPred.

The method is unfortunately not compatible with the optimized implementation discussed in §D.4
that uses staging to eliminate the cost caused unembedding. To avoid this incompatibility, we
have to provide methods that replace toString, read (specialized to Int) and (<), which requires
substantial effort.

17We can provided a unified implementation using type families and GADTs, but cannot choose an appropriate one by
using the type of the then/else-clause due to the treatment of the type variable exp in Haskell.
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A subtlety in the code is filter used inside with (see Fig. 11). The associated semantic function
with filter stores the whole input as a cache because it needs to produce appropriate insertions
when a condition becomes true. Thus, the successive applications of with in q1filter is inefficient
in the sense that the associated caches have overlaps. This suggests an optimization by code
transformation, but it is not implemented by our current prototype.

D.4 More Efficient Implementation
The implementation based on CTS involves several places to improve in terms of performance: e.g.,

(1) Manipulation of value-level representations of typing environments that happens in runtime.
(2) The empty caches (of the unit type) stored in the whole cache.
(3) The function transEnv called even when dh is the identity change.
We address the first issue by using staging to perform the unembedding-related computation is

the first stage and leave the essential computation in the second stage; specifically, we use Template
Haskell [Sheard and Jones 2002]. The second issue is addressed by using join lists to manage the
structure of caches so that the empty cache works as the identity element for the joining operation.
In the combination of staging, we keep only the elements in the join lists in the second stage, but
some semantic functions requires us to store the whole cache in a data structure. For this purpose,
an optimized semantic domain also keeps the shape of the join list for inter-conversion between
join lists in the first stage and ones in the second stage. For the third issue, we add a method
checkEmpty :: Delta a → Bool to the typeclass Diff, which returns True only if the input
change is an identical one. Also, we gather uses of variables so that the checking function becomes
more accurate for DFun, which now has an extra Boolean field for checkEmpty that comes true
when checkEmpty returns true for any element in de in the construction (i.e., in absPFunSem).

Combining these ideas, the semantic domain now changes to:

data CTSQ env a = forall cs us.

CTSQ (TEnv env)

(TConn cs) −− cache shape
(Env SBool us) −− uses
(MCode (Env CodeDiff (Extr env us) → MCode (Code a, Conn Code cs),

Env CodeDelta (Extr env us) → Conn Code cs

→ MCode (CodeDelta a, Conn Code cs)))

Here, we write Code a for a type for code of type a,18 CodeM a is the monad satisfying: CodeM a
≃ (a → Code r) → Code a. The monad is used to share the context in code generation, and
avoid materializing whole structure; e.g., CodeM (a, b) does not immediately construct pairs in
generated code. Also, CodeD and CodeP are variants of Code satisfying CodeD a ≃ Code (Delta a)
and CodeP a≃ Code (PackDiff a). The type Conn f cs denotes a join list of which contents is f
ciwhere cs = [c1, ..., cn]. We do not dive more details about this because the implementation
is too complex for a paper.19

E RELATEDWORK OF EMBEDDED INCREMENTAL LANGUAGE
eCTS vs CTS. Though the original CTS incremental 𝜆-calculus [Giarrusso et al. 2019] is untyped,

the accompanied implementation contains an simply-typed embedded DSL based on parametric
HOAS [Chlipala 2008]. The EDSL is not suitable for users to directly program with; its (P)HOAS
18Code a is Q (TExp a) in GHC before 9, and is Language.Haskell.TH.Code Q a in GHC 9.
19See the source code (which uses a preliminary formalization of Embedding by Unembedding) available from https:
//archive.softwareheritage.org/swh:1:rev:fe7a2d44582d334d83d503d443843351af24d821 for the details.
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representation follows the 𝜆-lifted A’-normal form (a variant of the A-normal form [Flanagan et al.
1993]), and exposes the cache types. Also, the interpretation of the EDSL, code generation by strings,
is not backed by the theoretical basis, unlike unembedding [Atkey 2009]. The definition of mapSem
in Appendix D is adopted from their implementation. We note, however, that, to process changes
one-by-one, their treatment of functions in the implementation becomes different from the one in
the paper, and hence the correctness proof (and that in the accompanied Coq code) is not lifted to
the EDSL.

Other Adaptations of CTS. Morihata [2020] gives an interface to Cai et al. [2014]’s incremental
computation based on short-cut fusion [Gill et al. 1993] with reformulation. In his framework, a
function to be incrementalized takes abstract polymorphic methods to be substituted by incremental
functions. Thus, his use of the short-cut fusion is similar to the tagless-final style [Carette et al.
2009]. An issue of the original calculus, which the CTS version [Giarrusso et al. 2019] also addresses,
is the recomputation of 𝐴 required by a derivative 𝐴 → Δ𝐴 → Δ𝐵. Interestingly, tupling [Chin
1993] does not help here as Δ𝐴 is not available for the first run. Their idea can be viewed as Yoneda
embedding to have 𝐴 → Δ𝐴 → Δ𝐵 ∼ 𝐴 → ∀𝑠 .(𝑠 → Δ𝐴) → (𝑠 → Δ𝐵). Then, one can tuple
it with the original function to have (𝐴, 𝑠 → Δ𝐴) → (𝐵, 𝑠 → Δ𝐵), which can be viewed as an
interpretation domain of 𝐴 → 𝐵 functions in the DSL. Now the issue of Δ𝐴 not being available
is resolved by passing id to the tupled function yielding 𝐴 → (𝐵,Δ𝐴 → Δ𝐵). This approach
scales to propagation of multiple updates: starting from 𝐴 → Interact (Δ𝐴) (Δ𝐵), one obtains
𝐴 → (𝐵, Interact (Δ𝐴) (Δ𝐵)). This approach is simple and type preserving, in contrast to Giarrusso
et al. [2019] which targets untyped system and performs a global program transformation that
requires 𝜆-lifting and A’-normalizing as a preprocess. However, it is unclear how this can apply to
higher-order methods such as map.

CTS Alternatives. We chose the CTS incremental calculus [Giarrusso et al. 2019] as a target
because it is simple, easy to reason about, and realistic. There are many other frameworks for
incremental computation. One of the most popular ones is self-adjusting computation [Acar et al.
2006], where programmers create, read and write modifiables so that a dependency graph among
modifiables can be extracted to incrementally propagate changes of modifiables from input to
output. We could extract the core part to make a DSL to embed by unembeddeding, whose API
would be similar to the ML library presented by Acar et al. [2006]. However, we suspect that the
resulting EDSL would have limited benefits as the manipulation of the modifiables is the main
challenge and not made easy by the embedding. In later work [Chen et al. 2012, 2014b], systems
are designed to generate modifiable-manipulate code from ordinary functional programs with
annotations.

F MORE DETAILS OF EMBEDDED BIDIRECTIONAL LANGUAGE
F.1 Round-tripping Laws
A lens must satisfy round-tripping to be considered as well-behaved [Foster et al. 2007]. Here
we use the system adopted by HOBiT, which is a slightly weaker version of the original round-
tripping [Bancilhon and Spyratos 1981; Foster et al. 2007; Hegner 1990].

Definition F.1 (⪯-well-behavedness [Matsuda andWang 2018d]). Let (𝑆, ⪯) and (𝑉 , ⪯) be partially-
ordered sets. A lens ℓ :: Lens 𝑆 𝑉 is called ⪯-well-behaved if it satisfies

get ℓ 𝑠 = 𝑣 =⇒ 𝑣 is maximal ∧ (∀𝑣 ′. 𝑣 ′ ⪯ 𝑣 =⇒ put ℓ 𝑠 𝑣 ′ ⪯ 𝑠) (⪯-Acceptability)
put ℓ 𝑠 𝑣 = 𝑠 ′ =⇒ (∀𝑠 ′′. 𝑠 ′ ⪯ 𝑠 ′′ =⇒ 𝑣 ⪯ get ℓ 𝑠 ′′) (⪯-Consistency)

for any 𝑠, 𝑠 ′ ∈ 𝑆 and 𝑣 ∈ 𝑉 , where 𝑠 is maximal. □
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Intuitively, 𝑠1 ⪯ 𝑠2 means that 𝑠2 is more determined than 𝑠1. The laws coincidewith the conventional
well-behavedness when (⪯) = (=) on 𝑆 and 𝑉 . For the sake of this paper, we do not go into many
details on round-tripping, but emphasize that the property is in fact preserved in our handling by
using a type synonym Lens 𝑆 𝑉 for ⪯-well-behaved lenses.
We use the weaker ⪯-well-behavedness so that the embedded language can have a standard

simply-typed system that allows both weakening and contraction. Alternatively, we can keep
the conventional well-behavedness if we consider a linear-typed language. Though the original
unembedding proposal [Atkey 2009; Atkey et al. 2009] relies on the fact that a language to embed can
be represented as a second-order algebra [Fiore andHur 2010], we conjecture that a similar technique
is also possible for linear cases. Recently, Haskell included support for linear types [Bernardy et al.
2018], and thus the unembedding of a linear language leveraging the parametricity of a linear-typed
host language is an interesting future direction.

F.2 Pattern Combinators
Directly using unpair and branch𝑛 in programming is cumbersome, and it is desirable if we can
write bidirectional branching as ordinary case expressions instead. To address this issue, we provide
pattern-like combinators on top of the EDSL so far constructed.

We first confirm that patterns 𝑝 can be viewed as linear-typed expressions. A convenient way to
embed linear-typed terms is to use difference lists to represent typing environments (e.g., [Polakow
2015]) as Γin ⊢ 𝑝 : 𝐴 | Γout, which reads that, by matching a pattern of type 𝑝 , typing environment
Γin changes to Γout. Then, a semantics of a pattern can be given as a pair of functions as below.

JΓin ⊢ − : 𝐴 | ΓoutK = PBij (J𝐴K, JΓinKL) JΓoutKL

The semantics of typing environment JΓKL is different from the one used for a term-in-context
(VEnv env), as there is no need of weakening and contraction, and using J𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛K =
((. . . (( ), J𝐴1K), . . . ), J𝐴𝑛K) is fine.
So, the datatype for shallow-embedded patterns can be given as

data Pat i o a = Pat (TEnv i → TEnv o) (PBij (a, LVEnv i) (LVEnv o))

where LVEnv o implements JΓKL; specifically, LVEnv = Env Identity. The second parameter
of Pat computes Γout form Γin, which will be used to decompose JΓoutKL in the embedded DSL
(otherwise, it is unclear how unpair can be applied). The following are basic combinators for
patterns.

varP :: Pat i (i : a) a

unitP :: Pat i i ( )

pairP :: Pat m o a → Pat i m b → Pat i o (a, b)

liftP :: PBij a b → Pat i o b → Pat i o a

They are powerful enough to define many patterns; e.g., the nil and cons patterns can be defined
via partial bijections unnil :: PBij [a] () and uncons :: PBij [a] (a, [a])—which are
the inverses of the partial bijections nil :: PBij ( ) [a] and cons :: PBij (a, [a]) [a]
corresponding to [] and (:), respectively—as:

nilP :: Pat i i [a]

nilP = liftP unnil unitP

consP :: Pat m o a → Pat i m [a] → Pat i o [a]

consP p1 p2 = liftP uncons (pairP p1 p2 )
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An important property of Pat is that Pat [] o a defines a partial bijection between a and LVEnv o.
Also, we can obtain TEnv o as mentioned before, which is used to define the following decomposi-
tion function.

decompEnv :: HOBiT exp ⇒ TEnv o → (Env exp o → exp r )

→ (exp (LVEnv o) → exp r )

decompEnv ENil k e = ununit (prim n2uL e) (k Nil)

decompEnv (ECons g ) k e = unpair (prim c2pL e)

(\x xs → decompEnv g (k . ECons x) xs)

Here, n2uL :: Lens (LVEnv [ ]) ( ) and c2pL :: Lens (LVEnv (a : as)) (a, LVEnv as
) are the lenses defined by the obvious isomorphism between types.

Thanks to these patterns we can now have the following derived method.
case_ :: HOBiT exp ⇒ String → exp a → [Br exp a r ] → exp r

Here, Br is a type for branches defined by:
data Br exp a r where
Br :: Pat [ ] o a → (Env exp o → exp r )

→ (r → Bool) → (a → r → a) → Br exp a r

Note that o is existentially quantified in the definition. The implementation of case_ involves
branch_n and decompEnv, with construction of a lens to convert an input a to sums LVEnv o1
+ ... + LVEnv on where o_i is the existentially qualified pattern for the ith branch. The ease
of defining derived combinators demonstrate the clear benefit of embedding, where we can keep
the core set of combinators (i.e., semantic functions) small and consequently suitable for complex
reasoning. This advantage is decisive in bidirectional languages, as the need to reason about
round-tripping is no longer at the cost of reduced language features.

We can even add extra features to the language by Haskell’s type-level programming. Consider
the following type family

type family Func exp as r where
Func exp [ ] r = r

Func exp (a : as) r = exp a → Func exp a r

and a converter between the representations (whose straightforward definition is omitted):
fromFunc :: Func exp as (exp r ) → (Env exp as → exp r )

With these, we can define a combinator with the following type.
(−→) :: Pat [ ] o a → (Func exp o (exp r ), r → Bool, a → r → a)

→ Br exp a r

p@(Pat _ _) −→ (b,f, recon) = Br p (fromFunc b) f recon

As a result, users of the DSL can be oblivious to the implementation and need not touch Env at all.
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