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1 INTRODUCTION

In statistics, a probabilistic model captures a real-world phenomenon as a set of relationships

between random variables: the model’s parameters, inputs, and outputs. By integrating such notions

into general-purpose languages, probabilistic programming languages (PPLs) allow programmers

to build and execute probabilistic models. For example, consider a simple linear regression model

that assumes a linear relationship between input variables  and output variables ; this can be

represented using the standard mathematical notation shown on the left below. Using the language

presented in this paper, the right-hand side shows how one could express the same model as a

functional program in Haskell.

 ∼ Normal(0, 3)

 ∼ Normal(0, 2)

 ∼ Uniform(1, 3)

 ∼ Normal( ∗  + , )

linRegr  = do

 ← normal 0 3 #

 ← normal 0 2 #

 ← uniform 1 3 #

 ← normal ( ∗  +  ,  ) #

return 
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(a) Simulation (b) Inference (Likelihood Weighting)

Fig. 1. Visualising Linear Regression

Both representations take an input  and specify the distributions which generate the model

parameters ,  , and  ; the output  is then generated from the normal distribution using mean

 ∗  +  and standard deviation  . In the program representation, each primitive distribution is

associated with a corresponding łobservable variablež, indicated by the # syntax; this is an optional

argument, and its purpose will become clear shortly.

Given a probabilistic model, the programmer or data scientist will typically want to use it in at

least two dierent ways. Simulation involves providing xed values for the model parameters and

inputs, to generate the resulting model outputs. Conversely, inference generally entails providing

observed values for the model outputs and inputs, in an attempt to learn the model parameters.

For example, we might simulate from linRegr in our language as follows:

let  = [ 0 .. 100 ]

env = (# ≔ [3]) • (# ≔ [0]) • (# ≔ [1]) • (# ≔ [ ]) • nil

in map (simulate linRegr env) 

First we declare a list of model inputs  from 0 to 100. Then we dene a łmodel environmentž env

which assigns values 3, 0, and 1 to observable variables #, #, and # . This expresses our intention

to observe parameters ,  , and  Ð that is, to provide external data 3 as the value of random variable

 whilst conditioning on the likelihood that  = 3, and similarly for  and  . On the other hand no

values are specied for # in env, expressing our intent to sample the model output  Ð that is, to

draw a value from its probability distribution. We then use library function simulate to simulate a

single output from the model for each data point in  using the specied environment, producing

the result visualised in Fig. 1a.

Alternatively, we can perform inference on linRegr , for example using the Likelihood Weighting

algorithm [van de Meent et al. 2018], as follows:

let  = [ 0 .. 100 ]

 = [( , env) |  ←  , let env = (# ≔ []) • (# ≔ []) • (# ≔ []) • (# ≔ [3 ∗  ]) • nil ]

in map (lw 200 linRegr) 

Here we dene  to pair each model input  with a model environment env that assigns the value

3 ∗  to # but nothing to #, #, and # . This expresses our intention to observe  but sample ,

 and  . We then use library function lw to perform 200 iterations of Likelihood Weighting for

each pair of model input and environment, producing a trace of weighted parameters ,  , and 

whose distributions express the most likely parameter values to give rise to . Fig. 1b visualises the

likelihoods of samples for , where values around  = 3 clearly accumulate higher probabilities.

We refer to a model that can be used for both simulation and inference Ð where random

variables can be switched between sample and observe modes without altering the model itself Ð
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as a multimodal model. While multimodal models have a clear benet, letting the same model be

interacted with for a variety of applications, few existing PPLs support them. Most frameworks, such

as MonadBayes [Ścibior et al. 2018] and Anglican [Tolpin et al. 2016], instead require programmers

to express models in terms of explicit sample and observe operations, which considerably limits

their reusability. If the user wishes to interact with the łsamež model in a new way, they have little

choice but to reimplement it with a dierent conguration of sample and observe operations.

Indeed, the number of possiblemodel interpretations extends far beyond the two general scenarios

of simulation and inference, potentially including any combination of sample and observe operations

that can be instantiated for a model’s random variables. Depending on available data and uncertainty

about the model, it is common to explore the model’s output space by partially providing model

parameters and randomly sampling the rest [Kline and Tamer 2016], or to alternate between which

observable variables are being conditioned on [Moon 1996]. Ideally, all of these possible scenarios

would be expressible with a single multimodal model denition, avoiding the need to dene and
separately maintain a dierent version of the model for each use case.

While some PPLs do support multimodal models, it is usually dicult or impossible to reuse

existing models when creating new ones. Stan [Carpenter et al. 2017] and WinBUGS [Lunn et al.

2000] provide a bespoke language construct for models with its own distinctive semantics, but as

well as lacking high-level programming features beyond those essential to model specication,
model denitions are unable to reuse other model denitions. Languages like Turing [Ge et al.

2018] and Gen [Cusumano-Towner et al. 2019] take a dierent approach, supporting multimodal

models as macros that are compiled into functions; although they provide some support for

compositionality, neither supports models as rst-class values. These modularity limitations are

especially signicant for hierarchical modelling, where the goal is to explicitly dene a composite

model with independently dened sub-models [Gelman and Hill 2006].

In this paper, we present ProbFX : a deeply embedded PPL in Haskell where probabilistic models

are modular, rst-class, and multimodal. Our solution uses algebraic eects [Plotkin and Power

2003] and handlers [Plotkin and Pretnar 2013], allowing models to be captured as syntax, and their

semantics deferred to a choice of łmodel environmentž. By embedding into a functional language,

models can then naturally exist as (rst-class) functions and leverage all the abstractions and

features of the host [Elliott et al. 2003; Gibbons and Wu 2014].

Our approach uses two key Haskell type abstractions: polymorphic sums for expressing eect
signatures, and extensible records for model environments. Both of these can in fact be subsumed

by row polymorphism [Leijen 2005], and so any language with support for polymorphic rows, such

as PureScript [Freeman 2017], OCaml [Leroy et al. 2020] or Links [Hillerström and Lindley 2018],

or with a type system powerful enough to express something similar (such as Haskell), should be

capable of capturing ProbFX’s main features. The other type-level devices we use are ergonomic

choices specic to Haskell, and are inessential to the main goals.

We begin by giving the necessary background and language overview in ğ2. Our contributions
are then as follows:

• We demonstrate the features of our language via a realistic case study with real-world applications:

the spread of disease during an epidemic (ğ3).
• We present an embedding technique that is novel in using algebraic eects to represent probabilis-
tic models (ğ4), demonstrated with Haskell as the host language. To the best of our knowledge,

ours is the rst PPL to support models that are both multimodal and rst-class.
• We provide a modular, type-safe mechanism for associating observed data to the random variables

of a model, determining whether probabilistic operations should be interpreted as sample or

observe (ğ5). The same mechanism is used to trace samples for plotting or debugging.
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• We present a new approach to the compositional implementation of simulation and inference,

using eect handlers to perform modular program transformations on models (ğ6). We illustrate

the approach using Likelihood Weighting [van de Meent et al. 2018] and Metropolis Hastings

[Wingate et al. 2011].

• We evaluate our language empirically, considering performance against two state-of-the-art PPLs,

and language features supported across a range of modern PPLs (ğ7).

We discuss related work in more detail in ğ8. However, this is not the rst time PPLs have been

explored with Haskell as a host language. Erwig and Kollmansberger [2006] implement a probability

monad for representing distributions in functional languages; Narayanan et al. [2016] use a tagless-

nal embedding [Kiselyov 2010] to encode inference algorithms as type class instances; Ścibior et al.
[2018] use monad transformers [Liang et al. 1995] to demonstrate inference as eect composition.

Our approach builds on the techniques oered by algebraic eects and extensible data.

The high-level notion of using interpreters to execute the eects of probabilistic models is an

established technique in PPLs, and is similar in spirit to algebraic eects. Many PPLs accomplish this

through context managers, coroutines, and continuation-passing style transformations [Bingham

et al. 2019; Goodman and Stuhlmüller 2014; Tolpin et al. 2016]. However, these approaches fail

to delineate between syntax and semantics, preventing models from being interpreted in a fully

multimodal fashion. Moreover, the eect-interpreting mechanisms typically operate in weakly-

typed, imperative settings, where eects are not associated with types and can occur unrestrictedly

in a program. Algebraic eects have the potential to bring a type-safe, compositional discipline to

probabilistic programming. There is, however, little existing work in this area, and the topic has

primarily remained a point of discussion [Moore and Gorinova 2018; Ścibior and Kammar 2015].

We present a novel design and implementation at the intersection of PPLs and algebraic eects.
In addition to the examples in this paper, our embedding has been tested with a range of models

implemented in other PPLs, as well as well-known models such as those designed by Gelman and

Hill [2006]; the full source code is freely available online.1

2 BACKGROUND AND LANGUAGE OVERVIEW

A probabilistic model, expressed using the ∼ notation introduced in ğ1, describes how a set of

random variables are distributed relative to some xed input. If the model does not condition against

any external data, the distribution it describes is the so-called joint probability distribution, giving

the probabilities of all possible values that its random variables can assume. For example, the linear

regression model in ğ1 describes the distribution P(, , , ;) ś namely, the joint distribution

over random variables , , , and  given xed input  as a non-random parameter.

In real-world applications, we typically have known values for only a subset of these random

variables, and are interested in how the other variables are distributed with respect to those known

values. Consider providing known data ̂ for random variable  in linear regression; we say that

we condition on  having observed ̂. Using the well-known chain rule for two random variables:

P( , ) = P( |  ) · P( )

we can derive the resulting distribution as the product P(, , | = ̂;) · P( = ̂). The rst
component, called the conditional distribution, describes the probabilities of values for each random

variable ,  ,  given  = ̂ and some input  ; the second component, called the prior distribution,

gives the probability that  has value ̂. Providing observed data to a probabilistic model can

therefore be seen as specialising its joint distribution to some product of a conditional that is

favourable to modelling and an associated prior.

1https://github.com/min-nguyen/prob-fx
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2.1 Multimodal Models

The chain rule is a powerful tool that allows us to describe a jointly occurring set of events in

terms of the variables we will provide data for, and then compute other variables of interest with

respect to this; and there are of course as many ways to decompose a joint distribution as there

are combinations of variables that can be conditioned on. Since statisticians often have a clear

understanding of the variables they wish to learn and those they wish to condition against, models

are in practice often specialised to specic conditional distributions (through the chain rule) and

expressed as low-level algorithms that explicitly perform sampling and conditioning, such as in

Ding et al. [2019]; Polson et al. [2013].

Most PPLs, such as WebPPL [Goodman and Stuhlmüller 2014] and Anglican [Tolpin et al. 2016],

are then designed to support the direct translation of these low-level model specications from paper

to program via the operations sample and observe. These languages are useful for creating model

instances tailored to specic situations, but the resulting models are not easy to experiment with.

Tasks which should be straightforward, such as exploring random variable behaviours by isolating

which ones are sampled from [Idreos et al. 2015] or selectively optimising model parameters

[Yekutieli 2012], require alternative specialisations to be created by hand.

2.1.1 Multimodal Models via Model Environments. With multimodal PPLs, the programmer speci-

es a single model which can be used to generate multiple specialisations, representing specic
conditional distributions. Such languages require a mechanism for specifying observed data to

random variables, determining whether they are to be sampled or observed. For example, Turing.jl

lets users choose whether to provide observed values as arguments when invoking a model, with

omitting an argument defaulting to sampling [Ge et al. 2018]; in Pyro, users specify mappings

between random variables and observed data via context managers that later constrain the values

of runtime sampling operations [Bingham et al. 2019]. However, these solutions are dynamically

typed with no guarantee that the named variables exist or are provided values of the correct type.

Our language supports multimodal models through a novel notion of model environment, which

we explain in the context of a Hidden Markov Model (HMM) [Rabiner and Juang 1986]:

1 2 3

1 2 3 Observations

Latent States. . . . . .

The idea of a HMM is that we have a series of latent states  which are related in some way

to observations  . The HMM is then dened by two sub-models: a transition model (→) that

determines how latent states  are transitioned between, and an observation model (↑) that

determines how  is projected to an observation  . The objective is to learn about  given  .

A simple HMM expressed in typical statistical pseudocode is shown in Fig. 2a; we describe its

corresponding implemention in our language in Fig. 2b. The type of hmm says it is a function

that takes two Ints as input and returns a Model env es Int , where env is the model environment, es

is the eects which the model can invoke (detailed later in ğ4), and Int is the type of values the

model generates. The constraint Observables states that # :: Int , #Δ :: Double, and #Δ :: Double, are

observable variables in the model environment env which may be conditioned on later when the

model is used.

The function hmm takes the HMM length  and initial latent state 0 as inputs, and species the
transition and observation parameters Δ and Δ to be distributed uniformly. It then iterates over

the  nodes, applying the transition and observation models at each step. The transition model
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computes latent state  from state −1 by adding a value  generated from a Bernoulli distri-

bution bernoulli′ Δ . The observation model generates observation  from  via the distribution

binomial  Δ . The nal latent state is returned at the end. (Binding the local name is technically

redundant here, but emphasises the connection to the ∼ notation used by statisticians.)

hmm(, 0)

Δ ~ Uniform(0, 1)

Δ ~ Uniform(0, 1)

for  = 1 . . . :

 ~ Bernoulli (Δ )

 = −1 + 

 ~ Binomial( , Δ )

return 

hmm :: (Observables env '[ łž] Int

, Observables env '[ łΔ ž , łΔž] Double)

⇒ Int → Int→ Model env es Int

hmm  0 = do

Δ ← uniform 0 1 #Δ

Δ ← uniform 0 1 #Δ

let loop  −1 |  <  = do

 ← bernoulli′ Δ

let  = −1 + 

 ← binomial  Δ #

loop ( + 1) 

| otherwise = return −1

loop 0 0

(a) Statistical pseudocode (b) Implementation

Fig. 2. Hidden Markov Model

Model parameters

Transition model

Observation model

The hash syntax, for example in # , constructs the unique inhabitant of the type-level string

ł ž, and is how the programmer associates variables in the Observables env constraint with specic
primitive distributions. They do this to indicate that they may later be interested in providing

observed values for these variables to condition on. When they execute a model, they must provide

a concrete environment of type env, and the presence or absence of observed values in that

environment will determine whether the distribution tagged with # is to be interpreted as observe

or sample. The distribution bernoulli′ Δ has no observable variable, indicating that it is not possible

to condition on  ; this makes sense because values of  are latent and so it is unlikely that we

would ever want to provide data for them. (Primitive distributions like bernoulli come in primed

variants that are always interpreted as sample.)

A model can then be interpreted as any of its conditioned forms by specifying an appropriate

model environment. In our example, the HMM in its unspecialised form represents the joint

distribution over its latent states  , observations  , and parameters Δ ,Δ (given xed input 0 as

the rst latent state):

P(1 . . . , 1 . . ., Δ , Δ ; 0)

and we can then simulate the HMM (with length  = 10 and initial state 0 = 0) by providing values

for #Δ and #Δ in an environment env:

let 0 = 0;  = 10;

env = (#Δ ≔ [0.5]) • (#Δ ≔ [0.8]) • (# ≔ []) • nil

in simulate (hmm ) env 0

This indicates that we want to observe 0.5 and 0.8 for Δ and Δ , and sample for each occurrence of

 (because we provided no values for # ); there are multiple occurrences of  at runtime, one for

each  ∈ {1 . . .}, thanks to the iterative structure of the HMM. By the chain rule, the probability

density this expresses is:

P(1 . . . 10, 1 . . .10 | Δ = 0.5, Δ = 0.8; 0 = 0) · P(Δ = 0.5) · P(Δ = 0.8)
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In the case of inference, on the other hand, we provide an observation for each  and try to learn

Δ and Δ . This is why (as the reader may already have noticed) a model environment provides a list

of values for each observable variable, allowing for the situation where the observable variable has

multiple dynamic occurrences. In this case we provide 10 observations, one for each  ∈ {1 . . .}:

let 0 = 0;  = 10;

env = (#Δ ≔ []) • (#Δ ≔ []) • (# ≔ [0, 1, 1, 3, 4, 5, 5, 5, 6, 5 ]) • nil

in lw 100 (hmm ) (0 , env)

At runtime, the values associated with # in the model environment are used to condition against

the occurrences of # that arise during execution, in the order in which they arise. By the chain

rule, the probability density expressed by instantiating the model with this environment is:

P(Δ , Δ, 1 . . . 10 | 1 = 0 . . .10 = 5; 0 = 0) · P(1 = 0) · . . . · P(10 = 5)

Although the type system ensures that model environments map observable variables to values of

an appropriate type, it does not constrain the number of values that are provided. Should observed

values run out for a particular variable, any remaining runtime occurrences of the variable will

default to sample; any surplus of values is ignored. While this exibility could certainly obscure

programming errors, other PPLs (such as Turing.jl [Ge et al. 2018]) take a similar approach, and we

also note that the correctness of inference is unaected. We consider alternative designs in ğ8.2.

2.2 Modular, First-Class Models

Fig. 2a used a single procedure, written in statistical pseudocode, to express a Hidden Markov Model.

Such notations are understood by most mathematicians and are widely used in statistical journals.

Even when the model is complex, a monolithic style of presentation prevails, where models are

dened from scratch each time rather than built out of reusable components. The design of PPLs

such as Stan [Carpenter et al. 2017], PyMC3 [Salvatier et al. 2016] and Bugs [Lunn et al. 2000]

reect these non-modular conventions.

Programmers, on the other hand, recognise the importance of modularity to maintainability

and reusability: they expect to be able to decompose models into meaningful parts. Fig. 3a shows

how the programmer may imagine the same HMM as a composition of parts. Our language can

then support this treatment of models in Fig. 3b: rst, the transition and observation distributions

are dened as separate models transModel and obsModel; these are then composed by hmmNode to

dene the behaviour of a single node, which is in turn used by hmm to create a chain of nodes of

length , using replicate and a fold of Kleisli composition (>=>) to propagate each node’s output to

the next one in the chain.

(>=>) :: (a → Model env es b) → (b → Model env es c) → (a → Model env es c)

The observable variables of hmm are now inherited from its sub-models: transModel has none (and

so lacks an Observables constraint entirely), whereas obsModel has # as its only observable variable.

As well as improving reusability, compositionality also allows programmers to organise models

around the structure of the problem domain. For example the functions in Fig. 3b correspond in a

straightforward way to the abstract components of a HMM: transModelmakes it obvious that latent

state  depends only on the previous state −1 (and Δ ), and obsModel that observation  depends

only on the state  that produced it (and Δ).
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transModel(Δ , −1)

 ~ Bernoulli (Δ )

return −1 + 

transModel :: Double→ Int → Model env es Int

transModel Δ −1 = do

 ← bernoulli′ Δ

return −1 + 

obsModel(Δ,  )

 ~ Binomial( , Δ )

return 

obsModel :: (Observables env '[ łž] Int)

⇒ Double → Int → Model env es Int

obsModel Δ  = do

 ← binomial  Δ #

return 

hmmNode(Δ ,Δ, −1)

 ~ transModel(Δ , −1)

obsModel(Δ,  )

return 

hmmNode :: (Observables env '[ łž] Int)

⇒ Double→ Double→ Int → Model env es Int

hmmNode Δ Δ −1 = do

 ← transModel Δ −1

obsModel Δ 

return 

hmm(, 0)

Δ ~ Uniform(0, 1)

Δ ~ Uniform(0, 1)

for  = 1 . . . ;

 ~ hmmNode(Δ ,Δ, −1)

return 

hmm :: (Observables env '[ łž] Int

, Observables env '[ łΔ ž ,łΔž] Double)

⇒ Int → Int → Model env es Int

hmm  0 = do

Δ ← uniform 0 1 #Δ

Δ ← uniform 0 1 #Δ

foldl (>=>) return (replicate  (hmmNode Δ Δ )) 0

(a) Statistical Pseudocode (b) Program Representation

Fig. 3. A Modular Hidden Markov Model

3 MODULAR, MULTIMODAL MODELS: A CASE STUDY

Beforewe turn to the details of our embedding approach in ğ4, we present a case study demonstrating

our support for modular, rst-class, multimodal models. ğ3.1 introduces our running example, the

SIR (Susceptible-Infected-Recovered) model for the spread of disease [Liang and Li 2021]. ğ3.2
uses the SIR model to show how our language supports higher-order models which can be easily

extended and adapted. ğ3.3 shows how a multimodal model can be used for both simulation and

inference in the same application to facilitate Bayesian bootstrapping.

3.1 The SIR Model

The SIR model predicts the spread of disease in a xed population of size  partitioned into three

groups:  for susceptible to infection,  for infected, or  for recovered (where  +  +  = ). The model

tracks how  ,  , and  vary over discrete time  measured in days. Because testing is both incomplete

and unreliable, the true  values for the population cannot be directly observed; however, we can

observe the number of reported infections  . This problem is thus a good t for a Hidden Markov

Model (ğ2), where the  values play the role of latent states of type Popl, and  as the observations

of type Reported:

data Popl = Popl {  :: Int,  :: Int,  :: Int }

type Reported = Int
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We now show how our language can be used to implement the SIR model as a modular HMM,

starting with the transition and observation models.

SIR transition model. The transition model describes how the  values change over a single

day; we model two specic dynamics. First, susceptible individuals  transition to infected  at a

rate determined by the values of  and  and the contact rate  between the two groups. We use a

binomial distribution to model each person in  having a 1−−/ probability of becoming infected,

and update  and  accordingly:

trans :: Double→ Popl → Model env es Popl

trans  (Popl    ) = do

let  =  +  + 

 ← binomial′  (1 − exp ((− ∗  ) /  ))

return (Popl ( −  ) ( +  )  )

Second, infected individuals  transition to the recovered group  , where a xed fraction  of

people will recover in a given day. Again we use a binomial to model each person in  as having a

1 − − probability of recovering, and use this to update  and  :

trans :: Double → Popl → Model env es Popl

trans  (Popl    ) = do

 ← binomial′  (1 − exp (− ))

return (Popl  ( −  ) ( +  ))

The overall transition model trans is simply the sequential composition of trans and trans .

Given  and  (aggregated into the type TransParams), trans computes the changes from  to 

and then  to  to yield the updated  population over a single day:

data TransParams = TransParams {  :: Double,  :: Double }

trans :: TransParams→ Popl → Model env es Popl

trans (TransParams   ) = trans  >=> trans 

SIR observation model. For the observation model, we assume that the reported infections 

depends only on the number of infected individuals  , of which a xed fraction  will be reported.

We use the Poisson distribution to model reports occurring with a mean rate of  ∗ :

type ObsParams = Double

obs :: Observables env '[ łž] Int ⇒ ObsParams→ Popl → Model env es Reported

obs  (Popl _  _) = do

 ← poisson ( ∗  ) #

return 

Since we intend this as the observation model, we declare observable variable # :: Int in the

Observables constraint and attach it to the Poisson distribution so we can condition on it later.

HMM for the SIR model. Now the transition and observation models can be combined into a

HMM. We build on the modular design in Fig. 3, but go a step further by dening a HMM as a

higher-order model that is parameterised by sub-models of type TransModel and ObsModel:

type TransModel env es ps lat = ps → lat → Model env es lat

type ObsModel env es ps lat obs = ps → lat → Model env es obs

Here ps represents the types of the model parameters, and lat and obs are the types of latent states

and observations. The higher-order HMM is then dened as:

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 104. Publication date: August 2022.



104:10 Minh Nguyen, Roly Perera, Meng Wang, and Nicolas Wu

hmm :: Model env es ps1 → Model env es ps2

→ TransModel env es ps1 lat → ObsModel env es ps2 lat obs

→ Int → lat → Model env es lat

hmm transPrior obsPrior trans obs  0 = do

 ← transPrior

 ← obsPrior

hmmNode −1 = do  ← trans  −1

 ← obs  

return 

foldl (>=>) return (replicate  hmmNode) 0

The input models transPrior and obsPrior are rst used to generate model parameters  and  , and

trans and obs are arbitrary transition and observation models parameterised by  and  respectively.

The last line creates a HMM of length  with initial state 0.

Our SIR transition and observation parameters will be provided by models transPrior and

obsPrior below, using primitive distributions gamma and beta; their observable variables #, # ,

and # will let us condition on those parameters later:

transPrior :: (Observables env '[ łž , łž] Double)

⇒ Model env es TransParams

transPrior = do

 ← gamma 2 1 #

 ← gamma 1 (1/8) #

return (TransParams   )

obsPrior :: (Observables env '[łž] Double)

⇒ Model env es ObsParams

obsPrior = do

 ← beta 2 7 #

return 

We can now dene the complete SIR model. From an initial population  of susceptible, infected,

and recovered individuals, hmm models the change in  over  days given reported infections  :

hmm :: (Observables env '[ łž] Int , Observables env '[ łž , łž , łž] Double)

⇒ Int → Popl → Model env es Popl

hmm = hmm transPrior obsPrior trans obs

We can simulate over this model, perhaps to explore some expected model behaviours, by specifying

an input model environment sim_env of type Env SIRenv that provides specic values for #, # ,
and # , but provides no values for reported infections # (ensuring that we always sample for ).

Applying simulate to hmm 100 and input population 0 simulates the spread of the disease over

100 days.

type SIRenv = '[ łž := Double, łž := Double, łž := Double, łž := Int ]

simulateSIR :: IO (Popl , Env SIRenv)

simulateSIR = do

let sim_env = (# ≔ [0.7]) • (# ≔ [0.009]) • (# ≔ [0.3]) • (# ≔ []) • nil

0 = Popl {  = 762,  = 1,  = 0 }

simulate (hmm 100) sim_env 0

This returns the nal population 100 plus an output model environment sim_env mapping each

observable variable to the values sampled for that variable during simulation. From this we can

extract the reported infections s:

do (100 :: Popl , sim_env :: Env SIRenv) ← simulateSIR

let s :: [Reported] = get # sim_env

...
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(a) SIR (b) with resusceptible (c) with resusceptible + vacc

Fig. 4. SIR Hidden Markov Model Simulation

Fig. 4a shows a plot of these  values and their corresponding latent (population) states; but note

that as it stands, the model provides no external access to the latent states shown in the plot, except

the nal one 100. Instrumenting the model to access the intermediate states is discussed in ğ5.5.

3.2 Modular Extensions to the SIR Model

Although the SIR model is simplistic, realistic models may be uneconomical to run or too specic
to be useful. When designing models, statisticians aim to strike a balance between complexity and

precision, and modular models make it easier to incrementally explore this trade-o. We support

this claim by showing how two possible extensions of the SIR model are made easy in our language;

these are by no means the most modular solutions possible, but should suce to make our point.

Suppose our disease does not confer long-lasting immunity, so that recovered individuals 

transition back to being susceptible  after a period of time [Shi et al. 2008]. We can model this

with a new transition behaviour:

data TransParams = TransParams {  :: Double,  :: Double,  :: Double,  :: Double }

trans :: Double → Popl → Model env es Popl

trans  (Popl    ) = do

 ← binomial′  (1 − exp (− ))

return (Popl ( +  )  ( −  ))

trans :: TransModel env es TransParams Popl

trans (TransParams    ) =

trans  >=> trans  >=> trans 

We need only modify TransParams to include a new parameter ; dene a new transition sub-model

trans (parameterised by ) that stochastically moves individuals from recovered  to susceptible ;

and then adjust trans to compose trans with our existing transition behaviours. A simulation of

the resulting system is shown in Fig. 4b.

Now consider adding a variant where susceptible individuals  can become vaccinated  [Ameen

et al. 2020]. This involves adding a new sub-population  to the latent state:

data Popl = Popl {  :: Int,  :: Int,  :: Int,  :: Int }

data TransParams = TransParams {  :: Double,  :: Double,  :: Double,  :: Double,  :: Double }

trans :: Double → Popl → Model env es Popl

trans  (Popl     ) = do

 ← binomial′  (1 − exp (− ))

return (Popl ( −  )   ( +  ))

trans :: TransModel env es TransParams Popl

trans (TransParams     ) =

trans  >=> trans  >=>

trans  >=> trans 

We add eld  to Popl representing vaccinated individuals, and add  to TransParams, determining

the rate at which  individuals transition to  . The new behaviour is expressed by trans and then

composed into a new transition model trans . A simulation of this is shown in Fig. 4c.
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3.3 Exploring Multimodality in the SIR Model

We now show how our support for higher-order, modular models is complemented by the exibility
of multimodal models. Suppose the goal were to infer SIR model parameters ,,  given data

on reported infections  . Ideally we would have a real dataset of reported infections to condition

on. But what if our dataset were sparse, or if we were interested in quick hypothesis testing? A

common option is to use simulated data as observed data, a method called Bayesian bootstrapping

[Fushiki 2010]. This task is made simple with multimodal models, because we can take the outputs

from simulation over a model and plug them into an environment that species inference over the
same model:

inferSIR :: Env SIRenv → IO (Env SIRenv)

inferSIR sim_env = do

let s = get # sim_env

mh_env = (# ≔ []) • (# ≔ [0.0085]) • (# ≔ []) • (# ≔ s) • nil

0 = Popl {  = 762,  = 1,  = 0 }

mh 50000 (hmm 100) (0 , mh_env)

Here we take the output model environment sim_env produced by simulateSIR, and use its  values

to dene an input model environment mh_env that conditions against # . Moreover, suppose we

already have some condence about a particular model parameter, such as the recovery rate  ; for

eciency, we can avoid inference on  by setting # to an estimate 0.0085 and sampling only for the

remaining parameters # and # . We then run Metropolis Hastings [Wingate et al. 2011] for 50,000

iterations, which returns an output environment (also of type Env SIRenv) containing the values

sampled from all iterations.

The inferred posterior distributions for  and  can then be obtained simply by extracting them

from that environment:

do mh_env ← inferSIR s

let s = get # mh_env

s = get # mh_env

. . .

These are visualised in Fig. 5. Values around  = 0.7 and  = 0.3 occur more frequently, because

these were the parameter values provided in simulateSIR in ğ3.1.

(a) SIR  posterior distribution (b) SIR  posterior distribution

Fig. 5. SIR Inference (Metropolis Hastings)
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4 A SYNTACTIC EMBEDDING OF MULTIMODAL MODELS

To support multimodality, a key requirement is that models have a purely syntactic representation

which can be assigned a semantics at a later stage. This will allow us to defer the interpretation

of primitive distributions as either sample or observe operations until we know the variables we

want to condition on. An embedding technique that supports this is an algebraic eect embedding

[Plotkin and Power 2003]. In this approach, an eectful program which computes a value of type a

has the following type:

prog :: Prog  a

The parameter  is called an eect signature, in our embedding represented as a type-level list,

containing the computational eects that the program may perform. Such programs are syntax

trees whose nodes contain operation calls belonging to eect types  ∈  and whose leaves contain

pure values of type a.

Programs in this form can be interpreted by algebraic eect handlers [Plotkin and Pretnar 2013]

which handle specic eects in the program:

handle :: Prog ( :  ) a → Prog  b

Such a handler assigns partial meaning to a program by interpreting all operations op of type ,

discharging  from the eect signature, and transforming the return value of type a into a value of

type b. Eect handlers are modular building blocks that can be composed into various program

interpretations.

When we use this approach to represent a probabilistic computation, nodes of the syntax tree

will contain calls to probabilistic operations, and inference and simulation will be implemented

as eect handlers that interpret those operation calls. Mechanisms (such as sample tracing or

particle simulation) specic to particular simulation or inference algorithms can be supported

via eects that inject additional computational structure into the model, such as statefulness or

non-determinism.

In this rest of this section (ğ4), we describe our syntactic representation of multimodal models;

providing semantics to this embedding via eect handlers will follow in ğ5.

4.1 An Infrastructure for Algebraic Eects

There are many ways to represent Prog es a, programs indexed by arbitrary eects; see Hillerström
[2022] for a useful summary. Our embedding uses a simple version of the freer monad [Kiselyov

and Ishii 2015]:

data Prog es a where

Val :: a → Prog es a

Op :: forall x . EectSum es x → (x → Prog es a) → Prog es a

Here, a term of type Prog es a is a syntax tree whose leaves, Val x, contain a pure value x of type a,

and whose nodes, Op op k, contain an operation op of the abstract datatype EectSum es x:

data EectSum (es :: [Type → Type]) (x :: Type) where . . .

A value of type EectSum es x represents a single operation of type e x, where e is some eect
type constructor that occurs in the type-level list es, and x is the type of value the operation

produces. The freer monad thus supports multiple eects directly via the constructor Op, avoiding

the need for explicit coproducts (cf. Swierstra [2008]). Eect sums cannot be constructed directly;

their implementation is kept abstract, and the following type class, Member, is instead provided for

working with them:
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class FindElem e es ⇒ Member e es where

inj :: e x → EectSum es x

prj :: EectSum es x → Maybe (e x)

The constraint Member e es asserts that if we can determine e’s position in es via the type class

FindElem e es (omitted), then we can safely inject and project an eectful operation, of type e x,

into and out of EectSum es x.

The second argument of the Op constructor is a continuation k of type x → Prog es a that takes

the result of the operation and constructs the remainder of the syntax tree. This encoding means

eect types e need not be functors, in constrast to approaches based on the free monad. In turn this

means the type of distributions (ğ4.2.1 below) can be expressed as a GADT, and is in part why we

prefer Kiselyov and Ishii’s approach to alternatives such as Wu and Schrijvers [2015] and Kiselyov

et al. [2013]. Other details of their design specic to performance are omitted for simplicity.

4.2 Multimodal Models as Eectful Programs

We now dene a probabilistic model, or simply model, to be an eectful program of type Prog es a

where es includes at least two specic eects: Dist and ObsReader env. The distribution eect Dist
allows themodel tomake use of primitive distributions such as normal and uniform distributions; the

observable-reader eect ObsReader env allows the model to read and update the values of observable

variables in a model environment of type env.

newtype Model env es a =

Model { runModel :: (Member Dist es, Member (ObsReader env) es)⇒ Prog es a }

The Member constraints specify that es contains Dist and ObsReader env. While these two eects
suce for model specication, others may be useful for model execution, and this type allows the

model to remain polymorphic in any such additional eects.

4.2.1 Eects for Distributions. The core computational eect of a probabilistic model is the distribu-

tion eect Dist, allowing models to be formulated in terms of primitive probability distributions. The

constructors represent the operations of the eect type, and thus correspond to various primitive

distributions. We present a representative selection below:

data Dist a where

Normal :: Double→ Double→ Maybe Double→ Dist Double

Uniform :: Double→ Double→ Maybe Double→ Dist Double

Bernoulli :: Double→ Maybe Bool→ Dist Bool

Discrete :: [( a , Double)] → Maybe a→ Dist a

. . .

Every use of a primitive distribution must, at runtime, be interpretable as either sample or observe,

depending on the availability of an observed value. Each Dist operation therefore takes an additional

parameter of type Maybe a (where a is the base type of the distribution) indicating the presence or

absence of a value to condition on. This detail is hidden from the user, but is used internally to

determine how operation calls are to be interpreted, as we discuss next.

4.2.2 Eects for Reading Observable Variables. To support conditioning on observable variables via

model environments, we require an observable-reader eect, ObsReader env, with an operation that

can read and update values of observable variables in env. This is similar in spirit to the well-known

Reader type.

data ObsReader env a where

Ask :: Observable env x a ⇒ ObsVar x → ObsReader env (Maybe a)
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The single operation Ask of ObsReader env has the constraint Observable env x a. This associates

a list of values of type a with observable variable x in any environment of type env, supporting

conditioning on multiple dynamic instances of the same observable variable. TheObsVar x argument

represents the observable variable name (specied using #). The result is then of type Maybe a

indicating the presence or absence of a value to condition on, suitable for passing directly to one of

the Dist constructors above. We defer the concrete implementations of these types to ğ5.1.
However, the user is not expected to specify ObsReader eects directly. Rather, we provide an

interface of smart constructors [Swierstra 2008] which manage the requests to read from observable

variables. For example:

normal :: (Observable env x Double) ⇒ Double→ Double→ ObsVar x → Model env es Double

normal mu sigma x′ = Model (do maybe_v← call (Ask x′ ); call (Normal mu sigma maybe_v))

Recall that, in addition to the usual normal distribution parameters mu and sigma, the constructor

Normal of Dist also expects an argument of typeMaybe Double representing the presence or absence

of an observed value. The smart constructor normal has a similar signature, but with an observable

variable name x′ in place of the Maybe Double, thereby associating the distribution with a random

variable (rather than particular value) to condition on. The role of the smart constructor is to

insert an Ask operation into the program which retrieves the corresponding value maybe_v of type

Maybe Double from the model environment, which is then used to call the Normal operation.

The helper function call simplies the construction of operation calls, taking care of the injection

into EectSum es x and supplying the leaf continuation Val:

call :: Member e es ⇒ e x → Prog es x

call op = Op (inj op) Val

A primed variant of each smart constructor is also provided, using Nothing as the observed value,

for the common case when a primitive distribution does not need to be conditioned on:

normal′ :: Double→ Double → Model env es Double

normal′ mu sigma = Model (call (Normal mu sigma Nothing))

As an illustration of how the smart constructors work, consider the simple model in Fig. 6 which

generates a bias p from a uniform distribution and uses it to parameterise a Bernoulli distribution,

determining whether the outcome of a coin ip y is more likely to be heads (True) or tails (False).

Fig. 6a shows how the user might write the program (omitting the type signature); Fig. 6b shows

the equivalent program written without smart constructors.

coinFlip = do

p ← uniform 0 1 #p

y ← bernoulli p #y

return y

coinFlip = do

maybe_p ← call (Ask #p)

p ← call (Uniform 0 1 maybe_p)

maybe_y ← call (Ask #y)

y ← call (Bernoulli p maybe_y)

return y

(a) User code, with smart constructors (b) Without smart constructors

Fig. 6. Behaviour of smart constructors

5 INTERPRETING MULTIMODAL MODELS

We now turn to using eect handlers to assign semantics to models. Interpreting a multimodal

model has two stages: specialising the model into the conditional form determined by a model
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environment, and then executing the resulting specialised model using a particular simulation or

inference algorithm.

The rst of these stages is the focus of this section. We start with the implementation of model

environments (ğ5.1), and then dene eect handlers for reading observed values (ğ5.2) and inter-

preting primitive distributions in response to whether observed values have been provided (ğ5.3).
Eect handlers for simulation and inference are the topic of ğ6.

5.1 Model Environments

Model environments allow the user to assign values to observable variables which the model can

then read from. For the sake of compositionality, models should only need to mention the observable

variables they make use of, and be polymorphic in the rest. Moreover, a given observable variable

may bind multiple successive values at runtime ś one for each time the variable is evaluated.

These two design constraints suggest a representation of model environments as extensible

records, where the elds are observable variable names and the values are lists of observed values.

We encode these ideas in Haskell as the datatype Env:

data Env (env :: [Assign Symbol Type]) where

ENil :: Env '[]

ECons :: [a] → Env env → Env (( x := a) : env)

data Assign x a = x := a

The type parameter env represents the type of the model environment as a type-level list of pairs

Assign x a, whose constructor (:=) associates type-level strings x of kind Symbol with value types a

of kind Type; this tracks the variable names in the environment and their corresponding types. The

constructor ENil is the empty environment, and the constructor ECons takes a list of values of type

a and an environment of type env and prepends a new entry for x, producing an environment of

type (x := a) : env.

The observable variable names in Env, being type-level strings of kind Symbol, have no value

representation; to use them as record elds at the value-level, we give the singleton datatype ObsVar:

data ObsVar (x :: Symbol) where

ObsVar :: KnownSymbol x⇒ ObsVar x

This acts as a container for Symbols, storing them as a phantom parameter x. String values can be

neatly promoted to such containers by deriving an instance of the IsLabel class, using Haskell’s

OverloadedLabels language extension:

instance (KnownSymbol x, x ∼ x′) ⇒ IsLabel x (ObsVar x′) where

This enables values of type ObsVar to be created using the # syntax, so that for example value #foo

has type ObsVar łfoož. Model environments are then constructed using the following interface,

which provides nil for the empty environment, and an inx cons-like operator (•) which makes

use of the := notation at the value-level:

(•) :: Assign (ObsVar x) [a] → Env env → Env (( x := a) : env)

nil :: Env '[]

Finally, constraining a polymorphic model environment is done via the type class Observable,

which provides type-safe access and updates to observable variables:

class (FindElem x env, LookupType x env ∼ a) ⇒ Observable env x a

get :: ObsVar x → Env env → [a]

set :: ObsVar x → [a] → Env env → Env env
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type family LookupType x env where

LookupType x ((x := a) : env) = a

LookupType x ((x′ := a) : env) = LookupType x env

The methods get and set use the type class FindElem (used in ğ4.1) to nd the position of a variable

x in env, and the type family LookupType to retrieve its type a. Many observable variables of the

same type can be specied with the type family Observables env xs a below, which returns a nested

tuple of constraints Observable env x a for each variable x in xs:

type family Observables env (xs :: [Symbol]) a :: Constraint where

Observables env (x : xs) a = (Observable env x a, Observables env xs a)

Observables env '[] v = ()

Although other designs are possible, using lists to represent observations for random variables

is justied by the fact that, for correctness, general-purpose inference algorithms must compute

the same distribution on traces (sequences of sampled or observed values) [Tolpin et al. 2016].

5.2 Handling Reading of Observable Variables

The rst step in specialising a model to a particular model environment is to handle the Ask

operations of ObsReader, representing environment read requests.

In the setting of algebraic eects, denoting that an eect e has been handled is done by discharging
it from the front of an eect signature e : es. For this, we introduce a helper function discharge

which pattern-matches an operation of type EectSum (e : es) a to determine whether it inhabits

the leftmost component e of the sum:

discharge :: EectSum (e : es) a → Either (EectSum es a) (e a)

If the operation indeed belongs to e, it is returned as Right op where op has type e a. Otherwise the

operation belongs to an eect in es and it is returned as Le op where op has type EectSum es a,

discharging e from the eect signature.
We then dene a handler which, given a model environment env and a program with eect

signature (ObsReader env : es) , discharges the ObsReader env eect by interpreting Ask operations:

handleRead :: Env env → Prog (ObsReader env : es) a → Prog es a

handleRead env (Op op k) = case discharge op of

Right (Ask x) → let vs = get x env

maybe_v = safeHead vs

env′ = set x (safeTail vs) env

in handleRead env′ (k maybe_v)

Le op′ → Op op′ (handleRead env . k)

handleRead env (Val x) = return x

There are three cases. On matching an operation as Right (Ask x) containing a request to read

from x, the list of values vs associated with x is looked up in env. If vs has a head element, contained

in maybe_v, that value becomes the current observation of x and is removed from env; this ensures

that no observed value is conditioned on more than once during an execution, and that the order in

which observations are consumed matches the execution order. Otherwise there is no observation

of x and env is unchanged. The resulting maybe_v is provided to the continuation k to construct

the remainder of the program, which is then recursively handled by handleRead using the updated

environment.
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If we match an operation as Le op′, then op′ does not belong to ObsReader. The operation is

left intact and the remainder of the program is handled via (handleRead env . k). Lastly, reaching the

non-operation Val x will simply return value x as the program’s output.

In the handler denitions that follow, we omit the Le op′ and Val x clauses when their implemen-

tation follows the pattern above. For an overview of eect handlers we refer the reader to Kiselyov

and Ishii [2015].

5.3 Handling Distributions

The second step of model specialisation is the handler for the Dist eect, which interprets a primitive

distribution call as a sampling or observing operation depending on the presence or absence of an

observed value. This requires two new eects, Sample and Observe:

data Sample a where

Sample :: Dist a → Sample a

data Observe a where

Observe :: Dist a → a → Observe a

Each has a single operation. Sample takes a distribution to sample from, whereas Observe takes a

distribution and an observed value. The distribution handler is then given by:

handleDist :: (Member Sample es, Member Observe es)⇒ Prog (Dist : es) a → Prog es a

handleDist (Op op k) = case discharge op of

Right d → case getObs d of Just v → (do x ← call (Observe d v)

handleDist (k x ))

Nothing→ (do x ← call (Sample d)

handleDist (k x ))

getObs :: Dist a → Maybe a

The accessor function getObs retrieves the optional observation associated with a primitive dis-

tribution (ğ4.2.1). On encountering a distribution d, the handler uses getObs to try to retrieve its

observed value; if there is such a value v, we call a corresponding Observe operation, and otherwise

we call Sample.

5.4 Specialising Multimodal Models

Together, these two handlers specialise a multimodal model into the conditional form determined

by a particular model environment. Their net eect on the type of the model is illustrated by the

following composite handler:

handlecore :: (Member Observe es, Member Sample es)

⇒ Env env → Model env (ObsReader env : Dist : es) a → Prog es a

handlecore env = handleDist . (handleRead env) . runModel

This handles both Dist and ObsReader, replacing all primitive distributions with explicit calls

to Sample and Observe. As an example, consider the coinFlip model presented earlier in Fig. 6b.

Initially applying handleRead using the example environment (( #p ≔ [0.5]) • (#y ≔ []) • nil ) would

produce coinFlip′ in Fig. 7a as an intermediate program, in which all distributions calls have been

parameterised by either a concrete observed value or Nothing; the updated environment would

be (( #p ≔ []) • (#y ≔ []) • nil ) where #p is fully consumed and #y is unchanged. Then applying

handleDist to coinFlip′ would yield Fig. 7b; observed values in primitive distributions are retained,

although they are rendered redundant by the information in the Observe constructor.
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handleRead ((#p ≔[0.5]) • (#y ≔[]) • nil) coinFlip

⇓

handleDist coinFlip′

⇓

coinFlip′ = do

p ← call (Uniform 0 1 (Just 0.5))

y ← call (Bernoulli p Nothing)

return y

coinFlip′′ = do

p ← call (Observe (Uniform 0 1 (Just 0.5)) 0.5)

y ← call (Sample (Bernoulli p Nothing))

return y

(a) Reading from the model environment (b) Distributions interpreted to sample or observe

Fig. 7. coinFlip model: handling eects

This initial pipeline of eect handling turns a multimodal model into a form suitable for further

specialisation by a simulation or inference algorithm, which we show in ğ6.

5.5 Extending Models with Additional Eects

When building models, users are not restricted to using only the two base eects Dist and ObsReader:

the eect signature es in Model env es a can be easily extended with an arbitrary desired eect e, by
rst constraining the model with Member e es, and then handling e with a corresponding handler.

As an example, we revisit the SIR model in ğ3.1 where Fig. 4 plotted all intermediate Popl values

of susceptible, infected, and recovered individuals over  days, despite our implementation hmm

only returning the nal one:

hmm :: (Observables env '[ łž] Int , Observables env '[ łž , łž , łž] Double)

⇒ Int → Popl → Model env es Popl

hmm  = hmm transPrior obsPrior trans obs 

To record all  values produced by hmm , we introduce the constraint Member (Writer w) es

to require es to contain the well-known eect Writer w (omitted), representing computations that

produce a stream of data of type w; here we choose w to be a list of  values [Popl]. The transition

model trans can then use theWriter operation tell to concatenate each new  value to the existing

trace of values:

tell :: Member (Writer w) es ⇒ w→ Model env es ()

trans :: Member (Writer [Popl]) es ⇒ TransModel env es TransParams Popl

trans (TransParams   )  = do

 ′ ← ( trans  >=> trans  ) 

tell [ ′]

return  ′

Models with user-specied eects can then be easily reduced into a form suitable for specialisation

under a model environment (ğ5.4), by handling those eects beforehand with a suitable handler:

handleWriter :: Monoid w⇒Model env (Writer w : es) a → Model env es (a , w)

hmm′
 :: (Observables env '[ łž] Int , Observables env '[ łž , łž , łž] Double)

⇒ Int → Popl → Model env es (Popl , [Popl ])

hmm′
  = handleWriter . hmm 

Here, composing hmm with handleWriter interprets the tell operations arising from the transition

model, producing a new SIR model hmm′
 that returns the trace of  values as an additional

output of type [Popl].
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6 SIMULATION AND INFERENCE AS EFFECT HANDLERS

Simulation or inference over a model is expressed through the semantics we assign to its Sample

and Observe eects; in principle we could therefore dene model execution in terms of two handlers,

one for each of those eects. However, many algorithmic approaches such as Monte-Carlo methods

[Chong et al. 2010] often rely on common mechanisms, such as sample tracing, probability map-

ping, and model reparameterisation [Robert and Titterington 1998]. By identifying some of these

mechanisms as basic building blocks, the possibility arises of composing them in novel ways, giving

rise to many useful variants of algorithms [Ścibior et al. 2018]. This motivates a compositional

approach in which aspects of model execution can be dened and extended modularly.

In this section, we use eect handlers to dene a series of composable program transformations

for probabilistic programs, which iteratively renes a model by installing new eects around
existing ones. The result is an interpretation of the model in the context of specic algorithms for

simulation in ğ6.1 and inference in ğ6.2.

6.1 Simulation as Eect Handlers

Simulation can be considered the most basic form of model execution. It runs the provided model

as a generative process, using observed data from the model environment when available and

otherwise drawing new samples. At the end, it returns a model output, plus a sample trace uniquely

identifying each runtime Sample operation with its sampled value; this becomes especially pertinent

(ğ6.2.2) for the correctness and implementation of generic inference algorithms [Tolpin et al. 2016].

To support sample traces, each runtime Sample occurrence thus needs a unique dynamic address

 assigned; in our actual embedding, this feature is implemented by handleDist. For simplicity, we

omit these low-level details, and assume operations Sample and Observe are now parameterised by

an address  of abstract type Addr. The type of sample traces, STrace, is then a map from addresses

 to values of abstract type PrimVal that primitive distributions can generate (concretely, PrimVal is

an open sum, but one can avoid this using dependent maps):

type STrace = Map Addr PrimVal

Updating this sample trace is to be performed by the well-known State eect:

data State s a where

Modify :: (s → s) → State s ()

handleState :: s → Prog ( State s : es) a → Prog es (a , s )

Its operation Modify takes a function of type s → s and applies this to state s. Its handler handleState,

given an initial state, additionally returns the nal state that results from handling a program.

We implement the tracing of samples as the program transformation traceSamples below, which

is a handler that installs a runtime State STrace eect after each Sample operation:

traceSamples :: (Member Sample es, Member (State STrace) es) ⇒ Prog es a → Prog es a

traceSamples (Op op k) = case prj op of

Just (Sample d  ) → Op op (x → do call (Modify (Map.insert  x ))

traceSamples (k x ))

Nothing → Op op (traceSamples . k)

Notice that we apply prj (ğ4.1) to op, rather than discharge; this is because we do not intend to

handle any eects, and so we place no constraints on the order of the eect signature es. Rather,

we leave any Sample operations unhandled as op in the program, and construct a new continuation:

this takes the future output x from Sample and calls a Modify operation to store x at address  in the
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sample trace, before continuing with the original continuation k. The case of prj producing Nothing

follows the same pattern as discharge producing Le op’.

We can now dene the handlers for Observe and Sample orthogonally from this transformation.

For Observe operations, handleObs performs no conditioning side-eects, and simply needs to return

the observed value y to its continuation k:

handleObs :: Prog (Observe : es) a → Prog es a

handleObs (Op op k) = case discharge op of

Right (Observe d y _) → handleObs (k y)

For Sample operations, handleSamp takes the provided distribution d and applies the function

sampleIO, dened using an external statistics library; the generated value v is then passed to k:

handleSamp :: Prog '[Sample] a → IO (a, STrace)

handleSamp (Op op k) = case discharge op of

Right (Sample d _) → do v ← sampleIO d

handleSamp (k v)

sampleIO :: Dist a → IO a

Running this dispatches the nal eect in Prog to produce an IO eect, hence it is always executed
as the last handler where only Sample operations can occur in the program.

The complete denition for simulation is then given by the handler composition runSim:

runSim :: es ∼ '[ObsReader env, Dist , State STrace, Observe, Sample]

⇒ Env env → Model env es a → IO (a, STrace)

runSim env = handleSamp . handleObs . (handleState Map.empty) . traceSamples . (handlecore env)

Above depicts how the logic of model execution can be decomposed into a modular and transparent

system. The concrete eects in es, specied by the type coercion (∼), are kept abstract to the

user interested in simply building and using models; simultaneously, the compositional nature of

handlers makes it easy for programmers who wish to implement and extend new forms of model

execution, as demonstrated next in ğ6.2.
As a last remark, the reader may notice that the top-level function simulate (as seen in ğ3.1),

which uses runSim, will dier slightly in its type signature, which we give now:

simulate :: es ∼ '[ObsReader env, Dist , State STrace, Observe, Sample]

⇒ (x → Model env es a) → Env env → x → IO (a , Env env)

This allows for better composition when simulating a model over many inputs x. Then for type-safe

user-access to an STrace structure, this is reied into an output environment of type Env env; for

this, we use simple type-level programming to extract values from the trace whose addresses  (in

the full implementation) are indexed by an observable variable name from the input environment

env. A similar approach is taken for Likelihood Weighting (lw) and Metropolis Hastings (mh).

6.2 Inference as Eect Handlers

Approximative Bayesian inference attempts to learn the posterior distribution of a model’s param-

eters given some observed data. We reuse the ideas introduced in ğ6.1 to implement Likelihood

Weighting and Metropolis Hastings as inference algorithms.

6.2.1 Likelihood Weighting (LW). If one uses simulation as a process for randomly proposing

model parameters, the LW algorithm [van de Meent et al. 2018] then assigns these proposals a

weight, that is, the total likelihood of them having generated some specied observed data.
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Its implementation is in fact extremely simple, as most of the work has been done when imple-

menting runSim. The only change is to how the Observe eect is interpreted:

handleObsLW :: Double→ Prog (Observe : es) a → Prog es (a , Double)

handleObsLW lp (Op op k) = case discharge op of

Right (Observe d y _) → handleObsLW (lp + logProb d y) (k y)

handleObsLW lp (Val x) = return (x , lp )

logProb :: Dist a → a → Double

The function handleObsLW is now parameterised by a log probability lp, where at each operation

Observe d y  , it computes and adds to lp the log probability of distribution d having generated

observed value y. The total log probability is returned upon reaching Val x.

The complete denition for a single iteration of LW is given as runLW:

runLW :: es ∼ '[ObsReader env, Dist , State STrace, Observe, Sample]

⇒ Env env → Model env es a → IO (( a , STrace ), Double)

runLW env = handleSamp . (handleObsLW 0) . (handleState Map.empty) . traceSamples . (handlecore env)

This is identical to simulation but we now use handleObsLW instead of handleObs; running this returns

the log-likelihood of the values in STrace giving rise to the observed data in provided environment

env. Similar to runSim and simulate, runLW is called via a top-level function lw (omitted), but is

instead performed iteratively to produce a trace of weighted parameter proposals (Fig. 1b).

Likelihood Weighting, however, becomes ineective as the number of random variables sampled

from increases: as values are freshly generated for all Sample operations, achieving a high likelihood

means sampling an entire set of likely proposals. Our next, nal example oers a solution to this:

6.2.2 Metropolis Hastings (MH). MH [Wingate et al. 2011] supports incremental parameter propos-

als by randomly choosing a łproposal addressž 0 at the start of each iteration; this denotes the

address from which a new sample is to be drawn, where all other addresses are to instead reuse old

samples from previous iterations. At the end of an iteration, we decide whether to accept the new

sample by comparing the individual log probabilities of each probabilistic operation.

To support this, we take a similar approach to the one shown for traceSamples: we dene the
type LPTrace to map addresses of probabilistic operations to their log probabilities, and then the

program transformation traceLPs to update this as a state.

type LPTrace = Map Addr Double

traceLPs :: (Member Observe es, Member (State LPTrace) es) ⇒ Prog es a → Prog es a

traceLPs (Op op k) = case prj op of

Just (Observe d y  ) → Op op (x → do call (Modify (Map.insert  (logProb d y)))

traceLP (k x)

On matching against Observe d y  , the above installs a State LPTrace eect by dening a new

continuation that stores the log probability of d having generated y. The same is done for Sample

operations, but we compute the log probability of the values sampled.

All of the conditioning is in fact taken care of by traceLPs, so the handler for Observe operations

only needs to return any observed values to their continuations ś its implementation is therefore

the same as for simulation (ğ6.1). What is left to dene is how Sample is interpreted:

handleSampMH :: STrace → Addr→ Prog '[Sample] a → IO a

handleSampMH sTrace 0 (Op op k) = case discharge op of

Right (Sample d  ) → do x← lookupSample sTrace d  0

handleSampMH 0 sTrace (k x)
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lookupSample :: STrace → Dist a → Addr → Addr→ IO a

The handler handleSampMH takes the sample trace sTrace of the previous MH iteration, and an address

0 denoting the proposed sample site. On matching against an operation Sample d  , the function

lookupSample will generate a new sample if  matches 0, or if no previous MH iterations have yet

generated a sample for it; otherwise, it reuses the old sample value of  found in sTrace.

The nal denition for a single iteration of MH is given as runMH:

runMH :: es ∼ '[ObsReader env, Dist , State STrace, State LPTrace, Observe, Sample]

⇒ Env env → STrace → Addr→ Model env es a → IO ((a , STrace), LPTrace)

runMH env sTrace 0 = (handleSampMH sTrace 0 ) . handleObs
. (handleState Map.empty) . (handleState Map.empty)

. traceLPs . traceSamples . (handlecore env)

This reuses many of the building blocks of simulation, and extends these with the transformation

traceLPs and handler for State LPTrace; the handleSampMH variant is then used instead of handleSamp.

Although runMH adheres to the MH algorithm in terms of how it samples and conditions, it does

not decide the proposal address 0 at the start of an MH iteration, nor whether newly proposed

parameters are accepted at the end of an iteration. We keep this logic distinct from eect handlers,
and instead implement it in a wrapper function mh (omitted) which folds over iterations of runMH,

propagating information from the previous MH iteration to support decision making in the next;

the end result generates a trace of accepted parameter proposals (Fig. 5).

7 EVALUATION

7.1 Qantitative Evaluation

We compare our language’s performance, which for simplicity is implemented using freer-simple2,

against two state-of-the-art PPLs. First, MonadBayes [Ścibior et al. 2018], a Haskell embedded

language which uses a monad transformer library (mtl3) approach as an eect system for PPLs, but

does not support multimodal models. Second, Turing [Ge et al. 2018], which achieves multimodal

models via macro compilation in Julia as a host language.

Our evaluation strategy uses a set of popular benchmarks [Kulkarni et al. 2020], comparing

simulation (SIM), Likelihood Weighting (LW), and Metropolis Hastings (MH) as forms of execution

algorithms. We apply these to the following example models: linear regression, hidden Markov

model, and latent dirichlet allocation. These benchmarks are performed on an AMD Ryzen 5 1600

Six-Core Processor with 16GB of RAM.

Across all models, our performance scales linearly with the number of samples each algorithm

generates; this remains mostly the case when varying the dataset size to models, except for inference

on hidden Markov model where we begin to scale quadratically.

Against Turing, we are on average 4.0x and 1.2x faster for SIM and LW. As our benchmarks do not

consider the overhead from Turing’s macro-compilation stage for specialising multimodal models,

this may indicate our runtime approach to model specialisation does not notably aect performance.

MonadBayes is on average 3.3x faster than us for SIM and has close to constant-time performance

for LW, making it dicult to compare the latter. In contrast to us, they choose to not store and

update sample traces for SIM and LW; this eectively means their performance is impacted only

by the cost of sampling operations (of which there are naturally fewer for LW), whereas we incur

overhead from additional State operations. Another factor we heed is the performative dierence
between freer-simple and mtl for large, non-synthetic programs, which still requires investigation.

2https://github.com/lexi-lambda/freer-simple
3https://github.com/haskell/mtl

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 104. Publication date: August 2022.



104:24 Minh Nguyen, Roly Perera, Meng Wang, and Nicolas Wu

Table 1. Comparison of PPLs in terms of supported features for models, where is full support, is partial

support, and is no support. Modular models are those that can be defined in terms of other models.

Supported model features ProbFX Gen Turing Stan Pyro MonadBayes Anglican WebPPL

Multimodal

Modular

Higher-order

Type-safe

For MH in particular, Turing and MonadBayes are on average 3.1x and 1.8x faster. Our imple-

mentation is naive in that we traverse the whole sample trace for MH updates despite a xed
number of variables being updated ś this is straightforward to amend [Wingate et al. 2011]. We also

remark that Turing and MonadBayes only perform MH updates to one variable per iteration, and

do not consider the dependent variables which consequently need updating [Kiselyov 2016b]; our

implementation does account for this and hence incurs costs for updating groups of dependencies,

which can be larger for models with more complex dependency graphs.

We nd our language competitively performant despite not yet having explored potential opti-

misation, and expect to benet greatly from o-the-shelf Haskell techniques such as inlining and

more ecient data structures. Exploring performance of eect handlers with PPLs in general is an

important and challenging topic we plan to investigate separately, including techniques specic to
algebraic eects, such as the codensity monad [Voigtländer 2008], and alternative representations

of eectful programs [Maguire 2019; Wu and Schrijvers 2015]. We also observe that all of our

handlers are applied on each model execution, whereas we suspect partially pre-evaluated models

can be executed by reconsidering the order of handling; this may lead to substantial performance

gains.

7.2 Qalitative Evaluation

Finally, we compare our supported features across a larger range of modern PPLs in Table 1. To the

best of our knowledge, our language is the rst to fully support both multimodal and higher-order

models. Models in Gen [Cusumano-Towner et al. 2019], denoted with the special @gen syntax,

have support for higher-order interactions with other @gen terms; however, applying a standard

higher-order function to a model, at least without programmer intervention, will escape the tracing

of the model’s computation. In Pyro [Bingham et al. 2019], models are Python functions and as

such are rst-class, but support for multimodal models is limited: random variables may have only

one observed value at runtime, and so Pyro expects this value to be a matrix where all contained

data is conditioned on simultaneously. This approach cannot be used for models with sequential

behaviour such as HMMs.

As far as we know, our language is also the rst general-purpose PPL with multimodal mod-

els in a statically typed paradigm. Stan [Carpenter et al. 2017] is type-safe but special-purpose.

Other general-purpose PPLs with multimodality are dynamically typed (Pyro) or use just-in-time

compilation (Turing, Gen), and so do not guarantee that the observed values assigned to random

variables are correctly typed, or that these variables exist; however, some progress has been made

towards a type-safe version of Gen [Lew et al. 2019]. Although MonadBayes is statically typed, we

are not aware of any attempts to extend its mtl approach to support multimodal models.

We note that as our language is experimental, the range of model execution algorithms we

present so far is small. Also, whilst we provide basic utilities such as IO debugging and type-safe

interfacing with sample traces, richer PPL features such as run-time inference diagnostics have
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not yet been implemented. We believe our language’s infrastructure, having embedded into an

algebraic eect setting, can readily support extensions in both of these areas.

8 CONCLUSION

Probabilistic programming is an active research topic, with applications ranging from articial
intelligence [Tran et al. 2017] to market research [Letham et al. 2016]. Many existing PPLs are too

low-level to capture multimodal descriptions of models, or too rigid to allow models to be easily

reused. In this paper we used an algebraic eects embedding to implement a PPL where multimodal

models are rst-class citizens that can be modularly dened and easily combined.

8.1 Related Work

8.1.1 Eect Abstractions for PPLs. Although using interpreters to execute models is a common

design pattern in PPLs (e.g. Carpenter et al. [2017]; Salvatier et al. [2016]; Tolpin et al. [2016]),

viewing these interpreters formally as algebraic eect handlers has little precedent in the literature.

Ścibior and Kammar [2015] rst demonstrate in Haskell how rejection sampling can be abstracted

into handlers; Moore and Gorinova [2018] use Python context managers for sample tracing and

conditioning. Although this latter approach takes inspiration from eect handlers, the details are
quite dierent: operations are methods rather than uninterpreted syntax, handlers are coroutines

which programs explicitly invoke, and there is no type discipline associating operations and handlers

with specic eects.
A notable alternative eect system is the monad transformer library (mtl) [Liang et al. 1995]

approach adopted in MonadBayes [Ścibior et al. 2018]. The observation behind MonadBayes is

that inference algorithms can be decomposed into monadic building blocks which can then be

assembled into dierent stacks of monad transformers. This resembles our approach in using

program transformations to augment models with additional inference-specic behaviours, but
rather than successively rening a syntactic representation of the model by composing handlers,

in MonadBayes one constructs a directly executable model by composing monadic functions. (A

simplifying assumption of our approach is that handlers are always pure, producing intermediate

programs of type Prog es a; permitting handlers to return the transformed program in a monad

requires additional infrastructure to forward the monadic eect [Schrijvers et al. 2019].)
In terms of usability, at least for model construction, we nd the mtl approach of MonadBayes

oers a similar experience to algebraic eects: in particular both support abstract eect signatures
for model components, so that programs can be built łbottom-upž with eect constraints propagated
upwards. For implementing sophisticated inference algorithms, monad transformers can be tricky.

The standard mtl design pattern allows the structure of a transformer stack to remain abstract, and

operations belonging to a particular monadm to be invoked at any point lower in the stack by having

monads below it relay the operations up to m. In MonadBayes, however, several monads perform

their own sample/observe side-eects, and may choose not to relay these operations up the stack.

The network of relaying is non-trivial and carried out implicitly via type class instances, making

the nal behaviour rather opaque. By contrast, such logic can be more transparently expressed as a

single eect handler. Monad transformers also seem to be less modular for expressing algorithms

parameterised by alternative behaviours, e.g. static vs. dynamic tracing of random choices [Ścibior
et al. 2018], requiring a substantial amount of boilerplate for each alternative monad instance.

8.1.2 Embedding PPLs. Tagless-nal shallow embedding, as conceived by Kiselyov [2010], has

also been used as an embedding technique for PPLs [Kiselyov 2016a; Kiselyov and Shan 2009;

Narayanan et al. 2016]. The syntax of the PPL is captured as a type class, and type class instances

used to provide interpretations of programs under particular inference algorithms. This is well
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suited to mapping programs uniformly into a semantic domain, but we found it dicult to use the

approach to iterate transformations over models (such as interpretations to sample and observe) in

order to implement inference compositionally.

Free monads have also seen use: Ścibior et al. [2015] embed primitive and conditional distribu-

tions using an intermediate free monad representation. This bears an initial resemblance to our

approach, but the semantics are instead provided using type classes, and their direct encoding of

conditional distributions means models are not multimodal. Later work by Ścibior et al. [2018]
more closely coincides with our approach; their implementation of Metropolis-Hastings uses free

monad transformers [Schrijvers et al. 2019] to encode sampling operations as syntax, allowing

models to be executed so that sampling can either invoke an IO eect or reuse previous samples.

8.1.3 Observed Data for Multimodal Models. For providing observations to multimodal models,

Pyro [Bingham et al. 2019] and Gen [Cusumano-Towner et al. 2019] take the most similar approach

to ours, letting users provide mappings between variable names and observed values to a top-level

function representing a model. Pyro wraps the model in a runtime context manager that constrains

the values of variables to the provided data, whereas Gen uses the data to macro-expand the model

into either a static computation graph or a standard function. To support multiple observed values

for the same variable, Pyro relies on this variable to expect a matrix, as mentioned in ğ7.2; Gen
better facilitates multiple sequential observations against a single variable, but requires unique

names to be provided for each runtime occurrence. Our approach allows a list of observations to be

associated with a given variable.

Special-purpose PPLs such as Stan [Carpenter et al. 2017] and WinBUGS [Lunn et al. 2000]

specify models and observed data separately via bespoke language constructs; common variable

names are then resolved and linked during compilation.

Although our specic approach to model environments appears to be novel, work by Lew et al.

[2019] is closely related. They investigate row polymorphism for assigning types to names of

random choices when tracing probabilistic computations; we hope to build on this idea when

formalising our language, in particular for characterising the execution space of a multimodal

model under a xed model environment.

8.2 Future Work

Our implementation currently responds to running out of observed values in the model environment

by switching to sampling, as is typical in PPLs [Bingham et al. 2019; Ge et al. 2018]. However,

it may be possible in some settings to use type-level naturals to statically constrain the number

of observations required. Alternatively, a dynamic check to signal when too many or too few

observations are provided would be easy to implement.

We are also investigating how naming conicts between observable variables should be resolved

when combining models. This is not considered an issue by most existing PPLs; many require

programmers to uniquely name each dynamic random variable instance [Cusumano-Towner et al.

2019; Salvatier et al. 2016], perhaps failing at runtime if this condition is not met [Bingham et al.

2019]. Our language is type-safe in allowing model environments to have typed, orthogonally

combinable variables (via constraint kinds), but for additional modularity, we are also considering

a renaming mechanism for rebinding observable variables when name clashes arise.

A related topic is when the programmer statically refers to the same observable variable more

than once in a model:

do x1 ← normal 0 1 #x

x2 ← normal 0 2 #x

return (x1 + x2 )
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Technically, this is an invalid use of a random variable, resulting in an ill-formed model where #x is

(confusingly) distributed according to two dierent distributions. For now, programmers must take

care not to misuse observable variables in this way; a solution we intend to explore is an ane

type system for model contexts which will disallow multiple static uses of the same observable

variable. We are also working on a formalisation of our language and embedding technique.

Lastly, we aim to explore how using eect handlers as program transformations can help with

the implementation of sophisticated, compositional inference algorithms such as SMC2 [Doucet

et al. 2001] and PMMH [Chopin 2002]; we anticipate needing to reason about interactions with

new eects, for example with non-determinism and exceptions, and whether such eects distribute
over [Wu et al. 2014] and commute with each other [Gibbons and Hinze 2011] in a probabilistic

setting. For scaling up to advanced inference techniques that require gradient information, e.g.

HMC and NUTS [Homan et al. 2014], models also need to be dierentiable. This is generally
done in PPLs via automatic dierentation (AD), a procedure for interpreting standard programs as

dierentiable functions. It may be possible to support this using our existing eects infrastructure,
perhaps building on recent work by Sigal [2021] which shows how to express AD using eect
handlers, or alternatively to interpret a model into a form suitable for use with an existing AD

library such as ad [Kmett et al. 2021]. In either case, we would need to investigate the set of valid

operations for models in our language that are amenable to AD.
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