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Sparcl: A Language for Partially-Invertible Computation
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Invertibility is a fundamental concept in computer science, with various manifestations in software develop-

ment (serializer/deserializer, parser/printer, redo/undo, compressor/decompressor, and so on). Full invertibility

necessarily requires bijectivity, but the direct approach of composing bijective functions to develop invertible

programs is too restrictive to be useful. In this paper, we take a different approach by focusing on partially-

invertible functionsÐfunctions that become invertible if some of their arguments are fixed. The simplest

example of such is addition, which becomes invertible when fixing one of the operands. More involved

examples include entropy-based compression methods (e.g., Huffman coding), which carry the occurrence

frequency of input symbols (in certain formats such as Huffman tree), and fixing this frequency information

makes the compression methods invertible.

We develop a language Sparcl for programming such functions in a natural way, where partial-invertibility

is the norm and bijectivity is a special case, hence gaining significant expressiveness without compromising

correctness. The challenge in designing such a language is to allow ordinary programming (the łpartiallyž

part) to interact with the invertible part freely, and yet guarantee invertibility by construction. The language

Sparcl is linear-typed, and has a type constructor to distinguish data that are subject to invertible computation

and those that are not. We present the syntax, type system, and semantics of the language, and prove that

Sparcl correctly guarantees invertibility for its programs. We demonstrate the expressiveness of Sparcl with

examples including tree rebuilding from preorder and inorder traversals and Huffman coding.
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1 INTRODUCTION

Invertible computation, also known as reversible computation in physics and more hardware-
oriented contexts, is a fundamental concept in computing. It involves computations that run both
forwards and backwards so that the forward/backward semantics form a bijection. (In this paper, we
do not concern ourselves with the totality of functions. We call a function a bijection if it is bijective
on its actual domain and range, instead of its formal domain and codomain.) Early studies of
invertible computation arise from the effort to reduce heat dissipation caused by information-loss in
the traditional (unidirectional) computation model [Landauer 1961]. More modern interpretations of
the problem include software concerns that are not necessarily connected to the physical realization.
Examples of such include developing pairs of programs that are each other’s inverses: serializer
and deserializer [Kennedy and Vytiniotis 2012], parser and printer [Matsuda and Wang 2013, 2018b;
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Rendel and Ostermann 2010], compressor and decompressor [Srivastava et al. 2011], and also
auxiliary processes in other program transformations such as bidirectionalization [Matsuda et al.
2007].
Invertible (reversible) programming languages are languages that offer primitive support to

invertible computations. Examples include Janus [Lutz 1986; Yokoyama et al. 2008], Frank’s R [Frank
1997], Ψ-Lisp [Baker 1992], RFun [Yokoyama et al. 2011], Π/Πo [James and Sabry 2012] and Inv [Mu
et al. 2004b]. The basic idea of these programming languages is to support deterministic forward
and backward computation by local inversion: if a forward execution issues (invertible) commands
c1, c2, and c3 in this order, a backward execution issues corresponding inverse commands in the
reverse order, as c−13 , c−12 , and c−11 . This design has a strong connection to the underlying physical
reversibility, and is known to be able to achieve reversible Turing completeness [Bennett 1973]; i.e.,
all computable bijections can be defined.

However, this requirement of local invertibility does not always match how high-level programs
are naturally expressed. As a concrete example, let us see the following toy program that computes
the difference of two adjacent elements in a list, where the first element in the input list is kept in
the output. For example, we have subs [1, 2, 5, 2, 3] = [1, 1, 3,−3, 1].

subs :: [Int] → [Int]

subs xs = goSubs 0 xs

goSubs :: Int → [Int] → [Int]

goSubs [ ] = [ ]

goSubs n (x : xs) = (x − n) : goSubs x xs

Despite being simple, these kind of transformations are nevertheless useful. For example, a function
similar to subs can be found in the pre-processing step of image compression algorithms such
as those used for PNG.1 Another example is the encoding of bags (multisets) of integers, where
subs can be used to convert sorted lists to lists of integers without any constraints [Kennedy and
Vytiniotis 2012].

The function subs is invertible. We can define its inverse as below.

subs−1 :: [Int] → [Int]

subs−1 ys = goSubs′ 0 ys

goSubs′ :: Int → [Int] → [Int]

goSubs′ [ ] = [ ]

goSubs′ n (y : ys) = let x = y + n in x : goSubs′ x ys

However, subs cannot be expressed directly in existing reversible programming languages. The
problem is that, though subs is perfectly invertible, its sub-component goSubs is not (its first
argument is discarded in the empty-list case, and thus the function is not injective). Similar problems
are also common in adaptive compression algorithms, where the model (such as a Huffman tree or
a dictionary) grows in the same way in both compression and decompression, and the encoding
process itself is only invertible after fixing the model at the point.
In the neighboring research area of program inversion, which studies program transformation

techniques that derive f −1 from f ’s defintion, functions like goSubs are identified as partially
invertible. Note that this notion of partiality is inspired by partial evaluation, and partial inver-
sion [Almendros-Jiménez and Vidal 2006; Nishida et al. 2005] allows static (or fixed) parameters
whose values are known in inversion and therefore not required to be invertible (for example the
first argument of goSubs). (To avoid potential confusion, in this paper, we avoid the use of łpartialž

1https://www.w3.org/TR/2003/REC-PNG-20031110/
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when referring to totality, and use the phrase łnot-necessarily-totalž instead.) However, program
inversion by itself does not readily give rise to a design of invertible programming language. Like
most program transformations, program inversion may fail, and often for reasons that are not
obvious to users. Indeed, the method by Nishida et al. [2005] fails for subs, and the outcome of
Almendros-Jiménez and Vidal [2006]’s method depends on the processing order of the expressions.

In this paper, we propose a novel programming language Sparcl2 that for the first time addresses
the practical needs of partially invertible programs. The core idea of our proposal is based on
a language design that allows invertible and conventional unidirectional computations, which
are distinguished by types, to coexist and interact in a single definition. Specifically, inspired
byMatsuda andWang [2018c] our type system contains a special type constructor (−)• (pronounced
as łinvertiblež), where A• represents A-typed values that are subject to invertible computation.
However, having invertible types like A• only solves half of the problem. For the applications we
consider, exemplified by subs, the unidirectional parts (the first argument of goSubs) may depend
on the invertible part (the second argument of goSubs), which complicates the design. (This is the
very reason why Nishida et al. [2005]’s partial inversion fails for subs. In other words, a binding-
time analysis [Gomard and Jones 1991] is not enough [Almendros-Jiménez and Vidal 2006].) This
interaction demands conversion from invertible values of typeA• to ordinary ones of typeA, which
only becomes feasible when we leverage the fact that such values can be seen as static (in the sense
of partial inversion [Almendros-Jiménez and Vidal 2006]) if the values are already known in both
forward and backward directions. The nature of reversibility suggests linearity or relevance [Walker
2004], as discarding of inputs is intrinsically irreversible. In fact, reversible functional programming
languages [Baker 1992; James and Sabry 2012; Matsuda and Wang 2013; Mu et al. 2004b; Yokoyama
et al. 2011] commonly assume a form of linearity or relevance, and in Sparcl this assumption is
made explicit by a linear type system based on λ

q
→ (the core system of Linear Haskell [Bernardy

et al. 2018]). As a teaser, an invertible version of subs in Sparcl is as below.3

subs : (List Int)• ⊸ (List Int)•

subs xs = goSubs 0 xs

goSubs : Int → (List Int)• ⊸ (List Int)•

goSubs Nil• = Nil• with null

goSubs n (Cons x xs)• =

let (x, r )• = pin x (λx ′
.goSubs x ′ xs) in -- x ′ : Int is a static version of x : Int•.

Cons• (sub n x) r with not ◦ null

sub : Int → Int• ⊸ Int•

sub n = lift (λx .x − n) (λx .x + n)

In Sparcl, invertible functions from A to B are represented as functions of type A• ⊸ B•, where⊸
is the constructor for linear functions. Partial invertibility is conveniently expressed by taking
additional parameters as in Int → Int• ⊸ Int• and Int → (List Int)• ⊸ (List Int)•. The pin : A• ⊸

(A → B•) ⊸ (A ⊗ B)• operator converts invertible objects into unidirectional ones. It captures a
snapshot of its invertible argument and uses the snapshot as a static value in the body to create a
safe local scope for the recursive call. Both the invertible argument and evaluation result of the
body are returned as the output to preserve invertibility. The with conditions associated with the
branches can be seen as postconditions which will be used for invertible case-branching. We leave
the detailed discussion of the language constructs to later sections, but would like to highlight the

2The name stands for ła system for partially-reversible computation with linear typesž.
3We use a Haskell-like syntax in this paper for readability, although our prototype implementation (https://github.com/kztk-

m/sparcl) uses simple non-indentation-sensitive syntax that requires more keywords for parsing.
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fact that looking beyond the surface syntax, the definition is identical in structure to how subs

is defined in a conventional language: goSubs has the same recursive pattern with two cases for
empty and non-empty lists. This close resemblance to the conventional programming style is what
we strive for in the design of Sparcl.

What Sparcl brings to the table is bijectivity guaranteed by construction (potentially with
partially-invertible functions as auxiliary functions).We can run Sparcl programs in both directions,
for example as below, and it is guaranteed that fwd e v results in v ′ if and only if bwd e v ′ results
in v (fwd and bwd are primitives for forward and backward executions).

> fwd subs [1, 2, 5, 2, 3]

[1, 1, 3,−3, 1]

> bwd subs [1, 1, 3,−3, 1]

[1, 2, 5, 2, 3]

This guarantee of bijectivity is clearly different from the case of (functional) logic programming
languages such as Prolog and Curry. Those languages relies on (lazy) generate-and-test [Antoy
et al. 2000] to find inputs corresponding to a given output, a technique that may be adopted in the
context of inverse computation [Abramov et al. 2006]. However, the generate-and-test strategy
has the undesirable consequence of making reversible programming less apparent: it is unclear to
programmers whether they are writing bijective programs that may be executed deterministically.
Moreover, lazy generation of inputs may cause unpredictable overhead, whereas in reversible
languages [Baker 1992; Frank 1997; James and Sabry 2012; Lutz 1986; Mu et al. 2004b; Yokoyama
et al. 2008, 2011] including Sparcl, the forward and backward executions of a program take the
same steps.
In summary, our main contributions are:

• We design Sparcl, a novel invertible programming language that captures the notion of
partial invertibility. It is the first language that handles both clear separation and close
integration of unidirectional and invertible computations, enabling new ways of structuring
invertible programs. We formally specify the syntax, type system and semantics of its core
system named λPI→ (Section 3).

• We state and prove several properties about λPI→ (Section 3.6), including subject reduction,
bijectivity, and reversible Turing completeness [Bennett 1973]. We do not state the progress
property directly, which is implied by our definitional [Reynolds 1998] interpreter written in
Agda (available from https://github.com/kztk-m/sparcl-agda).

• We demonstrate the utility of Sparcl with nontrivial examples: tree rebuilding from inorder
and preoder traversals [Mu and Bird 2003], and a simplified version of Huffman coding
(Section 4).

In addition, a prototype implementation of Sparcl is available from https://github.com/kztk-
m/sparcl, which also contains more examples. All the artifacts are linked from the Sparcl web
page (https://bx-lang.github.io/EXHIBIT/sparcl.html).

2 OVERVIEW

In this section, we informally introduce the essential constructs of Sparcl and demonstrate their
use with small examples.

2.1 Linear-Typed Programming

Linearity (or weaker relevance) is commonly adopted in reversible functional languages [Baker
1992; James and Sabry 2012; Matsuda and Wang 2013; Mu et al. 2004b; Yokoyama et al. 2011] to
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exclude non injective functions such as constant functions. Sparcl is no exception (we will revisit
its importance in Section 2.3) and adopts a linear type system based on λ

q
→ (the core system of

Linear Haskell [Bernardy et al. 2018]). A feature of the type system is its function type A →p B,
where the arrow is annotated by the argument’s multiplicity (1 or ω). Here, A →1 B denotes linear
functions that use the input exactly once, while A →ω B denotes unrestricted functions that have
no restriction on the use of its input. The following are some examples of linear and unrestricted
functions.

id : a →1 a

id x = x

double : Int →ω Int

double x = x + x

const : a →1 b →ω a

const x y = x

The purpose of the type system is to ensure bijectivity. But having linearity alone is not sufficient.
We will come back to this point after showing invertible programming in Sparcl. We write ⊸
for →1 and simply → for →ω . Readers who are familiar with linear-type systems that have the
exponential operator ! [Wadler 1993] may view A →ω B as !A ⊸ B.

A small deviation from the (simply-typed fragment of) λ
q
→ is that Sparcl is equipped with rank-1

polymorphism with qualified typing [Jones 1995] and type inference [Matsuda 2020]. For example,
the system infers the following types for the following functions.

id : a →p a

id x = x

const : a →p b → a

const x y = x

app : (p ≤ q) ⇒ (a →p b) →r a →q b

app f x = f x

In first two examples, p is arbitrary (i.e., 1 or ω); in the last example, the predicate p ≤ q states an
ordering of multiplicity, where 1 ≤ ω.4 This predicate states that if an argument is linear then it
cannot be passed to an unrestricted function, as an unrestricted function may use its argument
arbitrary many times. A more in-depth discussion of the surface type system is beyond the scope
of this paper, but note that unlike the implementation of Linear Haskell,5 there is no defaulting nor
compromise on unification of multiplicities thanks to the use of qualified typing.

2.2 Multiplication

One of the simplest examples of partially-invertible programs is multiplication [Nishida et al. 2005].
Suppose that we have a datatype of natural numbers defined as below.

data Nat = Z | S Nat

In Sparcl, constructors have linear types: Z : nat and S : Nat ⊸ Nat.
We define multiplication in term of addition, which is also partially-invertible.6

add : Nat → Nat• ⊸ Nat•

add Z y = y

add (S x) y = S• (add x y)

As mentioned in the introduction, we use the type constructor (−)• to distinguish data that are
subject to invertible computation (such as Nat•) and those that are not (such as Nat): when the
latter is fixed, a partially invertible function is turned into a (not-necessarily-total) bijection, for
example, add n : Nat• ⊸ Nat•. (For those who read the paper with colors, the arguments of
(−)• are highlighted in dark red.) Values of (−)•-types are constructed by lifted constructors such
as S• : Nat• ⊸ Nat•. In the forward direction, S• applies S to the input, and in the backward

4For curious readers, we note that the inequality predicate is sufficient for typing our core system (Section 3) where

constructors have linear types [Matsuda 2020].
5Confirmed for commit 1c80dcb424e1401f32bf7436290dd698c739d906 at May 14, 2019.
6This type is an instance of the most general type Nat →p Nat• →q Nat• of add; recall that there is no problem in using

unrestricted inputs only once. We want to avoid overly polymorphic functions for simplicity of presentation.
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direction, it strips one S (and throws an error if Z is found). In general, since constructors by nature
are always bijective (though not necessarily total in the backward direction), every constructor
C : σ1 ⊸ . . . ⊸ σn ⊸ τ automatically give rise to a corresponding lifted version C• : σ1

• ⊸

. . . ⊸ σn
• ⊸ τ •.

A partially invertible multiplication function can be defined by using add as below.

mul : Nat → Nat• ⊸ Nat•

mul z Z•
= Z• with isZ

mul z (S x)• = add z (mul z x) with not ◦ isZ

An interesting feature in the mul program is the invertible pattern matching [Yokoyama et al. 2008]
indicated by patterns Z• and (S x)• (here, we annotate patterns instead of constructors). Invertible
pattern matching is a branching mechanism that executes bidirectionally: the forward direction
basically performs the standard pattern matching, the backward direction employs an additional
with clause to determine the branch to be taken. For example,mul n : Nat• ⊸ Nat•, in the forward
direction values are matched against the forms Z and S x ; in the backward direction, the with

conditions are checked: if isZ : Nat → Bool returns True, the first branch is chosen, otherwise
the second branch is chosen. When the second branch is taken, the backward computation of
add n is performed, which essentially subtracts n, followed by recursively applying the backward
computation of mul n to the result. As the last step, the final result is enclosed with S and returned.
In other words, the backward behavior of mul n recursively tries to subtract n, and returns the
count of successful subtractions.

In Sparcl,with conditions are exclusive, which is enforced at run-time by usingwith conditions
as assertions. Specifically, the branch’s with condition is a positive assertion while all the other
branches’ ones are negative assertions. Thus, the forward computation fails when the branch’swith

condition is not satisfied, or any of the other with conditions is also satisfied. This exclusiveness
enables the backward computation to uniquely identify the branch [Lutz 1986; Yokoyama et al.
2008]. Sometimes we may omit the with condition of the last branch, as it can be inferred as the
negation of the conjunction of all the others. For example, in the definition of goSubs the second
branch’s with condition is not ◦ null. One could use sophisticated types such as refinement types
to statically enforce exclusiveness instead of assertion checking. However, we stick to simple types
in this paper as our primal goal is to establish the basic design of Sparcl.
An astute reader may wonder what bijection mul Z defines, as zero times n is zero for any n.

In fact, it defines a non-total bijection that in the forward direction the domain of the function
contains only Z, i.e., the trivial bijection between {Z} and {Z}.

2.3 Why Linearity Itself is Insufficient but Still Matters

The primal role of linearity is to prohibit values from being discarded or copied, and Sparcl is no
exception. However, linearity itself is insufficient for partially-invertible programming. It is true that
a linear calculus concerning tensor products (⊗) and linear functions (⊸) (even with exponentials
(!)) can be modelled in the Int-construction [Joyal et al. 1996] of the category of not-necessarily-total
bijections [Abramsky 2005; Abramsky et al. 2002]. However, it is also known that such a system
cannot be easily extended to include sum-types nor invertible pattern matching [Abramsky 2005,
Section 7]. Moreover, linearity does not express partiality as in partially-invertible computations.
These are the reasons why we separate the invertible world and the unidirectional world by using
(−)•, inspired by staged languages [Davies and Pfenning 2001; Moggi 1998; Nielson and Nielson
1992]. Readers familiar with staged languages may see A• as invertible code of type A, which will
be executed forwards or backwards at the second stage to compute or uncompute A-typed values.
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On the other hand, (−)• does not replace the need for linearity either. Without linearity, (−)•-
typed values may be discarded or duplicated, which may lead to non-bijectivity. Unlike discarding,
the exclusion of duplication is debatable as the inverse of duplication can be given as equality
check [Glück and Kawabe 2003]. So it is our design choice to exclude duplication (contraction)
in addition to discarding (weakening) to avoid unpredictable failures that may be caused by the
equality checks. Without contraction, users are still able to implement duplication for datatypes
with decidable equality (see Section 4.1.3). However, this design requires duplication (and the
potential of failing) to be made explicit, which improves the predictability of the system. Having
explicit duplication is not uncommon in this context [Mu et al. 2004b; Yokoyama et al. 2011].
Another design choice we made is to admit types like (A ⊸ B)• and (A•)• to allow a neat

formulation (avoiding the use of kinds and subkinding to distinguish types that can be used in (−)•

from general ones). Such types are not very useful though, as function- or invertible-typed values
cannot be inspected during invertible computations.

2.4 Running Reversible Computation

Sparcl provides primitive functions to execute invertible functions in either directions: fwd :

(A• ⊸ B•) → A → B and bwd : (A• ⊸ B•) → B → A. For example, we have:

> fwd (add (S Z)) (S Z) -- (1 +) 1

S (S Z) -- = 2

> bwd (add (S Z)) (S (S Z)) -- (1 +)−1 2

S Z -- = 1

> fwd (mul (S (S Z))) (S (S (S Z))) -- (2 ×) 3

S (S (S (S (S (S Z))))) -- = 6

> bwd (mul (S (S Z))) (S (S (S (S (S (S Z)))))) -- (2 ×)−1 6

S (S (S Z)) -- = 3

Of course, the forward and backward computations may not be total. For example, the following
expression (legitimately) fails.

> bwd (mul (S (S Z))) (S (S (S Z))) -- (2 ×)−1 3

Runtime Error:...

The guarantee Sparcl offers is that derived bijections are total with respect to the functions’ actual
domains and ranges; i.e., fwd e v results inu, then bwd e u results inv , and vice versa (Section 3.6.2).

Linearity plays a role here. Linear calculi are considered resource-aware in the sense that linear
variables will be lost once used. In our case, resources are A•-typed values, as A• represents (a
part of) an input or (a part of) an output of a bijection being constructed, which must be retained
throughout the computation. This is why the first argument of fwd/bwd is unrestricted rather than
linear. Very roughly speaking, an expression that can be passed to an unrestricted function cannot
contain linear variables, or łresourcesž. Thus, a function of typeA• ⊸ B• passed to fwd/bwd cannot
use any resources other than one value of typeA• to produce one value of type B•. In other words, all
and only information from A• is retained in B•, guaranteeing bijectivity. As a result, Sparcl’s type
system effectively rejects code like bwd (λx .Z•) and bwd

(

λx .if fwd (λ()•.x) () then Z• else Z•
)

as
x ’s multiplicity is ω in both cases. In the former case, x is discarded and multiplicity in our system
is either 1 or ω. In the latter case, x appears in the first argument of fwd, which is unrestricted.
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2.5 Importing Existing Invertible Functions

Bijectivity is not uncommon in computer science or mathematics, and there already exist many
established algorithms that are bijective. Examples include nontrivial results in number theory or
category theory, and manipulation of primitive or sophisticated data structures such as Burrows-
Wheeler transformations on suffix arrays.

Instead of (re)writing them in Sparcl, the language provides a mechanism to directly import
existing bijections (as a pair of functions) to construct valid Sparcl programs: lift : (A → B) →

(B → A) → A• ⊸ B• converts a pair of functions into a function on (−)•-typed values, expecting
that the pair of functions form mutual inverses. For example, by lift, we can define addInt as below

addInt : Int → Int• ⊸ Int•

addInt n = lift (λx .x + n) (λx .x − n)

The use of lift allows one to create primitive bijections to be composed by the various constructs in
Sparcl. Another interesting use of lift is to implement in-language inversion.

invert : (A• ⊸ B•) → (B• ⊸ A•)

invert h = lift (bwd h) (fwd h)

2.6 Composing Partially-Invertible Functions

Partially-invertible functions in Sparcl expect arguments of both (−)• and non-(−)• types, which
sometimes makes the calling of such functions interesting. This phenomenon is particularly notice-
able in recursive calls where values of type A• may need to be fed into function calls expecting
values of type A. In this case, it becomes necessary to convert A•-typed values to A-typed one. To
avoid the risk of violating invertibility, such conversions are carefully managed in Sparcl through
a special function pin : A• ⊸ (A → B•) ⊸ (A ⊗ B)•, inspired by the depGame function in Kennedy
and Vytiniotis [2012] and reversible updates [Axelsen et al. 2007] in reversible imperative lan-
guages [Frank 1997; Glück and Yokoyama 2016; Lutz 1986; Yokoyama et al. 2008]. The function pin

creates a static snapshot of its first argument (A•) and uses the snapshot (A) in its second argument.
Bijectivity is guaranteed as the original A• value is retained in the output (A ⊗ B)• together with
the evaluation result of the second argument (B•). We will define the function pin and formally
state the correctness property in Section 3.
Let us revisit the example in Section 1. The partially-invertible version of goSubs can be imple-

mented via pin as below.

goSubs : Int → (List Int)• ⊸ (List Int)•

goSubs Nil• = Nil• with null

goSubs n (Cons x xs)• = (case pin x (λx ′
.goSubs x ′xs) of

(x, r )• → Cons• (sub n x) r with λ .True) with not ◦ null

Here, we used pin to convert x : Int• to x ′ : Int in order to pass it to the recursive call of goSubs. In
the backward direction, goSubs n executes as follows7.

bwd (goSubs 0) [1, 1, 3,−3, 1]

= {Cons branch is taken; Cons (sub 0 x) r = [1, 1, 3,−3, 1] =⇒ x = 1, r = [1, 3,−3, 1]. }

Cons 1 (bwd (goSubs 1) [1, 3,−3, 1])

= {Cons branch is taken; Cons (sub 1 x) r = [1, 3,−3, 1] =⇒ x = 2, r = [3,−3, 1]. }

Cons 1 (Cons 2 (bwd (goSubs 2) [3,−3, 1]))

= {Cons branch is taken; Cons (sub 2 x) r = [3,−3, 1] =⇒ x = 5, r = [−3, 1]. }

7This execution trace is (overly) simplified for illustration purpose. See Section 3.5 for the actual operational semantics.
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subs : (List Int)• ⊸ (List Int)•

subs xs = goSubs 0 xs

goSubs : Int → (List Int)• ⊸ (List Int)•

goSubs Nil• = Nil• with null

goSubs n (Cons x xs)• =

let (x, r )• = pin x (λx ′.goSub x ′ xs) in

Cons• (sub n x) r with not ◦ null

sub : Int → Int• ⊸ Int•

sub n = lift (λx .x − n) (λx .x + n)

(a) partially-invertible version

subsF : (List Int)• ⊸ (List Int)•

subsF xs = let (0, r )• = goSubsF 0• xs in r

goSubsF : Int• ⊸ (List Int)• ⊸ (Int ⊗ List Int)•

goSubsF n Nil• = (n,Nil•)• with null ◦ snd

goSubsF n (Cons x xs)• =

let (x, r )• = goSubsF x xs in

let (n, x ′)• = subF (n, x)• in

(n,Cons• x ′ r )• with not ◦ null ◦ snd

subF : (Int ⊗ Int)• ⊸ Int ⊗ Int•

subF = lift (λ(n, x).(n, x − n)) (λ(n, x).(n, x + n))

(b) fully-invertible version

Fig. 1. Side-by-side comparison of partially-invertible (a) and fully-invertible (b) versions of subs

Cons 1 (Cons 2 (Cons 5 (bwd (goSubs 5) [−3, 1])))

= . . .

= Cons 1 (Cons 2 (Cons 5 (Cons 2 (Cons 3 (bwd (goSubs 3) [])))))

= {Nil branch is taken. }

Cons 1 (Cons 2 (Cons 5 (Cons 2 (Cons 3 Nil))))) = [1, 2, 5, 2, 3]

Note that the first arguments of (recursive) calls of goSubs (which are static) have the same values
(1, 2, 5, 2, and 3) in both forward/backward executions, distinguishing their uses from those of the
invertible arguments. As one can see, goSubs n behaves exactly like the hand-written goSubs′ in
subs−1 which is reproduced below.

goSubs′ [ ] = [ ]

goSubs′ n (y : ys) = let x = y + n in x : goSubs′ x ys

The use of pin commonly results in an invertible case with a single branch, as we see in goSubs

above. We capture this pattern with an invertible let as a shorthand notation, which enables us to
write let p• = e1 in e2 for case e1 of {p

• → e2 with λ .True}. The definition of goSubs shown in
Section 1 uses this shorthand notation, which is reproduced in Fig. 1a.
We would like to emphasise that partial invertibility, as supported in Sparcl, is key to concise

function definitions. In Fig. 1, we show side-by-side two versions of the same program written in
the same language: the one on the left allows partial invertibility whereas the one on the right
requires all functions (include the intermediate ones) to be fully-invertible (note the different types
in the two versions of goSubs and sub). As a result, goSubsF is much harder to define and the code
becomes fragile and error-prone. This advantage of Sparcl, which is already evident in this small
example, becomes decisive when dealing with larger programs, especially those requiring complex
manipulation of static values (for example, Huffman Coding in Section 4.2).
We end this section with a theoretical remark. One might wonder why (−)• is not a monad. It

is true that (−)• forms a functor, but the functor is not endo. Recall that A• represents bijective
code of type A; that is, A• and its component A belong to different categories (though we have not
formally described them).8 One then might wonder whether (−)• is a relative monad [Altenkirch
et al. 2010]. To form a relative monad, one needs to find a functor that has the same domain and
codomain as (the functor corresponding to) (−)•. It is unclear whether there exists such a functor

8For curious readers, we note our conjecture that (−)• corresponds to the Yoneda embedding for the CPO-enriched category

of (strict) bijections, analogous to Moggi [1998], although denotational semantics is outside the scope of this paper.
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118:10 Kazutaka Matsuda and Meng Wang

other than (−)• itself; in this case, the relative monad operations do not provide any additional
expressive power.

2.7 Implementations

We have implemented a proof-of-concept interpreter for Sparcl including the linear type system,
which is available from https://github.com/kztk-m/sparcl. The implementation adds two small but
useful extensions to what is presented in this paper. First, the implementation allows non-linear
constructors, such as MkUn : a → Un a which serves as ! and helps us to write a function
that returns both linear and unrestricted results. Misusing such constructors in invertible pattern
matching is guarded against by the type system (otherwise it may lead to discarding or copying
of invertible values). Second, the implementation uses the first-match principle for both forward
and backward computations. That is, both patterns and with conditions are examined from top to
bottom. Recall also that the implementation uses a non-indentation-sensitive syntax for simplicity
as mentioned in Section 1.
It is worth noting that the implementation uses Matsuda [2020]’s type inference to infer linear

types effectively without requiring any annotations. Hence, the type annotations in this paper are
more for documentation purposes.
As part of our effort to prove type safety (subject reduction and progress), we also produced a

parallel implementation in Agda to serve as proofs (Section 3.6), available from https://github.com/
kztk-m/sparcl-agda.

3 CORE SYSTEM: λPI→

This section introduces λPI→, the core system that Sparcl is built on. Our design mixes ideas of
linear-typed programming and meta-programming. As mentioned in Section 2.1, the language is
based on (the simple multiplicity fragment of) λ

q
→ [Bernardy et al. 2018], and, as mentioned in

Section 2.3, it is also two-staged [Moggi 1998; Nielson and Nielson 1992] with different meta and
object languages. Specifically, the meta stage is a usual call-by-value language (i.e., unidirectional)
and the object stage is an invertible language. By having the two stages, partial invertibility is made
explicit in this formalization.
In what follows, we use a number of notational conventions. A vector notation t denotes a

sequence such as t1, . . . , tn or t1; . . . ; tn , where each ti can be of any syntactic category and the
delimiter (such as ł,ž and ł;ž) can differ depending on the context; we also refer to the length of the
sequence by |t |. In addition, we may refer to an element in the sequence t as ti . A simultaneous
substitution of x1, . . . , xn in t with s1, . . . , sn is denoted as t[s1/x1, . . . , sn/xn], which may also be

written as t[s/x].

3.1 Central Concept: Bijections at the Heart

The surface language of Sparcl is designed for programming partially invertible functions, which
are turned into bijections (by fixing the static arguments) for execution. This fact is highlighted
in the core system λPI→ where we have a primitive bijection type A⇌ B, which is inhabited by
bijections constructed from functions of type A• ⊸ B•. Technically, having a dedicated bijection
type facilitates reasoning. For example, we may now straightforwardly state that łvalues of a
bijection type A⇌ B are bijections between A and Bž (Corollary 3.4).
Accordingly, the fwd and bwd functions for execution in Sparcl are divided into application

operators ▷ and ◁ that apply bijection-typed values and an unlift operator for constructing bijections
from functions of typeA• ⊸ B•. For example, we have unlift (add (S Z)) : Nat⇌ Nat (where add :

Nat → Nat• ⊸ Nat• is defined in Section 2), and the bijection can be executed as unlift (add (S Z))▷
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S Z resulting in S (S Z) and unlift (add (S Z)) ◁ S (S Z) resulting in S Z. In fact, the operators fwd

and bwd are now derived in λPI→, as fwd = λωh.λωx .unlift h ▷ x and bwd = λωh.λωx .unlift h ◁ x .

3.2 Syntax

The syntax of λPI→ is given as below.

Expressions: e ::= x | λπx .e | e1 e2 | C e | caseπ e0 of {p → e}

| C• e | case e0 of {p• → e with e ′} | pin e1 e2 | unlift e | e1 ▷ e2 | e1 ◁ e2
Patterns: p ::= C x

Multiplicities: π ::= 1 | ω

There are two lines for the various constructs of expressions. The ones in the first line are standard
except the annotations in λ and case that determine the multiplicity of the variables introduced
by the binders: π = 1 means that the bound variable is linear, and π = ω means there is no
restriction. These annotations are omitted in the surface language as they are inferred. The second
line consists of constructs that deal with invertibility. As mentioned above, unlift e , e1 ▷ e2, and
e1 ◁e2 handles bijections which can be used to encode fwd and bwd in Sparcl. We have already seen
lifted constructors, invertible case, and pin in Section 2. For simplicity, we assume that pin, C and
C• are fully-applied. Lifted constructor expressions C• e and invertible cases are basic invertible
primitives in λPI→. They are enough to make our system reversible Turing complete [Bennett 1973]
(Theorem 3.5); i.e., all bijections can be implemented in the language. For simplicity, we assume
that patterns are non-overlapping both for unidirectional and invertible cases. We do not include
lift, which imports external code into Sparcl, as it is by definition unsafe. Instead, we will discuss
it separately in Section 3.7.

Different from conventional reversible/invertible programming languages, the constructs unlift
(together with ▷ and ◁) and pin support communication between the unidirectional world and the
invertible world. The unlift construct together with ▷ and ◁ runs invertible computation in the
unidirectional world. The pin operator is the key to partiality; it enables us to temporarily convert
a value in the invertible world into a value in the unidirectional world.

3.3 Types

Types in λPI→ are defined as below.

A,B ::= α | T A | A →π B | A• | A⇌ B

Here, α denotes a type variable, T denotes a type constructor, A →π B is a function type annotated
with the argument’s multiplicity π , (−)• marks invertibility, and A⇌ B is a bijection type.

Each type constructor T comes with a set of constructors C of type

C : A1 ⊸ A2 ⊸ · · · ⊸ An ⊸ T α

with fv(Ai ) ∈ {α } for any i .9 Type variables α are only used for types of constructors in the
language. For example, the standard multiplicative product ⊗ and additive sum ⊕ [Wadler 1993]
are represented by the following constructors.

(−,−) : α1 ⊸ α2 ⊸ α1 ⊗ α2 InL : α1 ⊸ (α1 ⊕ α2) InR : α2 ⊸ (α1 ⊕ α2)

9For simplicity, we assume a constructor can only have linear fields; extending our discussions to constructors with

unrestricted field is straightforward.
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118:12 Kazutaka Matsuda and Meng Wang

We assume that the set of type constructors at least include ⊗ and Bool, where Bool has the
constructors True : Bool and False : Bool. Types can be recursive via constructors; for example, we
can have a list type List α with the following constructors.

Nil : List α Cons : α ⊸ List α ⊸ List α

We may write A ⊸ B for A1 ⊸ A2 ⊸ · · · ⊸ An ⊸ B (when n is zero, A ⊸ B is B). We shall also

instantiate constructors implicitly and write C : A′ ⊸ T B when there is a constructor C : A ⊸ T α

and A′
i = Ai [B/α] for each i . Thus we assume all types in our discussions are closed.

Negative recursive types are allowed in our system, which, for example, enables us to define
general recursions without primitive fixpoint operators. Specifically, via F with the constructor
MkF : (F α → α) ⊸ F α , we have a fixpoint operator as below.

fixπ ≜ λω f .λπa.
(

λωx .λπa. f (out x x) a
) (

MkF (λωx .λπa. f (out x x) a)
)

a

where out ≜ λ1x .case1 x of {MkF t → t}

Here, out has type F C ⊸ F C → C for any C (in this case C = A →π B), and thus fixπ has type
((A →π B) → (A →π B)) → A →π B.

The most special type in the language isA•, which is the invertible version ofA. More specifically,
the invertible type A• represents invertible code that are executed forwards and backwards at
the second stage to compute and łuncomputež A-typed values. Values of type A• must be treated
linearly, and can only be manipulated by invertible operations, such as lifted constructors, invertible
pattern matching, and pin. To keep our type system simple, or more specifically single-kinded,
we allow types like (A ⊸ B)• and (A•)•, while the category of (not-necessary-total) bijections are
not closed and λPI→ has no third stage. These types do not pose any problem, as such components
cannot be inspected in invertible computation by any means (except in with conditions, which are
unidirectional, i.e., run at the first stage).

Note that we consider the primitive bijection types A⇌ B as separate from (A → B) ⊗ (B → A).

3.4 Typing Relation

A typing environment is a mapping form variables x to pairs of type A and its multiplicity π ,
meaning that x has typeA and can be used π -many times. We write x1 :π1 A1, . . . , xn :πn Bn instead
of {x1 7→ (A1, π1), . . . , xn 7→ (Bn, πn)} for readability, and write ε for the empty environment.
Reflecting the two stages, we adopt a dual context system [Davies and Pfenning 2001], which has
unidirectional and invertible environments, denoted by Γ and Θ respectively. This separation of
the two is purely theoretical, for the purpose of facilitating reasoning when we interpret A•-typed
expressions that are closed in unidirectional variables but may have free variables in Θ as bijections.
In fact, our prototype implementation does not distinguish the two environments. For all invertible
environments Θ, without the loss of generality we assume that the associated multiplicities must
be 1, i.e., Θ(x) = (Ax , 1) for any x ∈ dom(Θ). Thus, we shall sometimes omit multiplicities for Θ.
This assumption is actually an invariant in our system since any variables introduced in Θ must
have multiplicity 1. We make this explicit in order to simplify the theoretical discussions. Moreover,
we assume that the domains of Γ and Θ are disjoint.

Given two unidirectional typing environments Γ1 and Γ2, we define the addition Γ1 + Γ2 as below.

(Γ1 + Γ2)(x) =

{

(A,ω) if Γ1(x) = (A, ) and Γ2(x) = (A, )

(A, π ) if Γi (x) = (A, π ) and x < dom(Γj ) for some i , j ∈ {1, 2}

If dom(Γ1) and dom(Γ2) are disjoint, we sometimes write Γ1, Γ2 instead of Γ1 + Γ2 to emphasize the
disjointness. A similar addition applies to invertible environments. But as only multiplicity 1 is
allowed in Θ, Θ1 + Θ2 = Θ implicitly implies dom(Θ1) ∩ dom(Θ2) = ∅.
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Typing Rules for Expressions Γ;Θ ⊢ e : A and Patterns p : A ▷π Γ

ωΓ + x :1 A;ωΘ ⊢ x : A
T-UVar

Γ, x :π A;Θ ⊢ e : B

Γ;Θ ⊢ λπ x .e : A →π B
T-Abs

Γ1;Θ1 ⊢ e1 : A →π B Γ2;Θ2 ⊢ e2 : A

Γ1 + πΓ2;Θ1 + πΘ2 ⊢ e1 e2 : B
T-App

n = |e | = |A| C : A ⊸ T B {Γi ;Θi ⊢ ei : Ai }i

ωΓ0 + Γ1 + · · · + Γn ;Θ1 + · · · + Θn ⊢ C e : T B
T-Con

Γ0;Θ0 ⊢ e0 : A {pi : A ▷π Γi Γ, Γi ;Θ ⊢ ei : B}i

πΓ0 + Γ;πΘ0 + Θ ⊢ caseπ e0 of {p → e} : B
T-Case

ωΓ;x : A ⊢ x : A• T-RVar

n = |e | = |A| C : A ⊸ T B {Γi ;Θi ⊢ ei : A
•
i }i

ωΓ0 + Γ1 + · · · + Γn ;Θ1 + · · · + Θn ⊢ C• e : (T B)
• T-RCon

Γ0;Θ0 ⊢ e0 : A
• {pi : A ▷1 Θi Γ;Θ,Θi ⊢ ei : B

•
Γ
′;Θ′ ⊢ e ′i : B →ω Bool}i

Γ0 + Γ + ωΓ′;Θ0 + Θ + ωΘ
′ ⊢ case e0 of {p• → e with e ′} : B•

T-RCase

Γ1;Θ1 ⊢ e1 : A
•

Γ2;Θ2 ⊢ e2 : A →ω B•

Γ1 + Γ2;Θ1 + Θ2 ⊢ pin e1 e2 : (A ⊗ B)•
T-Pin

Γ;Θ ⊢ e : A• →1 B
•

ωΓ;ωΘ ⊢ unlift e : A⇌ B
T-Unlift

Γ1;Θ1 ⊢ e1 : A⇌ B Γ2;Θ2 ⊢ e2 : A

Γ1 + ωΓ2;Θ1 + ωΘ2 ⊢ e1 ▷ e2 : B
T-FApp

Γ1;Θ1 ⊢ e1 : A⇌ B Γ2;Θ2 ⊢ e2 : B

Γ1 + ωΓ2;Θ1 + ωΘ2 ⊢ e1 ◁ e2 : A
T-BApp

C : A ⊸ T B

C x : T B ▷π x :π A

Fig. 2. Typing rules for expressions and patterns

We define multiplication of multiplicities as below.

1π = π1 = π ωπ = πω = ω

For Γ = x1 :π1 A1, . . . , xn :πn An , we write πΓ for the environment x1 :ππ1 A1, . . . , xn :ππn An . A
similar notation applies to invertible environments. Again, ωΘ′

= Θ means that Θ′
= ε . Notice that

it can hold that Γ = Γ + Γ and Γ = ωΓ = 1Γ if Γ(x) = ( ,ω) for all x ∈ dom(Γ).
The typing relation Γ;Θ ⊢ e : A reads that under environments Γ and Θ, expression e has type A

(Fig. 2). The definition basically follows λ
q
→ [Bernardy et al. 2018] except having two environments

for the two stages. Although multiplicities in Θ are always 1, some of the typing rules refers to ωΘ
(which implies Θ = ε) in the conclusion parts, to emphasize that Γ and Θ are treated similarly by
the rules. The idea underlying this type system is that, together with the operational semantics in
Section 3.5, a term-in-context ε ;Θ ⊢ e : A• defines a piece of code representing a bijection between
Θ and A, and hence ε ; ε ⊢ e ′ : A⇌ B defines a bijection between A and B (see Section 3.6). Our
Agda implementation mentioned in Sections 1 and 2.7 follows this idea with some generalization.

Intuitively, the multiplicity of a variable represents the usage of a resource to be associated with
the variable. Hence, multiplicities in Γ and Θ are synthesized rather than checked in typing. This
viewpoint is useful for understanding T-App and T-Case; it is natural that, if an expression e is used
π times, the multiplicities of variables in e are multiplied by π . Discarding variables, or weakening,
is performed in the rules T-UVar, T-RVar, T-Con, and T-RCon which can be leaves in a derivation
tree. Note that weakening is not allowed for Θ-variables as they are linear.
The typing rules for the invertible part would need additional explanation. In T-RVar, x has

type A• if the invertible typing environment is the singleton mapping x : A. One explanation for
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this is that Θ represents the typing environment for the object (i.e., invertible) system. Another
explanation is that we simply omit (−)• as all variables in Θ must have types of the form A•.
Rule T-RCon says that we can lift a constructor to the invertible world leveraging the injective
nature of the constructor. Rule T-RCase says that the invertible case is for pattern-matching on
(−)•-typed data; the pattern matching is done in the invertible world, and thus the bodies of the
branches must also have (−)•-types. Recall that thewith-conditions (e ′i ) are used for deciding which
branch is used in backward computation. The type B →ω Bool indicates that they are conventional
unrestricted functions, and ωΓ′ and ωΘ′ in the conclusion part of the rule indicates that their
uses are unconstrained. Notice that, since the linearity comes only from the use of (−)•-typed
values, there is little motivation to use linear variables to define conventional functions in λPI→. The
operators pin, unlift, ▷, and ◁ are special in λPI→. The operator pin is simply a fully-applied version
of the one in Section 2; so we do not repeat the explanation. Rules T-Unlift, T-FApp, and T-BApp

are inherited from the types of fwd and bwd in Section 2. Recall that ωΘ ensures Θ = ε , and thus
the arguments of unlift and constructed bijections must be closed in terms of invertible variables.
It might look a little weird that e1 ▷ e2/e1 ◁ e2 uses e1 linearly; this is not a problem because Θ1 in
T-FApp/T-BApp must be empty for expressions that occur in evaluation (Lemma 3.2).

3.5 Operational Semantics

The semantics of λPI→ consists of three evaluation relations: unidirectional, forward, and backward.
The unidirectional evaluation evaluates away the unidirectional constructs such as λ-abstractions
and applications, and the forward and backward evaluation specifies bijections.
For example, let us consider an expression e = (λω f . f (f y)) (λ1x .S

• x). Due to λ-abstractions
and function applications, it is not immediately clear how we can interpret the expression as a
bijection. The unidirectional evaluation ⇓ is used to evaluate these unidirectional constructs away
to make way for the forward and backward evaluation to interpret the residual term. For the above
expression, we have e ⇓ S• (S• y) where the residual S• (S• y) is ready to be interpreted bijectively.
The forward evaluation µ ⊢ E ⇒ v evaluates a residual E under an environment µ to obtain a
value v as usual. For example, we have {y 7→ Z} ⊢ S• (S• y) ⇒ S (S Z). The backward evaluation
E ⇐ v ⊣ µ does the opposite; it inversely evaluates E to find an environment µ for a given value
v , so that the corresponding forward evaluation of E returns the value for the environment. For
example, we have S• (S• y) ⇐ S (S Z) ⊣ {y 7→ Z}.

This is the basic story, but computation can be more complicated in general. With case and pin,
the forward⇒ and backward⇐ evaluation depend on the unidirectional evaluation ⇓; and with
▷ and ◁, the unidirectional evaluation ⇓ also depends on the forward ⇒ and backward ⇐ ones.
Technically, the linear type system is also the key to the latter type of dependency, which is an
important difference from related work in bidirectional programming [Matsuda and Wang 2018c].

3.5.1 Values and Residuals. We first define a set of values v and a set of residuals E as below.

Values: v ::= λπx .e | C v | E | ⟨x .E⟩

Residuals: E ::= x | C• E | case E0 of {p• → e with λωx .e ′} | pin E1 (λωx2.e2)

The residuals are (−)•-typed expressions, which are subject to the forward and backward evaluations.
The syntax of residuals makes it clear that branch bodies in invertible cases are not evaluated in
the unidirectional evaluation; otherwise, recursive definitions involving them usually diverge. A
variable is also a value. Indeed, our evaluation targets expressions/residuals that may be open in
term of invertible variables. The value ⟨x .E⟩ represents a bijection. Intuitively, ⟨x .E⟩ is a single-
holed residual E where the hole is represented by the variable x . The type system ensures that the
x is the only variable in E so that E is ready to be interpreted as a bijection. Since ⟨x .E⟩ is not an
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Unidirectional Evaluation e ⇓ v

λπ x .e ⇓ λπ x .e

e1 ⇓ λπ x .e e2 ⇓ v2 e[v2/x] ⇓ v

e1 e2 ⇓ v

e ⇓ v

C e ⇓ C v

e0 ⇓ v0 pi µ = v0 ei µ ⇓ v

caseπ e0 of {p → e} ⇓ v

x ⇓ x

e ⇓ E

C• e ⇓ C• E

e0 ⇓ E0 e ′ ⇓ λωx .e ′′ α-renaming to make fv(p) fresh

case e0 of {p• → e with e ′} ⇓ case E0 of {p• → e with λωx .e ′′}

e1 ⇓ E1 e2 ⇓ λωx2.e
′
2

pin e1 e2 ⇓ pin E1 (λωx2.e
′
2) ⟨x .E⟩ ⇓ ⟨x .E⟩

e ⇓ λ1x .e
′ e ′[y/x] ⇓ E y: fresh

unlift e ⇓ ⟨y.E⟩

e1 ⇓ ⟨x .E⟩ e2 ⇓ v2 {x 7→ v2} ⊢ E ⇒ v

e1 ▷ e2 ⇓ v

e1 ⇓ ⟨x .E⟩ e2 ⇓ v2 E ⇐ v2 ⊣ {x 7→ v}

e1 ◁ e2 ⇓ v

Forward Evaluation µ ⊢ E ⇒ v

{x 7→ v} ⊢ x ⇒ v

µ ⊢ E ⇒ v
⊎

µ ⊢ C• E ⇒ C v

µ1 ⊢ E1 ⇒ v1 e2[v1/x] ⇓ E2 µ2 ⊢ E2 ⇒ v2

µ1 ⊎ µ2 ⊢ pin E1 (λωx .e2) ⇒ (v1,v2)

µ0 ⊢ E0 ⇒ pi µi dom(µi ) = fv(pi ) ei ⇓ Ei µ ⊎ µi ⊢ Ei ⇒ v e ′i [v/xi ] ⇓ True {e ′j [v/x j ] ⇓ False}j,i

µ0 ⊎ µ ⊢ case E0 of {p• → e with λωx .e ′} ⇒ v

Backward Evaluation E ⇐ v ⊣ µ

x ⇐ v ⊣ {x 7→ v}

E ⇐ v ⊣ µ

C• E ⇐ C v ⊣
⊎

µ

E1 ⇐ v1 ⊣ µ1 e2[v1/x] ⇓ E2 E2 ⇐ v2 ⊣ µ2

pin E1 (λωx .e2) ⇐ (v1,v2) ⊣ µ1 ⊎ µ2

e ′i [v/xi ] ⇓ True {e ′j [v/x j ] ⇓ False}j,i ei ⇓ Ei Ei ⇐ v ⊣ µ ⊎ µi dom(µi ) = fv(pi ) E0 ⇐ pi µi ⊣ µ0

case E0 of {p• → e with λωx .e ′} ⇐ v ⊣ µ0 ⊎ µ

Fig. 3. Evaluation relations: unidirectional, forward and backward.

expression defined so far, we extend expressions to include this form as e ::= · · · | ⟨x .E⟩ together
with the following typing rule:

Γ;Θ, x : A ⊢ E : B

ωΓ;ωΘ ⊢ ⟨x .E⟩ : A⇌ B
T-Holed

It is crucially important that x is added to the invertible environment.

3.5.2 Three Evaluation Relations: Unidirectional, Forward and Backward. The evaluation relations
are shown in Fig. 3, which are defined by mutually-dependent evaluation rules.

The unidirectional evaluation is rather standard, except that it treats invertible primitives (such
as lifted constructors, invertible cases, lift, and pin) as constructors. A subtlety is that we assume
dynamic α-renaming of invertible cases to avoid variable capturing. The evaluation rules can
evaluate open expressions by having x ⇓ x ; recall that residuals can contain variables. The unlift
operator uses a fresh variable y in the evaluation to make a single-holed residual ⟨y.E⟩ as a
representation of bijection. Such single-holed residuals can be used in the forward direction by
e1 ▷ e2 and in the backward direction by e1 ◁ e2, by triggering the corresponding evaluation.

The forward evaluation µ ⊢ E ⇒ v states that under environment µ, a residual E evaluates to a
value v , and the backward evaluation E ⇐ v ⊣ µ inversely evaluates E to return the environment µ
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from a value v : the forward and backward evaluation relations form a bijection. For variables and
invertible constructors, both forward and backward evaluation rules are rather straightforward. The
rules for invertible case expression are designed to ensure that every branch taken in one direction
may and must be taken in the other direction too. This is why we check the with conditions even
in the forward evaluation: the condition is considered as a post-condition that must exclusively
hold after the evaluation of a branch. The pin operator changes the behavior of the backward
computation of the second argument based on the result of the first argument; notice that v1, the
parameter for the second argument, is obtained as the evaluation result of the first argument in the
forward evaluation, and as the first component of the result pair in the backward evaluation. Notice
that the unidirectional evaluation ⇓ involved in the presented evaluation rules are performed in
the same way in both evaluation, which is the key to bijectivity of E.

3.6 Metatheory

In this subsection, we present the key properties about λPI→.

3.6.1 Subject Reduction. First, we show a substitution lemma for λPI→. We only need to consider
substitution for unidirectional variables because substitution for invertible variables never happens
in evaluation; recall that we use environments (µ) in the forward and backward evaluation.

Lemma 3.1. Γ, x :π A;Θ ⊢ e : B and Γ
′;Θ′ ⊢ e ′ : A implies Γ + πΓ′;Θ + πΘ′ ⊢ e[e ′/x] : B. □

Note that the substitution is only valid whenΘ+πΘ′ satisfy the assumption that invertible variables
have multiplicity 1. This assumption is guaranteed by typing.
Then, by Lemma 3.1, we have the subject reduction properties as follows:

Lemma 3.2 (subject reduction). The following properties hold:

• Suppose ε ;Θ ⊢ e : A and e ⇓ v . Then, ε ;Θ ⊢ v : A holds.
• Suppose ε ;Θ ⊢ E : A• and µ ⊢ E ⇒ v . Then, dom(Θ) = dom(µ) holds, and ε ; ε ⊢ µ(x) : Θ(x)

for all x ∈ dom(Θ) implies ε ; ε ⊢ v : A.
• Suppose ε ;Θ ⊢ E : A• and E ⇐ v ⊣ µ. Then, dom(Θ) = dom(µ) holds, and ε ; ε ⊢ v : A implies
ε ; ε ⊢ µ(x) : Θ(x) for all x ∈ dom(Θ).

Proof. By (mutual) induction on the derivation steps of evaluation. □

The statements correspond to the three evaluation relations in λPI→. Note that the unidirectional
evaluation targets expressions that are closed in terms of unidirectional variables, but may be
open in terms of invertible variables, a property that is reflected in the first statement above. The
second and third statements are more standard, assuming closed expressions in terms of both
unidirectional and invertible variables. This assumption is actually an invariant; even though open
expressions and values are involved in the unidirectional evaluation, the forward and backward
evaluations always take and return closed values.

3.6.2 Bijectivity. Roughly speaking, correctness means that every value of type A⇌ B forms a
bijection. Values of type A⇌ B has the form ⟨x .E⟩, and, By Lemma 3.2 and T-Holed, values that
occur in the evaluation of a well-typed term can be typed as ε ; ε ⊢ ⟨x .E⟩ : A⇌ B, which implies
ε ;x : A ⊢ E : B•. Since values ⟨x .E⟩ can only be used by ▷ and ◁, bijectivity is represented as:
{x 7→ v} ⊢ E ⇒ v ′ if and only if E ⇐ v ′ ⊣ {x 7→ v}.10

10Here, we consider syntactic (definitional) equality of values, but it is rather easy to extend the discussion to observational

equivalence.
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To do so, we prove the followingmore general correspondence between the forward and backward
evaluation relations, which is rather straightforward as the rules of the two evaluations are designed
to be symmetric.

Lemma 3.3 (bijectivity of residuals). µ ⊢ E ⇒ v if and only if E ⇐ v ⊣ µ.

Proof. Each direction is proved by induction on a derivation of the corresponding evaluation.
Note that every unidirectional evaluation judgment e ′ ⇓ v ′ occurring in a derivation of one direction
also appears in the corresponding derivation of the other direction, and hence we can treat the
unidirectional evaluation as a block box in this proof. □

Then, by Lemma 3.2, we have the following corollary stating that ⟨x .E⟩ : A⇌ B actually
implements a bijection between A-typed values and B-typed values.

Corollary 3.4 (bijectivity of bijection values). Suppose ε ; ε ⊢ ⟨x .E⟩ : A⇌ B. Then, for any v

and u such that ε ; ε ⊢ v : A and ε ; ε ⊢ v ′ : B, we have {x 7→ v} ⊢ E ⇒ v ′ if and only if
E ⇐ v ′ ⊣ {x 7→ v}. □

3.6.3 Note on the Progress Property. Progress is another important property that, together with
subjection reduction, proves the absence of certain errors during evaluation. However, a standard
progress property is usually based on small-step semantics, and yet λPI→ has a big-step operational
semantics, which was chosen for its advantage in clarifying the input-output relationship of the
forward and backward evaluation, as demonstrated by Lemma 3.3. A standard small-step semantics,
which defines one-step evaluation as a relation between terms, is not suitable in this regard. Abstract
machines are also unsatisfactory, as they will obscure the correspondence between the forward
and backward evaluations.

We instead establish progress by directly showing that the evaluations do not get stuck other than
with branching-related errors. This is done as an Agda implementation (mentioned in Sections 1
and 2.7) of a definitional [Reynolds 1998] interpreter, which uses the (sized) delay monad [Abel and
Chapman 2014; Capretta 2005] and manipulates intrinsically-typed (i.e., Church style) expressions,
values and residuals. The interpreter uses sums, products, and iso-recursive types instead of
constructors. Also, instead of substitution, value environments are used in the unidirectional
evaluation to avoid the shifting of de Bruijn terms. When the interpreter encounters imprecise
with conditions, it goes to a infinite loop, and pattern match failures cannot happen as exhaustive
patterns are used. This interpreter is typechecked in Agda, which serves as a constructive proof
that there are no other kind of errors. We note that, as a bonus track, the Agda implementation
comes with a formal proof of Lemma 3.3.

3.6.4 Reversible Turing Completeness. Reversible Turing completeness [Bennett 1973] is an im-
portant property that general-purpose reversible languages are expected to have. Similar to the
standard Turing completeness, being reversible Turing complete for a language means that all
bijections can be expressed in the language [Bennett 1973].

It is unsurprising that λPI→ is reversible Turing complete, as it has recursion (via fixπ in Section 3.3)
and reversible branching (i.e., invertible case).

Theorem 3.5. λPI→ is reversible Turing complete. □

The proof is done by constructing a simulator for a given reversible Turing machine, which is
omitted due to space limitations. We follow the construction in Yokoyama et al. [2011] except the
last step, in which we use a general reversible looping operator as below.11

trace : ((a ⊕ x)• ⊸ (b ⊕ x)•) → a• ⊸ b•

11The operator is named after the trace operator [Joyal et al. 1996] in the category of bijections [Abramsky et al. 2002].
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As its type suggests, trace h applies h to InL a repeatedly until it returns InL b; the function loops
while h returns a value of the form InR x . Intuitively, this behavior corresponds to the reversible
loop [Lutz 1986]. In functional programming, loops are naturally encoded as tail recursions, which,
however, are known to be difficult to handle in the contexts of program inversion [Glück and Kawabe
2004; Matsuda et al. 2010; Mogensen 2006; Nishida and Vidal 2011]. In fact, our implementation
uses a non-trivial reversible programming technique, namely Yokoyama et al. [2012]’s optimized
version of Bennett [1973]’s encoding. The higher-orderness of λPI→ (and Sparcl) helps here, as the
effort is made once and for all.

3.7 Extension with The lift Operator

One feature we have not discussed is the lift operator that creates primitive bijections from
unidirectional programs, for example, sub as we have seen in Section 2.
Adding lift to λPI→ is rather easy. We extend expressions to include lift as e ::= · · · | lift e1 e2 e3

together with the following typing rule.

Γ1;Θ1 ⊢ e1 : A →ω B Γ2;Θ2 ⊢ e2 : B →ω A Γ3;Θ3 ⊢ e3 : A
•

ωΓ1 + ωΓ2 + Γ3;ωΘ1 + ωΘ2 + Θ3 ⊢ lift e1 e2 e3 : B
• T-Lift

Accordingly, we extend evaluation by adding residuals of the form lift (λωx1.e1) (λωx2.e2) E3
together with the following forward and backward evaluation rules (we omit the obvious unidirec-
tional evaluation rule for obtaining residuals of this form).

µ ⊢ E3 ⇒ v3 e1[v3/x1] ⇓ v

µ ⊢ lift (λωx1.e1) (λωx2.e2) E3 ⇒ v

e2[v/x2] ⇓ v3 E3 ⇐ v3 ⊣ µ

lift (λωx1.e1) (λωx2.e2) E3 ⇐ v ⊣ µ

The substitution lemma (Lemma 3.1) and the subject reduction properties (Lemma 3.2) are also
lifted to lift.
However lift is by nature unsafe, which requires an additional condition to ensure correctness.

Specifically, the bijectivity of A⇌ B-typed values is only guaranteed if lift is used for pairs of
functions that actually form bijections. For example, the uses of lift to construct sub in Section 2
are indeed safe. In Section 4.2.1, we will see another interesting example showing the use of
conditionally safe lifts (see unsafeNew in Section 4.2.1).

4 LARGER EXAMPLES

In this section, we demonstrate the utility of Sparcl with examples, in which partial invertibility
supported by Sparcl is the key for programming. The two examples are rebuilding trees from
preorder and inorder traversals [Mu and Bird 2003], and a simplified version of the Huffman
coding [Salomon 2008].

4.1 Rebuilding Trees from a Pre-Order and an In-Order Traversals

It is well-known that we can rebuild a node-labeled binary tree from its preorder and inorder
traversals, provided that all labels in the tree are distinct. That is, for binary trees of type

data Tree = L | N Int Tree Tree

the following Haskell function pi is bijective.

pi :: Tree → ([Int], [Int])

pi t = (preorder t, inorder t)

preorder L = [ ]

preorder (N a l r ) = a : preorder l ++ preorder r
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inorder L = [ ]

inorder (N a l r ) = inorder l ++ [a] ++ inorder r

For example, for binary trees t1 = N 1 (N 2 (N 3 L L) L) L, t2 = N 1 (N 2 L (N 3 L L)) L,
t3 = N 1 (N 2 L L) (N 3 L L), t4 = N 1 L (N 2 (N 3 L L) L), and t5 = N 1 L (N 2 L (N 3 L L)) that
share the preorder traversal [1, 2, 3], the inorder traversals distinguish them: inorder t1 = [3, 2, 1],
inorder t2 = [2, 3, 1], inorder t3 = [2, 1, 3], inorder t4 = [1, 3, 2], and inorder t5 = [1, 2, 3].
The uniqueness of labels is key to the bijectivity of pi. It is clear that pi−1 returns L for ([ ], [ ]),

so the non-trivial part is how pi−1 will do for a pair of non-empty lists. Let us write (a : p, i) for the
pair. Then, since i contains exactly one a, we can unambiguously split i as i = i1 ++ [a] ++ i2. Then,
by pi−1(take (length i1) p, i1), we can recover the left child l , and, by pi−1(drop (length i1) p, i2),
we can recover the right child r . After that, from a, l , and r , we can construct the original input
as N a l r . Notice that this inverse computation already involves partial invertibility such as the
splitting of the inorder traversal list based on a.
It is straightforward to implement the above procedure in Sparcl. However, such a program is

inefficient due to the cost of splitting. Program calculation is an established technique for deriving
efficient programs through equational reasoning [Gibbons 2002], and in this case of tree-rebuilding,
it is known that a linear-time inverse exists and can be derived [Mu and Bird 2003].
In the following, we demonstrate that program calculation works well in the setting of Sparcl.

Interestingly, thinking in terms of partial-invertibility not only produces a Sparcl program, but
actually improves the calculation by removing some of the more-obscure steps. Our calculation
presented below basically follows Mu and Bird [2003, Section 3], although the presentation is a
bit different as we focus on partial invertibility, especially the separation of unidirectional and
invertible computation.

Note that recently, Glück and Yokoyama [2019] gives a reversible version of tree rebuilding using
(an extension of) R-WHILE [Glück and Yokoyama 2016], a reversible imperative language inspired
by Janus [Lutz 1986; Yokoyama et al. 2008]. However, R-WHILE only supports a very limited form
of partial invertibility (Section 5.1), and the difference between their definition and ours is similar
to what is demonstrated by the goSubs and goSubsF examples in Fig. 1.

4.1.1 Calculation of the Original Definition. The first step is tupling [Chin 1993; Hu et al. 1997]
which eliminates multiple data traversals. The elimination of multiple data traversals is known to
be useful for program inversion [Eppstein 1985; Matsuda et al. 2012].

pi :: Tree → ([Int], [Int])

pi L = ([ ], [ ])

pi (N a l r ) = let (pr, ir) = pi r ; (pl, il) = pi l in (a : pl ++ pr, il ++ [a] ++ ir)

Mu and Bird [2003, Section 3] also use tupling as the first step in their derivation.
The next step is to eliminate ++, a source of inefficiency. The standard technique is to use accu-

mulation parameters [Kühnemann et al. 2001]. Specifically, we obtain piA satisfying piA t py iy =

let (p, i) = pi t in (p ++ py, i ++ iy) as below.

piA :: Tree → [Int] → [Int] → ([Int], [Int])

piA L py iy = (py, iy)

piA (N a l r ) py iy = let (pr, ir) = piA r py iy; (pl, il) = piA l pr (a : ir) in (a : pl, il)

The invertibility of piA is still not clear because piA is called with two different forms of the
accumulation parameter iy: one is the case where iy is empty (e.g., the initial call pi x = piA x [ ] [ ]),
and the other is the case where it is not (e.g., the recursion for the left child piA l pr (a : ir)).
This distinction between the two is important because, unlike the former, an inverse for the
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piR : Tree• ⊸ (List Int ⊗ List Int)•

piR L• = (Nil•,Nil•)•

with null ◦ fst

piR (N a l r )• =

let (pr, ir)• = piR r in

let (a, (pl, il))• =

pin a (λa′.piASR a′ l pr ir) in

(Cons• a pl, il)•

piASR : Int → Tree• ⊸ (List Int)• ⊸ (List Int ⊗ List Int)•

piASR h L• py iy = (py,Cons• (new eqInt h) iy)•

with eqInt h ◦ head ◦ snd

piASR h (N a l r )• py iy =

let (pr, ir)• = piASR h r py iy in

let (a, (pl, il))• = pin a (λa′.piASR a′ l pr ir) in

(Cons• a pl, il)•

Fig. 4. Invertible pre- and in-order traversal in Sparcl

latter is responsible for searching for the appropriate place to separate the inorder-traversal list.
Nevertheless, this separation can be achieved by deriving a specialized version pi of piA satisfying
pi x = piA x [ ] [ ] (we reuse the name as it implements the same function).

pi :: Tree → ([Int], [Int])

pi L = ([ ], [ ])

pi (N a l r ) = let (pr, ir) = pi r ; (pl, il) = piA l pr (a : ir) in (a : pl, il)

Having this new version of pi, we now have an invariant that iy of piA t py iy is always non-
empty; the other case is separated into a call to pi. Moreover, we can determine the head h of iy
beforehand in both forward and backward computations; this is exactly the label we search for to
split the inorder-traversal list. Indeed, if we know the head h of iy beforehand, we can distinguish
the ranges of the two branches of piA: for the first branch (py, iy), as iy is returned as is, the
head of the second component is the same as h, and for the second branch (a : pl, il), the head
of the second component of the return value cannot be equal to h, i.e., the head of iy. Recall that
piA t py iy = let (p, i) = pi t in (p ++ py, i ++ iy); thus, ir in the definition of piA must have the
form of · · · ++ iy, and then il must have the form of · · · ++ [a] ++ · · · ++ iy.

Thus, as the last step of our calculation, we clarify the unidirectional part, namely the head of the
second component of the accumulation parameters of piA, by changing it to a separate parameter.
Specifically, we prepare the function piAS satisfying piAS h t py iy = piA t py (h : iy) as below.

piAS :: Int → Tree → [Int] → [Int] → ([Int], [Int])

piAS h L py iy = (py,h : iy)

piAS h (N a l r ) py iy = let (pr, ir) = piAS h r py iy; (pl, il) = piAS a l pr ir in (a : pl, il)

Also, we replace the function call of piA in pi appropriately.

pi :: Tree → ([Int], [Int])

pi L = ([ ], [ ])

pi (N a l r ) = let (pr, ir) = pi r ; (pl, il) = piAS a l pr ir in (a : pl, il)

4.1.2 Making Partial-Invertibility Explicit. An efficient implementation in Sparcl falls out from
the above calculation (see Fig. 4): the only additions are the types and the use of pin. Recall that
let p• = e1 in e2 is syntactic sugar for case e1 of {p

• → e2 with λ .True}. Recall also that the first
match principle is assumed and the catch-all with conditions for the second branches are omitted.
The function new in the program lifts an A-typed value a to an A•-typed value, corresponding to a
bijection between () and {a}.

new : (a → a → Bool) → a → a•

new eq c = lift (λ .c) (λc ′.case eq c c ′ of {True → ( )}) ( )•
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Note that the arguments of lift in new eq form a bijection, provided that eq implements the equality
on A.

The backward evaluation of piR has the same behavior as that whichMu and Bird [2003, Section 3]
derived. The partial bijection that piASR defines indeed corresponds to reb in their calculation. Their
reb function is introduced as a rather magical step; our calculation can be seen as a justification of
their choice.

4.1.3 new and delete. In the above example, we used new, which can be used to introduce redun-
dancy to the output. For example, it is common to include checksum information in encoded data.
The new function is effective for this scenario, as demonstrated below.

checkSum : List Int• ⊸ List Int•

checkSum xs = let (xs, s) = pin xs (λxs′.new eqInt (sum xs′)) in -- sum : List Int → Int

Cons• s xs

In the forward direction, checkSum computes the sum of the list and prepends it to the list. In the
backward direction, it checks if the head of the input list is the sum of its tail: if the check succeeds,
the backward computation of checkSum returns the tail, and (correctly) fails otherwise.

It is worth mentioning that the pattern new eq is a finer operation than reversible copying where
the inverse is given by equivalence checking [Glück and Kawabe 2003]; reversible copying can be
implemented as λx .pin x (new eq) : A• ⊸ (A ⊗ A)•, assuming appropriate eq : A → A → Bool.

The new function has the corresponding inverse delete, which can be used to remove redundancy
from the input.

delete : (a → a → Bool) → a → a• ⊸ ( )•

delete eq c a = lift (λc ′.case eq c c ′ of {True → ( )}) (λ .c) a

It is interesting to note that new and delete can be used to define a safe variant of lift.

safeLift : (a → a → Bool) → (b → b → Bool) → (a → b) → (b → a) → a• ⊸ b•

safeLift eqA eqB f д a = let (a,b)• = pin a (λa′.new eqB (f a′)) in

let (b, ( ))• = pin b (λb ′.delete eqA (д b ′) a) in

b

In the forward computation, the function applies f to the input, and tests whether д is an inverse
of f by applying д to the output and checking if the result is the same as the original input by eqA.
The backward computation does the opposite: it applies д and tests the result by using f and eqB.
This function is called łsafež, as it guarantees correctness by the runtime check, provided that eqA
and eqB implement the equality on the domains.

4.2 Huffman Coding

The Huffman coding is one of the most popular compression algorithms [Salomon 2008]. The idea
of the algorithm is to assign short code to frequently occurring symbols. For example, consider that
we have symbols a, b, c and d that occur in the text to be encoded with probability 0.6, 0.2, 0.1, and
0.1 respectively. If we assign code as a : 0, b : 10, c : 110 and d : 111, then a text aabacabdaa will
be encoded into 16-bit code 0

a

0
a

10
b

0
a

110
c

0
a

10
b

111
d

0
a

0
a

, which is smaller than the 20-bit code obtained

under the naive encoding that assigns two bits for each symbol.

4.2.1 Two-Pass Huffman Coding. Assume that we have a data structure for a Huffman coding table,
represented by type Huff. The table may be represented as an array (or arrays) or a tree, and in
practice one may want to use different data structures for encoding and decoding (for example,
an array for encoding, and a trie for decoding). In this case, Huff is a pair of two data structures,
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huffCompress : (List Symbol)• ⊸ (Huff ⊗ List Bit)•

huffCompress s =

let (s,h)• = pin s (λs ′.new eqHuff (makeHuff s ′)) in

pin h (λh′.encode h′ s)

encode : Huff → (List Symbol)• ⊸ (List Bit)•

encode h Nil• = Nil• with null

encode h (Cons s ss)• = encR h s (encode h ss)

Fig. 5. Two-pass Huffman coding in Sparcl

where each one is used only in one direction. To handle such a situation, we treat it as an abstract
type with the following functions.

makeHuff : List Symbol → Huff

enc : Huff → Symbol → List Bit

dec : Huff → List Bit → Symbol ⊗ List Bit

Here, enc and dec satisfy the properties dec h (enc h s ++ ys) = (s, ys) and dec h ys = (s, ys′) implies
enc s ++ ys = ys′, where ++ is the list append function.

Then, by enc and dec, we can define an bijective version encR as below.

encR : Huff → Symbol• ⊸ (List Bit)• ⊸ (List Bit)•

encR h s r = lift (λ(s, ys). enc h s ++ ys) (λys . dec h ys) (s, r )•

An encoder can be defined by firstly constructing a Huffman coding table and then encoding
symbol by symbol. We can program this procedure in a natural way in Sparcl (Fig. 5) by using pin.
This is an example where multiple pins are used to convert data. The input symbol list is firstly
passed to makeHuff under new to create a Huffman table h in the first pin; here the input symbol
list is unidirectional (static), while the constructed Huffman table is invertible. Then, the input
symbol list is encoded with the constructed Huffman table in the second pin; here the input symbol
list is invertible, while the Huffman table is unidirectional (static). A subtlety here is the use of
eqHuff : Huff → Huff → Bool to test the equality of the Huffman encoding tables. This check
ensures the property that fwd huffCompress (bwd huffCompress (h, ys)) = (h, ys). This equation
holds only when h is the table obtained by applying makeHuff to the decoded text; indeed, eqHuff
checks the condition. One could avoid this check by using the following unsafeNew instead.

unsafeNew : a → a•

unsafeNew a = lift (λ( ).a) (λa′.( )) -- assuming a = a′

The use of unsafeNew a is safe only when its backward execution always receives a. Replacing new
with unsafeNew violates this assumption, but for this case, the replacement just widens the domain
of bwd huffCompress, which is acceptable even though fwd huffCompress and bwd huffCompress

do not form a bijection due to unsafeNew. But in general this outcome is unreliable, unless the
condition above can be guaranteed.

4.2.2 Concrete Representation of Huffman Tree in Sparcl. In the above we have modelled the case
where different data structures are used for encoding and decoding, which demands the use of
abstract type and consequently the use of lifting. In this section, we define encR directly in Sparcl,
which is possible when the same data structure is used for encoding and decoding.

To do so, we first give a concrete representation of Huff.

data Huff = Lf Symbol | Br Huff Huff

Here, Lf s encodes s into the empty sequence, and Br l r encodes s into Cons 0 c if l encodes s to c ,
and Cons 1 c if r encodes s to c . For example, Br (Lf ′

a
′) (Br (Lf ′

b
′) (Br (Lf ′

c
′) (Lf ′

d
′))) is the

Huffman tree used to encode the example presented in the beginning of Section 4.2.
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huffCompress : (List Symbol)• ⊸ (Huff ⊗ List Bit)•

huffCompress = encode initHuff

encode : Huff → (List Symbol)• ⊸ (List Bit)•

encode h Nil• = Nil• with null

encode h (Cons s ss)• =

let (s, r )• = pin s (λs ′.encode (updHuff s ′ h) ss) in

encR h s r

Fig. 6. Adaptive Huffman coding in Sparcl

Now let us define encR to be used in encode above. It is easier to define it via its inverse decR.

decR : Huff → (List Bit)• ⊸ (Symbol ⊗ List Bit)•

decR (Lf s) ys = (new eqSym s, ys)•

decR (Br l r ) ys = case ys of (Cons 0 ys′)• → decR l ys′ with λ(s, ).member s l

(Cons 1 ys′)• → decR r ys′

encR h s ys = invert (decR h) (s, ys)•

Here, member : Symbol → Huff → Bool is a membership test function. Recall that invert imple-
ments inversion of a bijection (Section 2). One can find that searching s in l for every recursive call
is inefficient, and this cost can be avoided by additional information on Br that makes a Huffman
tree a search tree. Another solution is to use different data structures for encoding and decoding as
we demonstrated in Section 4.2.1.

4.2.3 Adaptive Huffman Coding. In the above huffCompress, a Huffman coding table is fixed during
compression which requires the preprocessing makeHuff to compute the table. This is sometimes
suboptimal: for example, a one-pass method is preferred for streaming while a text could consist of
several parts with very different frequency distributions of symbols.
Being adaptive means that we have the following two functions instead of makeHuff .

initHuff : Huff updHuff : Symbol → Huff → Huff

Instead of constructing a Huffman coding table beforehand, the Huffman coding table is constructed
and changed throughout compression here.

The updating process of the Huffman coding table is the same in both compression and decom-
pression, which means that Sparcl is effective for writing an invertible and adaptive version of
Huffman coding in a natural way (Fig. 6). This is another demonstration of the Sparcl’s strength in
partial invertibility. Programming the same bijection in a fully-invertible language gets a lot more
complicated due to the irreversible nature of updHuff .

5 RELATED WORK

5.1 Program Inversion and Invertible/Reversible Computation

In the literature of program inversion (a program transformation technique to find f −1 for a
given f ), it is known that an inverse of a function may not arise from reversing all the execution
steps of the original program. Partial inversion [Nishida et al. 2005] addresses the problem by
classifying inputs/outputs into known and unknown, where known information is available also
for inverses. This classification can be viewed as a binding-time analysis [Gomard and Jones
1991; Jones et al. 1993] where the known part is treated as static. The partial inversion is further
extended so that the return values of inverses are treated as known as well [Almendros-Jiménez and
Vidal 2006]; in this case, it can no longer be explained as a binding-time analysis. This extension
introduces additional power, but makes inversion fragile as success depends on which function
is inverted first. For example, the partial inversion for goSubs succeeds when it inverts x − n
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first, but fails if it tried to invert goSubs x xs first. The design of Sparcl is inspired by these
partial inversion methods: we use (−)•-types to distinguish the known and unknown parts, and
pin together with case to control orders. Semi inversion [Mogensen 2005] essentially converts a
program to logic programs, which also allows the original and inverse programs to have common
computations. Its extension [Mogensen 2008] can handle a limited form of function arguments. The
PINS system allows users to specify control structures as they sometimes differ from the original
program [Srivastava et al. 2011]. As we mentioned in Section 1, these program inversion methods
may fail, and often for reasons that are not obvious to programmers.
Embedded languages can be seen as two-staged (a host and a guest), and there are several

embedded invertible/reversible programming languages. A popular approach to implement such
languages is based on combinators [Kennedy and Vytiniotis 2012; Mu et al. 2004b; Rendel and
Ostermann 2010; Wang et al. 2013], in which users program by composing bijections through
designated combinators. To the best of our knowledge, only [Kennedy and Vytiniotis 2012] has an
operator like pin : A• ⊸ (A → B•) ⊸ A ⊗ B•, which is key to partial invertibility. More specifically,
Kennedy and Vytiniotis [2012] has an operator depGame :: Game a → (a → Game b) →

Game (a,b). The types suggest that Game and (−)• play a similar role; indeed they both represent
invertibility but in different ways. In their system, Game a represents (total) bijections from bit
sequences and a-typed values, while in our system A• represents a bijection whose range is A
but domain is determined when unlift is applied. One consequence of this difference is that, in
their domain-specific system, there is no restriction of using a value v :: Game a linearly, because
there is no problem of using an encoder/decoder pair for type a multiple times, even though
nonlinear use of v : A•, especially discarding, leads to non-bijectivity. Another consequence of
the difference is that their system is hardwired to bit sequences and therefore does not support
deriving general bijections between a and b from Game a → Game b, whereas we can obtain a
(not-necessarily-total) bijections between A and B from any function of type A• ⊸ B• that does
not contain linear free variables.

The pin operator can be seen as a functional generalization of reversible update statements [Ax-
elsen et al. 2007] x ⊕= e in reversible imperative languages [Frank 1997; Glück and Yokoyama
2016; Lutz 1986; Yokoyama et al. 2008], of which the inverse is given by x ⊖= e with ⊖ satisfying
(x ⊕ y) ⊖ y = x for any y; examples of ⊕ (and ⊖) include addition, subtraction, bitwise XOR, and
replacement of nil [Glück and Yokoyama 2016] as a form of reversible copying [Glück and Kawabe
2003]. Having (x ⊕ y) ⊖ y means that ⊕ and ⊖ are partially invertible, and indicates that they
correspond to the second argument of pin. Whereas the operators such as ⊕ and ⊖ are fixed in
those languages, in Sparcl, leveraging its higher-orderness, any function of an appropriate type can
be used as the second argument of pin, which leads to concise function definitions as demonstrated
in goSub in Section 2 and the examples in Section 4.
Most of the existing reversible programming languages [Baker 1992; Frank 1997; Lutz 1986;

Mu et al. 2004b; Wang et al. 2013; Yokoyama et al. 2008, 2011] do not support function values,
and higher-order reversible programming languages are uncommon. One notable exception is
Abramsky [2005] that shows a subset of the linear λ-calculus concerning⊸ and ! (more precisely,
a combinator logic that corresponds to the subset) can be interpreted as manipulations of (not-
necessarily-total) bijections. However, it is known to be difficult to extend their system to primitives
such as constructors and invertible pattern matching [Abramsky 2005, Section 7].
A few reversible functional programming languages also support a limited form of partial

invertibility. RFunT,12 a typed variant of RFun [Yokoyama et al. 2011] with Haskell-like syntax,
allows a function to take additional parameters called ancilla parameters. The reversibility restriction

12https://github.com/kirkedal/rfun-interp
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is relaxed for ancilla parameters, and they can be discarded and pattern-matched without requiring
a way to determine branching from their results. However, these ancilla parameters are supposed
to be translated into auxiliary inputs and outputs that stay the same before and after reversible
computation, and mixing unidirectional computation is not their primary purpose. In fact, very
limited operations are allowed for these ancilla data by the system. CoreFun also supports ancilla
parameters [Jacobsen et al. 2018]. Their ancilla parameters are treated as static inputs to reversible
functions, and arguments that appear at ancilla positions are free from the linearity restriction.13

The system is overly conservative: all the functions are (partially) reversible, and thus functions
themselves used in the ancilla positions must obey the linearity restriction. More crucially, both
RFunT and CoreFun are first-order languages (to be precise, they allow top-level function names to
be used as values, but not partial application or λ-abstraction), which limits flexible programming.
In contrast, A• is an ordinary type in Sparcl, and there is no syntactic restriction on expressions
of type A•. This feature, combined with the higher-orderness, gives extra flexibility in mixing
unidirectional and invertible programming. For example, Sparcl allows a function composition
operator that can be used for both unidirectional (hence unrestricted) and invertible (hence linear)
functions, using multiplicity polymorphism [Bernardy et al. 2018; Matsuda 2020].

5.2 FunctionalQuantum Programming Languages

In quantum programming many operation are reversible, and there are a few higher-order quantum
programming languages [Rios and Selinger 2017; Selinger and Valiron 2006]. Among them, the
type system of Proto-Quipper-M [Rios and Selinger 2017] is similar to λPI→ in the sense that it also
uses a linear-type system and distinguishes two sorts of variable environments as we do with Γ

and Θ, although the semantic back-ends are different. They do not have any language construct
that introduces new variables to the second sort of environments (a counterpart of our Θ), because
their language does not have a counterpart to our invertible case.

It is also interesting to see that some quantum languages allowweakening (i.e., discarding) [Selinger
and Valiron 2006] and some allow contraction (i.e., copying) [Altenkirch and Grattage 2005]. In these
frameworks, weakening is allowed because one can throw away a quantum bit after measuring,
and contraction is allowed because states can be shared through introducing entanglements. As our
goal is to obtain a bijection as final product, weakening in general is not possible in our context.
On the other hand, it is a design choice whether or not contraction is allowed. Since the inverse of
copying can be given by equivalence checking and vice versa [Glück and Kawabe 2003]. However,
careless uses of copying may result in unintended domain restriction. Moreover supporting such a
feature requires hard-wired equivalence checks for all types of variables that can be in Θ (notice
that multiple uses of a variable in Γ will be reduced to multiple uses of variables in Θ [Matsuda and
Wang 2018c]). This requires the type system to distinguish types that can be in Θ from general
ones, as types such asA ⊸ B do not have decidable equality. Moreover, the hard-wired equivalence
checks would prevent users from using abstract types such as Huff in Section 4, for which the
definition of equivalence can differ from that on their concrete representations.

5.3 Bidirectional Programming Languages

It is perhaps not surprising that many of the concerns in designing invertible/bijective/reversible
languages are shared by the closely related field of bidirectional programming [Foster et al. 2007]. A
bidirectional transformation is a generalization of a pair of inverses that allows a component to be
non-bijective; for example, an (asymmetric) bidirectional transformation between a and b are given
by two functions called get : a → b and put : a → b → a [Foster et al. 2007]. Similarly to ours, in the

13A correction to Jacobsen et al. [2018] (personal communication with Michael-Kirkedal Thomsen, Jun 2020).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 118. Publication date: August 2020.



118:26 Kazutaka Matsuda and Meng Wang

bidirectional language HOBiT [Matsuda and Wang 2018c], a bidirectional transformation between
a and b is represented by a function from B a to B b, and top-level functions of type B a → B b

can be converted to a bidirectional transformation between a and b. Despite the similarity, there
are unique challenges in invertible programming. Notably, the handling of partial-invertibility that
this paper focuses on, and the introduction of the operator pin as a solution. Another difference
is that Sparcl is based on a linear type system, which, as we have seen, perfectly supports the
need for the intricate connections between unidirectional and inverse computation in addressing
partial invertibility. One of the consequences of this difference in the underlying type system is that
Matsuda and Wang [2018c] can only interpret top-level functions of type B a → B b as bidirectional
transformations between a and b, yet we can interpret functions of type A• ⊸ B• in any places as
bijections between A and B, as long as they have no linear free variables. Linear types also clarify
the roles of values and prevent users from unintended failures caused by erroneous use of variables.
For example, the type A• ⊸ (A → B•) ⊸ (A ⊗ B)• of pin clarifies that the function argument
of pin can safely discard or copy its input as the nonlinear uses do not affect the domain of the
resulting bijection.

It is worth mentioning that, in addition to bidirectional transformations, HOBiT provides a way
to lift bidirectional combinators (i.e., functions that take and return bidirectional transformations).
However, the same is not obvious in Sparcl due to its linear type system, as the combinators need
to take care of the manipulation of Θ environments such as splitting Θ = Θ1 + Θ2. On the other
hand, there is less motivation to lift combinators in the context of bijective/reversible programming
especially for languages that are expressive enough to be reversible Turing complete [Bennett
1973].

The applicative-lens framework [Matsuda andWang 2015a, 2018a], which is an embedded domain
specific language in Haskell, provides a function lift that converts a bidirectional transformation
(a → b,a → b → a) to a function of type L s a → L s b where L is an abstract type parameterized
by s . As in HOBiT, bidirectional transformations are represented as functions so that they can be
composed by unidirectional functions; the name applicative in fact comes from the applicative
(point-wise functional) programming style. (To be precise, L together with certain operations
forms a lax monoidal functor [Mac Lane 1998, Section XI.2] as Applicative instances [McBride
and Paterson 2008; Paterson 2012] but not endo to be an Applicative instance [Matsuda and Wang
2018a].) The type parameter s has a similar role to the s of the ST s monad [Launchbury and Jones
1994], which enables the unlifting that converts a polymorphic function ∀s .L s a → L s b back to a
bidirectional transformation (a → b,a → b → a). That is, unlike HOBiT, functions that will be
interpreted as bidirectional transformations are not limited to top-level ones. However, in exchange
for this utility, the expressive power of the applicative lens is limited compared with HOBiT;
for example, bidirectional cases are not supported in the framework, and resulting bidirectional
transformations cannot propagate structural updates as a result.
As a remark, duplication (contraction) of values is also a known challenge in bidirectional

transformation, for the purpose of supporting multiple views of the same data and synchronization
among them [Hu et al. 2004]. However, having unrestricted duplication makes compositional
reasoning of correctness very difficult; in fact most of the fundamental properties of bidirectional
transformation, including well-behavedness [Foster et al. 2007] and its weaker variants [Hidaka
et al. 2010; Mu et al. 2004a], are not preserved in the presence of unrestricted duplication [Matsuda
and Wang 2015b].

5.4 Linear Type Systems

Sparcl is based on λ
q
→, a core system of Linear Haskell [Bernardy et al. 2018], with qualified

typing [Jones 1995; Vytiniotis et al. 2011] for effective inference [Matsuda 2020]. An advantage of
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this system is that the only place where we need to explicitly handle linearity is the manipulation
of (−)•-typed values; there is no need of any special annotations for the unidirectional parts, as
demonstrated in the examples. This is different from Wadler [1993]’s linear type system, which
would require a lot of ! annotations in the code. Linear Haskell is not the only approach that is able
to avoid the scattering of !s. Mazurak et al. [2010] use kinds (◦ and ∗) to distinguish types that are
treated in a linear way (◦) from those that are not (∗). Thanks to the subkinding ∗ ⪯ ◦, no syntactic
annotations are required to convert the unrestricted values to linear ones. Their system has two

sort of function types:
◦
→ for the functions that themselves are treated in the linear way and

∗
→ for

the functions that are unrestricted. As a result, a function can have multiple incomparable types;
e.g., the K combinator can have four types [Morris 2016]. Universal types accompanied by kind
abstraction [Tov and Pucella 2011] addresses the issue to some extent; it works well especially for
K , but still gives the B combinator two incomparable types [Morris 2016]. Morris [2016] further
extends these two systems to overcome the issue by using qualified types [Jones 1995], which can
infer principal types thank to inequality constraints. Note that the implementation of Sparcl uses
an inference system by Matsuda [2020], which, based on OutsideIn(X) [Vytiniotis et al. 2011], also
uses qualified typing with inequality constraints for λ

q
→, inspired by Morris [2016].

6 CONCLUSION

We have designed Sparcl, a language for partially-invertible computation. The key idea of Sparcl
is to use types to distinguish data that are subject to invertible computation and those that are
not; specifically the type constructor (−)• is used for marking the former. A linear type system is
utilized for connecting the two worlds. We have presented the syntax, type system and semantics
of Sparcl, and proved that invertible computations defined in Sparcl are in fact invertible (and
hence bijective). To demonstrate the utility of our proposed language, we have proved its reversible
Turing completeness, and presented non-trivial examples of tree rebuilding and Huffman coding.

There are several future directions of this research. One direction is to use finer type systems.
Recall that we need to checkwith conditions even in the forward computation, which can be costly.
We believe that refinement types and their inference [Rondon et al. 2008; Xi and Pfenning 1998]
would be useful for addressing this issue. Currently, our prototype implementation is standalone,
preventing users from writing functions in another language to be used in lift, and from using
functions obtain by fwd and bwd in the other language. Although prototypical implementation
of a compiler of Sparcl to Haskell is in progress, a seamless integration through an embedded
implementation would be desirable [Matsuda and Wang 2018b]. Another direction is to extend
our approach to bidirectional transformations [Foster et al. 2007] to create the notion of partially
bidirectional programming. As discussed in Section 5, handling copying (i.e., contraction) is an
important issue; we want to find the sweet spot of allowing flexible copying without compromising
reasoning about correctness.
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