
Effect Handlers for Programmable Inference
Minh Nguyen

min.nguyen@bristol.ac.uk
University of Bristol

Bristol, UK

Roly Perera

roly.perera@bristol.ac.uk
University of Bristol

Bristol, UK

Meng Wang

meng.wang@bristol.ac.uk
University of Bristol

Bristol, UK

Steven Ramsay

steven.ramsay@bristol.ac.uk
University of Bristol

Bristol, UK

Abstract
Inference algorithms for probabilistic programming are com-

plex imperative programs with many moving parts. Effi-

cient inference often requires customising an algorithm to a

particular probabilistic model or problem, sometimes called

inference programming. Most inference frameworks are im-

plemented in languages that lack a disciplined approach to

side effects, which can result in monolithic implementations

where the structure of the algorithms is obscured and infer-

ence programming is hard. Functional programming with

typed effects offers a more structured and modular founda-

tion for programmable inference, with monad transformers

being the primary structuring mechanism explored to date.

This paper presents an alternative approach to inference

programming based on algebraic effects. Using effect signa-

tures to specify the key operations of the algorithms, and

effect handlers to modularly interpret those operations for

specific variants, we develop two abstract algorithms, or

inference patterns, representing two important classes of in-

ference: Metropolis-Hastings and particle filtering. We show

how our approach reveals the algorithms’ high-level struc-

ture, and makes it easy to tailor and recombine their parts

into new variants. We implement the two inference patterns

as a Haskell library, and discuss the pros and cons of alge-

braic effects vis-à-vis monad transformers as a structuring

mechanism for modular imperative algorithm design.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Software libraries and repositories; •
Mathematics of computing→ Probabilistic algorithms.

Keywords: probabilistic programming, algebraic effects, func-

tional programming, modularity

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

Haskell ’23, September 8–9, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0298-3/23/09.

https://doi.org/10.1145/3609026.3609729

ACM Reference Format:
Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay. 2023.

Effect Handlers for Programmable Inference. In Proceedings of the
16th ACM SIGPLAN International Haskell Symposium (Haskell ’23),
September 8–9, 2023, Seattle, WA, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3609026.3609729

1 Introduction
Probabilistic programming languages allow modellers to

use programs to formulate inference problems over models.

For example in ProbFX [Nguyen et al. 2022], a probabilistic

language embedded in Haskell, a linear regression model

relating input 𝑥 and output 𝑦 linearly can be expressed as:

linRegr :: Double→ Double→ Model (Double, Double)
linRegr 𝑥 𝑦 = do
𝑚← call (Sample (Normal 0 3))
𝑐 ← call (Sample (Normal 0 2))
call (Observe (Normal (𝑚 ∗ 𝑥 + 𝑐) 1) 𝑦)
pure (𝑚, 𝑐)

The two Sample operations specify the distributions that the

line’s slope𝑚 and intercept 𝑐 are sampled from, representing

our prior beliefs about𝑚 and 𝑐 before accounting for any

data, denoted P(𝑚,𝑐). Given an observed output 𝑦 for some

fixed input 𝑥 , the operationObserve represents a conditioning
side-effect, conditioning the model against the likelihood
of 𝑦 having been generated (in this case) from the normal

distribution with mean 𝑚 ∗ 𝑥 + 𝑐 and standard deviation

of 1, denoted P(𝑦 |𝑚,𝑐;𝑥). The variables 𝑥 and 𝑦 here are

observable, whereas𝑚 and 𝑐 that relate them are latent.

Inference over such a model is then the process of revising

our estimation of its latent variables on the basis of the

observed data, obtaining a posterior distribution. For the

linear regression example, the Bayesian update rule yields

the following equation for the posterior P(𝑚,𝑐 |𝑦;𝑥):

P(𝑚,𝑐 |𝑦;𝑥)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(𝑦 |𝑚,𝑐;𝑥) ·

prior︷ ︸︸ ︷
P(𝑚,𝑐)

P(𝑦;𝑥)︸ ︷︷ ︸
evidence

https://orcid.org/0000-0003-3845-9928
https://orcid.org/0000-0001-9249-9862
https://orcid.org/0000-0001-7780-630X
https://orcid.org/0000-0002-0825-8386
https://doi.org/10.1145/3609026.3609729
https://doi.org/10.1145/3609026.3609729

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

Unfortunately, extracting an exact form for the posterior is

rarely simple. Although the Sample and Observe operations in
linRegr determine the prior and likelihood respectively, com-

puting the evidence P(𝑦;𝑥) that forms the denominator often

involves complex, high-dimensional integration [Ackerman

et al. 2011], and probabilistic languages in practice hence

use approximation algorithms such as Monte Carlo meth-

ods [Andrieu et al. 2003] or variational inference [Fox and

Roberts 2012]. Most techniques involve treating the model

generatively — as something from which samples can be

drawn — and then iteratively constraining the behaviour

of the model so that, over time, those samples eventually

conform to the observations.

When using the model generatively in this way, inference

algorithms need to provide their own semantics for sampling

and observing. For example, Metropolis-Hastings algorithms

[Beichl and Sullivan 2000] execute the target model under

specific proposals, that fix the stochastic choices made by the

model on a given run. By selectively accepting or rejecting

proposals, the algorithm controls how samples are gener-

ated, and guarantees that as more samples are produced, the

distribution of values eventually converges on the desired

posterior. Pseudocode for a generic Metropolis-Hastings it-

eration is shown here for linear regression:

do (𝑚′, 𝑐′)← propose (𝑚, 𝑐)
𝜌′ ← exec (linRegr 𝑥 𝑦) (𝑚′, 𝑐′)
b ← accept 𝜌′ 𝜌
pure (if b then (𝑚′, 𝑐′) else (𝑚, 𝑐))

First new values 𝑚′ and 𝑐′ are proposed for the slope and

intercept, given the values from the previous iteration, 𝑚

and 𝑐. The function exec then executes the linear regression

model with a custom semantics for sampling and observing,

ensuring that𝑚′ and 𝑐′ are used for the corresponding Sample
operations, and conditioning with observations 𝑥 and 𝑦. The

resulting likelihood 𝜌′ is compared with 𝜌 from the previous

iteration to determine whether to accept the new proposal

or keep the current one. Running this procedure for many

iterations will generate a sequence of samples𝑚 and 𝑐 that

approximate the posterior distribution P(𝑚,𝑐 |𝑦;𝑥).
We think of Metropolis-Hastings, as sketched here, as an

inference pattern rather than an inference algorithm: there

are many algorithmic variants with this particular structure,

differing only in how they implement propose, exec, and ac-
cept. Indeed, most algorithms come in similar families of

variants, with abstract operations and skeletal behaviour

shared by the variants, as well as their own bespoke execu-

tion semantics for models. Particle filters [Djuric et al. 2003],

for example, also called sequential Monte Carlo methods,

rely on being able to partially execute collections of models

called particles from observation point to observation point;

at each observation, particles are randomly filtered, or re-
sampled, to retain only those likely to have come from the

Model

Observe Sample

Metropolis-Hastings Particle Filter

Propose Accept Resample

Independence

Metropolis

Particle

Metropolis-

Hastings

Multinomial

Particle Filter

Single-Site

Metropolis-

Hastings

Resample-

Move

Particle Filter

interprets

interprets

Abstract modeling code

Abstract inference pattern

Inference algorithm

Operation

interprets

Figure 1. Inference patterns presented in this paper

target posterior. Different instances of the Particle Filter pat-

tern vary in how the resampling operation works, and how

particles are executed between observation points; different

choices yield different well-known algorithms.

The task of implementing these algorithmic variants falls

not just to library designers; model authors also often need

to be versed in the intricacies of inference to achieve accept-

able performance. Programming new inference algorithms

out of reusable parts of existing ones is sometimes called

inference programming [Mansinghka et al. 2014]. Existing

approaches include: Venture [Mansinghka et al. 2018], a Lisp-

based language using metaprogramming techniques; Monad-

Bayes [Ścibior et al. 2018], which uses monad transformers

to implement a modular library for inference programming

in Haskell; and Gen [Cusumano-Towner et al. 2019], a in-

ference programming framework in Julia which relies on a

fixed black-box interface for executing models generatively.

In this paper, we present an approach to programmable

inference based on algebraic effects. We use effect signa-

tures to specify the key operations of various classes of ab-

stract inference algorithms, and effect handlers to specialise

those algorithms into concrete variants adapted to specific

problems. We use the approach to develop two abstract al-

gorithms, or inference patterns, representing two important

classes of inference, and implement them in Haskell. Our

specific contributions are as follows:

• §2 informally introduces the idea of an inference pattern.

• § 3 presents the Metropolis-Hastings inference pattern,

with IndependenceMetropolis and Single-SiteMetropolis-

Hastings as illustrative instances.

• § 4 presents the Particle Filter inference pattern, also

known as sequential Monte Carlo, with Multinomial Par-

ticle Filter and Resample-Move Particle Filter as instances.

We also derive Particle Metropolis-Hastings, an instance

of Metropolis-Hastings which uses Particle Filter.

• §5 shows that the performance of our approach is com-

petitive with state-of-the-art systems for programmable

inference based on other techniques.

Effect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Seattle, WA, USA

• §6 contrasts our approach to untyped approaches such

as Gen and Venture, and MonadBayes, the main existing

framework based on typed effects.

The algorithms we discuss are well known; what we bring

to the picture is the novel modular architecture, outlined

in Fig. 1, which reveals the high-level structure of the algo-

rithms and makes it easy to tailor and recombine their parts

into new variants. Themodel, provided by the user, expresses
an abstract inference problem in terms of Sample and Observe
operations. Inference patterns, provided by library designers,

assign specific semantics to those operations, and provide

skeletal procedures for iteratively executing a model under

those semantics. These procedures are in turn expressed in

terms of their own abstract operations, which can also be

assigned a semantics to obtain a concrete algorithm capable

of generating samples from the model’s posterior.

This design makes it easy to define new algorithmic vari-

ants out of existing ones. For example, we can easily build

a particle filter algorithm which uses another well-known

inference algorithm,Metropolis-Hastings, as an internal com-

ponent; equally easily, we can derive a version of Metropolis-

Hastings that uses particle filter. Moreover each of these

complex scenarios arise in real-world solutions.

We build on two pieces of prior work: the extensible freer
monad (§ 1.1), which adds an extensible effect system to

Haskell, and ProbFX (§1.2), an embedding of probabilistic

models in Haskell based on this approach.

1.1 Background: An Embedding of Extensible Effects
Effect systemsmodel effects as coroutine-like interactions be-

tween side-effecting expressions that request operations to be
performed, and special contexts, called handlers, that assign
meaning to those operations [Bauer and Pretnar 2015]. An

operation may provide a continuation, allowing the handler

to return control to the requesting expression. Effect systems

offer a flexible alternative to monad transformers [Liang

et al. 1995] for adding complex imperative features to func-

tional languages, making them an appealing tool for structur-

ing inference algorithms. But the only precedent we know of

is by Ścibior and Kammar [2015] on basic rejection sampling.

The extensible freer monad [Kiselyov and Ishii 2015] is an

embedding of a typed effect system into Haskell, exploiting

Haskell’s rich support for embedded languages. The basic

idea is to represent an effectful computation using the recur-

sive datatype Comp es a at the top of Fig. 2. A term of type

Comp es a represents a computation that produces a value of

type a, whilst possibly performing any of the computational

effects specified by the effect signature es, a type-level list of
type constructors. Leaf nodes Val x contain pure values x of
type a. Operation nodes Op op k contain operations op of the
abstract datatype EffectSum es b, representing the invocation
of an operation of type e b for some effect type constructor

e in es, where b is the (existentially quantified) return type

of the operation; the argument k is a continuation of type

data Comp (es :: [Type→ Type]) (a :: Type) where
Val :: a → Comp es a
Op :: EffectSum es b → (b→ Comp es a)→ Comp es a

instance Monad (Comp es) where
(>>=) :: Comp es a→ (a→ Comp es b)→ Comp es b
Val x >>= f = f x
Op op k >>= f = Op op (k >=> f)

class e ∈ es where
inj :: e a → EffectSum es a
prj :: EffectSum es a → Maybe (e a)

call :: e ∈ es⇒ e a→ Comp es a
call op = Op (inj op) Val

Figure 2. Extensible freer monad embedding

b → Comp es a that takes the result of the operation and

constructs the remainder of the computation.

As one might surmise, Comp es is a monad, allowing effect-

ful code to piggyback on Haskell’s do notation for sequential

chaining of monadic computations. The bind operator (>>=)
can be viewed as taking a computation tree of type Comp es a
and extending it at its leaves with a computation generated

by f :: a→ Comp es b. In the Val x case, a new computation f x
is returned; otherwise forOp op k, the rest of the computation

k is composed with f using Kleisli composition (>=>). Values
of type Comp es a are thus uninterpreted “computation trees”

comprised of pure values and operation calls chosen from es.
EffectSum es is key to the extensibility of the approach, rep-

resenting an “open” (extensible) sum of effect type construc-

tors; a concrete value of type EffectSum es a is an operation

of type e a for exactly one effect type constructor e contained
in es. The implementation of EffectSum is hidden; the type

class ∈ provides methods for safely injecting and projecting

effectful operations of type e a into and out of EffectSum es a,
with the constraint e ∈ es asserting that e is a member of es.
The helper call makes it easy to write imperative code, as we

saw in the linRegr example, injecting the supplied operation

into EffectSum es a and supplying the leaf continuation Val.

1.1.1 Interpreting Effectful Computations. Fig. 2 pro-
vided the machinery required to construct effectful com-

putations; Fig. 3 shows the machinery required to execute

them. Executing an effectful computation means providing

a “semantics” for each of its effects, in the form of an in-

terpreter called an effect handler. A handler for effect type

e has the type Handler e es a b; it assigns partial meaning to

a computation tree by interpreting all operations of type

e, discharging e from the front of the effect signature, and

transforming the result type from a to b. Effect handlers are
thus modular building blocks which compose to constitute

full interpretations of programs.

The helpers handle and handleWith make it easy to im-

plement handlers; handleWith is used for handlers that also

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

type Handler e es a b = Comp (e : es) a → Comp es b

handle
:: (a → Comp es b)
→ (forall c. e c→ (c→ Comp es b)→ Comp es b)
→ Handler e es a b
handle hval hop = handleWith () (const hval) (const hop′)

where hop′ op k = hop op (k ())

handleWith
:: s
→ (s→ a→ Comp es b)
→ (forall c. s→ e c→ (s→ c→ Comp es b)→ Comp es b)
→ Handler e es a b

handleWith s hval _ (Val x) = hval s x
handleWith s hval hop (Op op k) = case decomp op of

Left op𝑒 → hop s op𝑒 k′

Right op𝑒𝑠 → Op op𝑒𝑠 (k′ s)
where k′ s′ = handleWith s′ hval hop ◦ k

decomp :: EffectSum (e : es) a→ Either (e a) (EffectSum es a)

Figure 3. Effect handlers and handle/handleWith helpers

thread a state of type s, whereas handle sets s to be the triv-

ial unit type. Both take two higher-order arguments: hval,
which says how to interpret pure values, and hop, which says
how to interpret operations of effect type e. In the Val x case,
where the computation contains no operations, we simply

apply hval to the return value (and state), yielding a compu-

tation from which e has been discharged. In the Op op k case,
where op has type EffectSum (e : es) a, the auxiliary function

decomp determines whether op belongs to the leftmost effect

e, and can thus be handled by hop, or whether it belongs to
an effect in es, in which case we can simply reconstruct the

operation at the narrower type. In either case we recurse (by

extending the continuation) to ensure that the rest of the

computation is handled similarly.

1.2 Effects for Probabilistic Models
Nguyen et al. [2022] use the extensible freer monad repre-

sentation from §1.1 to define an embedding of probabilistic

models. Models, in Fig. 4, are simply computations with ac-

cess to two specific effects, Sample andObserve, eachwith one
operation: Sample d samples from probability distribution d,
and Observe d y conditions d on an observed value y before re-
turning that same value y. These operations characterise the
minimal interface assumed by most inference methods, and

for simplicity here, we assume they are the onlymodel effects

required, along with IO for random number generation.

Both Sample and Observe are constrained by the type class

Dist d a, specifying that the type d represents a primitive dis-

tribution generating values of type a, with the functional

dependency d→ a indicating that d fully determines a. In-
stances of Dist d a must implement two functions: (i) draw,

type Model a = Comp [Observe, Sample, IO] a

data Sample a where
Sample :: Dist d a ⇒ d→ Sample a

data Observe a where
Observe :: Dist d a ⇒ d→ a→ Observe a

class Dist d a | d → a where
draw :: d → Double→ a
logProb :: d → a→ LogP

type LogP = Double

Figure 4. Models as computations that sample and observe

which takes a distribution d and random point r from the unit

interval [0, 1], and draws a sample by inverting the cumu-

lative distribution function of d at r; and (ii) logProb, which
computes the log probability of d generating a particular

value. (The synonym LogP is helpful for distinguishing log

probabilities from other values of type Double.) For example,

the Bernoulli distribution over Booleans, with probability 𝑝

of generating True, and 1 - 𝑝 for False, can be implemented as:

data Bernoulli = Bernoulli { 𝑝 :: Double }
instance Distribution Bernoulli Bool where
draw (Bernoulli 𝑝) r = r ≤ 𝑝

logProb (Bernoulli 𝑝) b = if b then log 𝑝 else log (1 − 𝑝)

This states that drawing True corresponds to drawing a ran-

dom value r ≤ 𝑝 uniformly from [0, 1], with the log probabili-

ties log 𝑝 and log (1 - 𝑝) of drawing True and False respectively.

1.2.1 Interpreting Probabilistic Models. Interpreting a

model means providing a semantics for Sample and Observe.
The most basic interpretation of a model, as a generative

process with no inference, is usually called simulating (or

sampling from) the model, and can be defined as the com-

position of the handlers shown in Fig. 5. The handler de-
faultObserve (trivially) interprets Observe d y operations to

return the observed value y, via the continuation. The han-
dler defaultSample interprets Sample d operations, as long as

IO is also present in the effect signature, by first drawing a

random value r uniformly from the interval [0, 1] using the
IO function random, and then generating a sample from d
using draw. Lastly, the function runIO discharges the final IO
effect by simply extracting and sequencing the IO actions,

running the computation as a top-level Haskell program.

2 Inference Patterns
Our approach to programmable inference builds on the gen-

eral embedding of extensible effects from §1.1 and proba-

bilistic models from §1.2. Our key insight is that algebraic

effects seem to be a natural fit for two kinds of extensibility

central to programmable inference. First, representing mod-

els as (reinterpretable) effectful computations allows them

to be assigned semantics tailored to specific algorithms. For

Effect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Seattle, WA, USA

simulate :: Model a→ IO a
simulate = runIO ◦ defaultSample ◦ defaultObserve

defaultObserve :: Handler Observe es a a
defaultObserve = handle Val hop where
hop (Observe d y) k = k y

defaultSample :: IO ∈ es⇒ Handler Sample es a a
defaultSample = handle Val hop where
hop (Sample d) k = do r ← call random; k (draw d r)

runIO :: Comp [IO] a→ IO a
runIO (Val x) = pure x
runIO (Op op k) = fromJust (prj op) >>= runIO ◦ k

random :: IO Double

Figure 5. Effect handlers for model simulation

example, we can instrument models to produce the traces

needed for Metropolis-Hastings (§3), or arrange for models

to execute stepwise rather than to completion for particle

filters (§4). Second, we can take a similar view of the algo-

rithms themselves. By representing the key actions of each

broad approach to inference as reinterpretable “inference

operations” — for example resampling, in the case of particle

filters — we can turn them into extension points that can

be given different meanings by different members of the

same broad family of algorithms. Deriving a concrete infer-

ence algorithm is then a matter of supplying appropriate

interpreters for the model and for the inference operations

themselves. Moreover these extension points advertise to

non-experts the key steps in the algorithms.

As well as offering a modular and programmable approach

to algorithm design, this perspective also provides a useful

conceptual framework for understanding inference. For ex-

ample, Metropolis-Hastings and particle filters might look

quite different algorithmically, but our approach provides a

uniform way of looking at them: each can be understood as

an abstract algorithm, parameterised by a model interpreter,

and expressed using abstract operations whose interpreta-

tion is deferred to concrete implementations. This informal

organisational structure we call an inference pattern, and is

shown on the left-hand side of Fig. 6; a library designer de-

veloping their own abstract inference algorithms using our

approach would most likely follow this high-level template.

We now flesh out the idea of an inference pattern a little

before turning to the patterns we developed for this paper.

Inference patterns. The core of an inference pattern (see

Fig. 6, left) is an abstract algorithm expressing an inference

procedure. Taking inspiration from the parallelism literature

[Darlington et al. 1995], we call this an inference skeleton.
Inference skeletons depend on algebraic effects in two essen-

tial ways. First, each skeleton is parameterised by a model
interpreter, giving concrete algorithms control over model

execution; second, the skeleton is expressed in terms of ab-

stract inference operations unique to the pattern, which act

as additional extension points where concrete algorithms

can plug in specific behaviour.

The model interpreter has a model interpreter type, whose
exact form depends on the pattern, but is roughly:

type ModelExec a b = Model a→ IO b

and is used by the skeleton to fully interpret the model into

an IO action on each iteration. Having the inference skeleton

execute the model all the way to an IO action allows the

model and inference algorithm to have distinct effect sig-

natures. Assuming inference operations with concrete type

InfEffect, a skeleton will have a type resembling:

infSkeleton :: (InfEffect ∈ fs, IO ∈ fs)
⇒ ModelExec a b→ Model a→ Comp fs b

where fs contains only the effects specific to the algorithm.

If instead the skeleton were to incorporate the effects of the

model into its own computation, and the interpretation of the

model deferred until the handling of the inference operations,

fs would need to include model operations like Observe and
Sample, and the resulting computation trees would be much

larger. Keeping the effect signatures distinct makes for a

more modular and efficient design.

Pattern instances. A pattern instance (Fig. 6, right) pro-

vides a concrete algorithm. It instantiates an inference skele-

tonwith a specificmodel interpreter, determining the specific

model execution semantics to be used, and then composes

the result with an inference handler providing a specific in-
terpretation of the inference operations. Pattern instances

may also have auxiliary definitions.

We use this informal template to present our two inference

patterns: Metropolis-Hastings (§3) and Particle Filter (§4),

along with concrete instances illustrating the compositional-

ity and programmability of the approach. These are available

in an open source Haskell library.
1

3 Inference Pattern: Metropolis-Hastings
Metropolis-Hastings algorithms repeatedly draw samples

from a chosen “proposal” distribution. How these samples

are generated is controlled by an accept/reject scheme, deter-

mining whether to accept a new proposal and thus move to

a new configuration, or to reject it and remain in the current

configuration. Under certain standard assumptions, then,

these samples yield a Markov chain that converges to the

target posterior. (Here we only consider the case where the

proposal distribution is the actual model we are performing

inference over.)

The key operations of the algorithm are proposing and

accepting/rejecting proposals. To expose them as extension

1
github.com/min-nguyen/prob-fx-2

https://github.com/min-nguyen/prob-fx-2

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

Inference Pattern

Inference skeleton
Abstract inference algorithm. Given a model and a model interpreter,

yields a computation expressed in terms of inference operations.

Inference operations
Operations specific to inference pattern, e.g. proposal or resampling.

Model interpreter type
Pattern-specific type of model interpreters, which assign meaning

to Sample and Observe and execute a model to an IO action.

Pattern Instance

Concrete algorithm
Instantiates the inference skeleton with a model interpreter, and

post-composes with an inference handler.

Inference handler
Assigns a semantics to each inference operation.

Model interpreter
Interprets a model with semantics specific to a concrete algorithm.

Figure 6. Inference patterns (left) and pattern instances (right)

points, we represent them by the inference effect Propose w
in Fig. 7. The parameter w is a particular representation of

probability, or weight; the datatype Trace represents propos-
als. A trace fixes a subset of the stochastic choices made by

a model, which is key to how the algorithm controls where

samples are drawn from.

The inference skeleton mh n 𝜏0 executes n abstract itera-
tions of Metropolis-Hastings, iterating mhStep to generate a

Markov chain of length n, from a (typically empty) starting

trace 𝜏0. The head of the Markov chain (x, (𝑤 , 𝜏)) represents
the current configuration; x is the sample last drawn from

the model, 𝜏 is the trace for that model run, and 𝑤 is an

associated weight of type w, representing the probability

density at 𝜏 . First, mhStep calls Propose 𝜏 to generate a new
proposal 𝜏† derived from 𝜏 . Then, the model interpreter exec
is used to run the Model (Fig. 4), using the information in

𝜏† to fix stochastic choices, and resulting in a new trace 𝜏 ′

and associated weight 𝑤 ′. The new trace contains at least as

much information as 𝜏†, but additionally stores any choices

not determined by 𝜏†. The result of exec is an IO computa-

tion, which is inserted into the computation tree using call.
Finally, mhStep calls Accept to determine whether the new

configuration is by some (unspecified) measure “better” than

the current one, returning it if so, and otherwise retaining

the current.

To fix stochastic choices, a trace must associate to each

Sample operation enough information to determinise that

sample. This can be achieved in various ways, but here we as-

sume that Sample nodes are identified by addresses 𝛼 [Tolpin

et al. 2016] of abstract type Addr, either generated behind

the scenes or manually assigned by the user; a trace is then

a map from addresses to random values r ∈ [0, 1] providing
the source of randomness for drawing the sample associ-

ated with a given address. The Sample handler reuseTrace 𝜏
is used for executing a model under a trace 𝜏 : it generates

the draw using the stored random value for 𝛼 if there is one,

and otherwise generates a fresh value r which is recorded

in an updated trace. Since draw is pure, executing a model

under a fixed (and sufficiently large) trace is deterministic,

Inference Pattern: Metropolis-Hastings

Inference skeleton
mh :: (Propose w ∈ fs, IO ∈ fs)
⇒ Int→ Trace→ ModelExec w a→ Model a
→ Comp fs [(a, (w, Trace))]

mh n 𝜏0 exec model = do
let mhStep i chain

| i < n = do
let (x , (𝑤 , 𝜏)) = head chain
𝜏† ← call (Propose 𝜏)
(x′, (𝑤 ′, 𝜏 ′)) ← call (exec 𝜏† model)
nodei+1 ← call (Accept (x, (𝑤 , 𝜏)) (x′, (𝑤 ′, 𝜏 ′)))
mhStep (i + 1) (nodei+1 : chain)

| otherwise = pure chain
node0← call (exec 𝜏0 model) −− initialise first node
mhStep 0 [node0]

Inference operations
data Propose w a where
Propose :: Trace → Propose w Trace
Accept :: (a, (w, Trace)) → (a, (w, Trace))

→ Propose w (a, (w, Trace))

Model interpreter type
type ModelExec w a = Trace → Model a→ IO (a, (w, Trace))

Auxiliary definitions
type Trace = Map Addr Double

reuseTrace :: IO ∈ es ⇒ Trace→ Handler Sample es a (a, Trace)
reuseTrace 𝜏0 = handleWith 𝜏0 (_𝜏 ′ x→ Val (x, 𝜏 ′)) hop where

hop 𝜏 (Sample d 𝛼) k = do r ← call random
let (r′, 𝜏 ′) = findOrInsert 𝛼 r 𝜏
k 𝜏 ′ (draw d r′)

Figure 7. Inference Pattern: Metropolis-Hastings

allowing the generative behaviour of the model to be con-

trolled by providing it a specific trace. The reuseTrace handler
is thus a reusable “inference component” which can be used

by concrete instances of Metropolis-Hastings, of which we

now present two examples: Independence Metropolis (§3.1)

and Single-Site Metropolis-Hastings (§3.2).

Effect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Seattle, WA, USA

Pattern Instance: Independence Metropolis

Concrete algorithm
im :: Int → Model a→ IO [(a, (LogP, Trace))]
im n = runIO ◦ handleProposeim ◦ mh n empty execModelim

Inference handler
handleProposeim :: IO ∈ fs⇒ Handler (Propose LogP) fs a a
handleProposeim = handle Val hop where
hop (Propose 𝜏) k = do 𝜏 ′ ← mapM (const (call random)) 𝜏

k 𝜏 ′

hop (Accept r@(_, (𝑤 , _)) r′@(_, (𝑤 ′, _))) k
= do let ratio = 𝑤 ′ −𝑤

u ← call random
k (if exp ratio ≥ u then r′ else r)

Model interpreter
execModelim :: ModelExec LogP a
execModelim 𝜏 = rassoc ◦ runIO ◦ reuseTrace 𝜏 ◦ likelihood

Auxiliary definitions
likelihood :: Handler Observe es a (a, LogP)
likelihood = handleWith 0 (_𝑤 x→ Val (x,𝑤)) hop where

hop𝑤 (Observe d y 𝛼) k = k (𝑤 + logProb d y) y

rassoc = fmap (_((x,𝑤), 𝜏)→ (x, (𝑤 , 𝜏)))

Figure 8. Pattern Instance: Independence Metropolis

3.1 Pattern Instance: Independence Metropolis
Fig. 8 defines a simple Metropolis-Hastings variant called

Independence Metropolis, where each iteration proposes an

entirely new set of samples, and determines whether the pro-

posal is accepted by comparing its likelihood with the previ-

ous iteration. This specialises the weight type w in Propose w
and ModelExec w a to the type LogP for log likelihoods.

The handler handleProposeim interprets Propose by map-

ping new random values over the entire trace. (One can

equivalently return the empty trace, but our particular ap-
proach becomes useful for Particle Metropolis-Hastings in

§4.3.) To interpret Accept, we compute the likelihood ratio

between the current and previous iteration, and accept only

if greater than a random point in the interval [0, 1].
For model execution, likelihood handles Observe by sum-

ming the log likelihood 𝑤 over all observations with 0 as the
starting value. The full IndependenceMetropolis algorithm is

then derivable by providingmhwith a number of iterations n,
the empty map as the initial trace, and the model interpreter,

before post-composing with handleProposeim and runIO to

yield a Markov chain of n proposals for a given model.

3.2 Pattern Instance: Single-Site Metropolis-Hastings
The rate of accepted proposals in Independence Metropolis

suffers as more variables are sampled from: because each

proposal generates an entirely new trace, achieving a high

likelihood means sampling an entire set of likely proposals.

Fig. 9 defines Single-Site Metropolis-Hastings [Wingate et al.

Pattern Instance: Single-Site Metropolis-Hastings

Concrete algorithm
ssmh :: Int → Trace→ Model a→ IO [(a, (LPTrace, Trace))]
ssmh n 𝜏 = runIO ◦ handleProposessmh ◦ mh n 𝜏 execModelssmh

Inference handler
handleProposessmh :: IO ∈ fs⇒ Handler (Propose LPTrace) fs a a
handleProposessmh = handleWith 𝛼0 (const Val) hop where
hop _ (Propose 𝜏) k
= do 𝛼 ← call (randomFrom (keys 𝜏))

r ← call random
k 𝛼 (insert 𝛼 r 𝜏)

hop 𝛼 (Accept (x, (𝑤 , 𝜏)) (x′, (𝑤 ′, 𝜏 ′))) k
= do let ratio = (sum ◦ elems ◦ delete 𝛼)

(intersectionWith (−) 𝑤 ′ 𝑤)
+ log (size 𝜏) - log (size 𝜏 ′)

u ← call random
k 𝛼 (if exp ratio ≥ u then (x′, (𝑤 ′, intersection 𝜏 ′ 𝑤 ′))

else (x, (𝑤 , 𝜏)))

Model interpreter
execModelssmh :: ModelExec LPTrace a
execModelssmh 𝜏

= rassoc ◦ runIO ◦ reuseTrace 𝜏 ◦ defaultObserve ◦ traceLP

Auxiliary definitions
type LPTrace = Map Addr LogP

traceLP :: (Observe ∈ es, Sample ∈ es)
⇒ Comp es a→ Comp es (a, LPTrace)

traceLP = loop empty where
loop 𝑤 (Val x) = Val (x , 𝑤)
loop 𝑤 (Op op k)

| Just (Observe d y 𝛼)← prj op
= Op op (_x→ loop (insert 𝛼 (logProb d x)𝑤) (k x))

| Just (Sample d 𝛼) ← prj op
= Op op (_x→ loop (insert 𝛼 (logProb d x)𝑤) (k x))

| otherwise = Op op (loop𝑤 ◦ k)

randomFrom :: [a] → IO a

Figure 9. Pattern Instance: Single-Site Metropolis-Hastings

2011], which uses an alternative semantics for model execu-

tion and inference: proposing just one sample per iteration,

and otherwise reusing samples from the previous iteration.

The acceptance/rejection scheme is also slightly different,

comparing individual probabilities of Sample and Observe
operations with respect to the proposed sample. This spe-

cialises the weight type w of Propose w to LPTrace, mapping

addresses to their log probabilities.

The handler handleProposessmh threads an address 𝛼 , identi-

fying the sample currently being proposed. (The initial value

of this argument is unused, so we supply an arbitrary value

𝛼0.) For Propose, we use a helper randomFrom to select a new

address 𝛼 uniformly from the keys of trace 𝜏 , and then return

𝜏 updated with a new random value for 𝛼 . For Accept, the

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

acceptance ratio between 𝑤 ′ and 𝑤 is computed for corre-

sponding addresses by intersectionWith (−), using delete 𝛼 to

exclude the current proposal site, and also accounting for

the ratio of sizes between the two traces.
2
If the new trace 𝜏 ′

is accepted then intersection 𝜏 ′ 𝑤 ′ clears all unused samples

from it, given that𝑤 ′ will only ever store addresses relevant

to the model’s execution, as described next.

The semantics for model execution differs only slightly

from Independence Metropolis. Instead of summing the log

probabilities of Observe operations, we record the log proba-

bilities of all Observe and Sample operations encountered into
a fresh map 𝑤 of type LPTrace, via the handler traceLP shown
in Fig. 9. This deviates from the normal handler pattern,

matching on the result of prj op (§1) to intercept operations

of different effect types but leaving them unhandled. Here we

simply modify the continuation k to store the log probability
of the operation’s result. The case of prj returning Nothing
follows the same pattern as decomp returning Left in Fig. 3.

All conditioning side-effects are in fact taken care of by

traceLP, so the residual Observe operations are handled by

defaultObserve to simply return the observed values, and

the Sample operations by reuseTrace as before; the interpreted
model has type IO (a, (LPTrace, Trace)), containing the final log
probability and execution traces. We now have the parts to

derive Single-Site Metropolis-Hastings from the mh pattern.

4 Inference Pattern: Particle Filter
Particle filters [Doucet et al. 2009] generate samples from

the posterior by considering partial model executions. The

idea is to spawn multiple instances of the model called par-
ticles, and then repeatedly switch between (i) running the

various particles in parallel up to their next observation, and

(ii) subjecting them to a resampling process [Hol et al. 2006].

Resampling is a stochastic strategy for filtering out particles

whose observations are deemed unlikely to have come from

the posterior, i.e. are weighted lower than other particles. Ide-

ally, after many resampling steps, only particles that closely

approximate the posterior will remain.

A particle filter configuration is a list of (particle, weight)

pairs of type (Model a, w). The key operation is resampling,

which transforms a configuration by discarding some parti-

cles and duplicating others, but usually keeping the number

of particles constant; we expose this as an extension point

via the inference effect type Resample w in Fig. 10. The model

interpreter type ModelStep w a for particle filter is distinc-

tive because it characterises particle steppers, which partially

execute particles: a particle stepper resumes a suspended par-

ticle with weight w, executes it by some unspecified amount,

and returns an updated particle and weight.

2
By using intersectionWith (-), we assume that each execution of the model

encounters the same (addresses of) Observe operations, which is a common

assumption in probabilistic programming languages.

Inference Pattern: Particle Filter

Inference skeleton
pfilter :: (Resample w ∈ fs, IO ∈ fs)
⇒ Int→ w→ModelStep w a→Model a→ Comp fs [(a, w)]

pfilter n𝑤0 step model = pfStep (replicate n (model,𝑤0))
where pfStep p𝑤s = do

p𝑤s′ ← call (mapM step p𝑤s)
case done p𝑤s′ of

Just rs → Val rs
Nothing → call (Resample p𝑤s′) >>= pfStep

Inference operations
data Resample w a where
Resample :: [(Model a, w)] → Resample w [(Model a, w)]

Model interpreter type
type ModelStep w a = (Model a, w) → IO (Model a, w)

Auxiliary definitions
done :: [(Model a, w)] → Maybe [(a, w)]
done ((Val x , 𝑤) : p𝑤s) = done p𝑤s >>= Just ◦ ((x, 𝑤) :)
done (_ : _) = Nothing
done [] = Just []

advance :: LogP
→ Handler Observe es a (Comp (Observe : es) a, LogP)

advance𝑤 (Val x) = Val (Val x , 𝑤)
advance𝑤 (Op op k) = case decomp op of
Left (Observe d y _) → Val (k y, 𝑤 + logProb d y)
Right op𝑒𝑠 → Op op𝑒𝑠 (advance𝑤 ◦ k)

Figure 10. Inference Pattern: Particle Filter

The inference skeleton pfilter n𝑤0 describes a generic par-

ticle filter, recursively running a set of n particles with a

starting weight of 𝑤0 until termination using pfStep, at each
iteration using the particle stepper step to obtain a new con-

figuration p𝑤s′. The function done examines the new config-

uration to determine whether all particles have terminated,

in which case the return values and final weights of the

particles rs are returned, or whether some particles are still

executing, in which case the algorithm calls Resample on the

configuration and continues with the filtered result.

The handler advance is a reusable inference component

for implementing particle steppers. Given an initial weight

𝑤 , it advances a particle to the next Observe, returning the

rest of the computation k y unhandled, along with the accu-

mulated weight at that point. Matching on Val instead means

the particle has terminated, and so is returned alongside

its final weight. Notice that advance is not implemented in

terms of handle; this is because handle produces a “deep” han-
dler [Hillerström and Lindley 2018] which discharges the

handled effect from the effect signature, and so does not sup-

port the shallow (partial) handling needed for suspensions.

We now present two instances of Particle Filter: Multino-

mial Particle Filter (§4.1) and Resample-Move Particle Filter

Effect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Seattle, WA, USA

Pattern Instance: Multinomial Particle Filter

Concrete algorithm
mulpfilter :: Int → Model a→ IO [(a, LogP)]
mulpfilter n
= runIO ◦ handleResamplemul ◦ pfilter n 0 stepModelmul

Inference handler
handleResamplemul :: IO ∈ fs⇒ Handler (Resample LogP) fs a a
handleResamplemul = handle Val hop where
hop (Resample p𝑤s) k = do
let (ps , 𝑤s) = unzip p𝑤s

(𝑤snorm,𝑤s) = (normalise𝑤s, logMeanExp𝑤s)
idxs ← call (replicateM (length ps) (categorical𝑤snorm))
k (map ((,𝑤s) ◦ ps‼) idxs)

Model interpreter
stepModelmul :: ModelStep LogP a
stepModelmul (p,𝑤) = (runIO ◦ defaultSample ◦ advance𝑤) p

Auxiliary definitions
normalise :: [LogP]→ [LogP]
logMeanExp :: [LogP]→ LogP
categorical :: [LogP]→ IO Int

Figure 11. Pattern Instance: Multinomial Particle Filter

(§4.2), the latter constructed using Metropolis-Hastings. We

also present Particle Metropolis-Hastings (§4.3), an instance

of Metropolis-Hastings constructed using Particle Filter.

4.1 Pattern Instance: Multinomial Particle Filter
Many basic variants of particle filters can be implemented by

recording just the log probabilities of particles, specialising

w in Resample w andModelStep w to LogP. A popular example

is a particle filter that uses a “multinomial resampling” algo-

rithm, defined in Fig. 11. To interpret Resample p𝑤s, contain-
ing 𝑛 particles ps and their weights𝑤s, we use the categorical
distribution to draw 𝑛 integers from the range 0 ... 𝑛 − 1 with
log probabilities corresponding to the normalised weights

𝑤snorm. These integers indicate the positions of particles to
continue executing with, which are extracted by indexing

with (‼), and then uniformly paired with the log mean of the

weights, 𝑤s; it is expected for particles with higher weight

to be selected more than once, and unlikely ones pruned.

For model execution, Observe is handled by advance, and
Sample simply by defaultSample for drawing random values.

Then we can derivemulpfilter by using pfilter n 0 handleParticle
to construct an abstract particle filter of n particles with start-
ing weight 0, and composing with (runIO ◦ handleResamplemul)
to specialise to a multinomial particle filter that generates n
samples from the posterior and their final weights.

4.2 Pattern Instance: Resample-Move Particle Filter
Complex inference problems often require the programmer

to combine different top-level inference procedures, each

Pattern Instance: Resample-Move Particle Filter

Concrete algorithm
rmpf :: Int → Int→ Model a→ IO [(a, PState)]
rmpf n m model = (runIO ◦ handleResamplermpf m model

◦ pfilter n (0, empty) stepModelrmpf) model

Inference handler
handleResamplermpf :: IO ∈ fs
⇒ Int→ Model a→ Handler (Resample PState) fs a a

handleResamplermpf m model = handleWith 0 (const Val) hop
where
hop t (Resample p𝑤𝜏s) k = do
let (𝑤s, 𝜏s) = (unzip ◦ map snd) p𝑤𝜏s

(𝑤snorm,𝑤s) = (normalise 𝑤s, logMeanExp𝑤s)
idxs ← call (replicateM (length 𝜏s) (categorical 𝑤snorm))
let 𝜏sres = map (𝜏s ‼) idxs

modelt = suspendAfter t model

k (t + 1) =<< forM 𝜏sres (_𝜏 → do
(pmov, (_, 𝜏mov)) : _← call (ssmh m 𝜏 modelt)
pure (pmov, (𝑤s, 𝜏mov)))

Model interpreter
stepModelrmpf :: ModelStep PState a
stepModelrmpf (p, (𝑤 , 𝜏))
= (rassoc ◦ runIO ◦ reuseTrace 𝜏 ◦ advance𝑤) p

Auxiliary definitions
type PState = (LogP, Trace)

suspendAfter :: Observe ∈ es
⇒ Int→ Comp es a→ Comp es (Comp es a)

suspendAfter _ (Val x) = Val (Val x)
suspendAfter t (Op op k) = case prj op of

Just (Observe d y _) → if t ≤ 0 then Val (k y)
else Op op (suspendAfter (t - 1) ◦ k)

Nothing → Op op (suspendAfter t ◦ k)

Figure 12. Pattern Instance: Resample-Move Particle Filter

addressing a different sub-problem. For example, the resam-

pling step in particle filtering can result in many particles

becoming the same, limiting the range of values sampled

from the posterior, a problem called particle degeneracy. One
solution is to use Metropolis-Hastings proposals to “move

around” the sampled values of each particle after resampling,

an approach called the Resample-Move Particle Filter [Gilks

and Berzuini 2001]. This kind of wholesale algorithm reuse

is also supported in our framework, and we show this now

by deriving Resample-Move Particle Filter (Fig. 12) as an

instance of Particle Filter, by providing a Resample handler
which calls Single-Site Metropolis-Hastings (§3.2).

To specialise pfilter to use Metropolis-Hastings, we set the

weight parameter w to PState, now also storing the particle’s

execution trace to allow for proposals. To know how far to

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

Pattern Instance: Particle Metropolis-Hastings

Concrete algorithm
pmh :: Int→ Int→ [Addr]→Model a→ IO [(a, (LogP, Trace))]
pmh m n \ model = do
(_ , 𝜏)← (runIO ◦ reuseTrace empty ◦ defaultObserve) model
let 𝜏\ = filterKey (`elem` \) 𝜏

(runIO ◦ handleProposeim ◦ mh m 𝜏\ (execModelpmh n)) model

Model interpreter
execModelpmh :: Int→ ModelExec LogP a
execModelpmh n 𝜏\ model = do
let stepModelpmh :: ModelStep LogP a

stepModelpmh (p,𝑤) = (fmap fst ◦ runIO
◦ reuseTrace 𝜏\ ◦ advance𝑤) p

(xs , 𝑤s)← (fmap unzip ◦ runIO ◦ handleResamplemul
◦ pfilter n 0 stepModelpmh) model

let (𝑤snorm,𝑤s) = (normalise𝑤s, logMeanExp𝑤s)
idx ← categorical 𝑤snorm
pure (xs ‼ idx, (𝑤s, 𝜏\))

Figure 13. Pattern Instance: Particle Metropolis-Hastings

execute a particle under a given proposal, the Resample han-
dler increments a state variable t at each Resample, tracking
the number of observations encountered so far in the model.

To handle Resample, we unzip the particle states into their

weights 𝑤s and traces 𝜏s, using 𝑤s to carry out multinomial

resampling as in Fig. 11 but for resampling a selection of

traces 𝜏sres. The helper suspendAfter then produces a copy

modelt of the model suspended after observation t, which
will let us instantiate new particles that resume at that point.

We execute modelt under each resampled trace in 𝜏sres for a
series of ssmh updates; the most recent update is taken, from

which the final moved particle pmov and its trace are used.

The model interpreter is simply a particle stepper which

uses reuseTrace instead of defaultSample to record/reuse the

particle’s trace. The concrete algorithm rmpf n m can then be

assembled from these parts, yielding a multinomial particle

filter of n particles, where each resampling step is followed by

m Single-Site Metropolis-Hastings updates to each particle.

4.3 Pattern Instance: Particle Metropolis-Hastings
We now revisit the Metropolis-Hastings inference pattern

from §3, and show that our framework makes it equally easy

to reuse a particle filter inside Metropolis-Hastings. In §3,

we only considered algorithms where the proposed traces 𝜏

fixed the values of all latent variables, fully determinising

the model. But often we only care about proposing a sub-
set of the trace, 𝜏\ for some variables of interest \ , allowing

the other latent variables to be freshly sampled. It then be-

comes possible to use a particle filter to run each proposal

for many different simulations, averaging over the particles

to compute the likelihood used to accept or reject the pro-

posal. This is known as Particle Metropolis-Hastings [Dahlin

et al. 2015] and is used to reduce the variance of likelihood

estimates of proposals. Fig. 13 derives a version of this from

the Metropolis-Hastings pattern, providing a ModelExec that
also calls a multinomial particle filter (§4.1), and reusing the

Propose handler from Independence Metropolis (§3.1).

The model interpreter takes a number of particles n and
trace 𝜏\ providing values for the latent variables of interest,

i.e. addresses \ . It begins by defining an internal particle

stepper which executes a particle to the next observation

as usual, but handles Sample with reuseTrace 𝜏\ so that each

particle uses fixed values for the latent variables in \ , using

fmap fst to ignore the updated trace. The particle stepper is

then used to instantiate a particle filter otherwise identical

to the multinomial one, producing a list of particle outputs

xs and weights 𝑤s. To conform to the ModelExec type for

Metropolis-Hastings, the model interpreter must return a

model result plus a weight and trace; for the model result

we draw an element of xs with probability proportional to

the weights, and for the weight we use the log mean of 𝑤s.
For the trace, we return 𝜏\ rather than the possibly extended

trace returned by reuseTrace, to avoid fixing stochastic choices
other than those in 𝜏\ (when handling Propose in §3.1).

The algorithm pmh m n \ then describes m Independence

Metropolis proposals for addresses \ , but where each pro-

posal is weighted by simulating the model as n particles. The
first two lines initialise 𝜏\ , using reuseTrace empty to populate
an empty trace, and then filtering to the addresses in \ .

5 Performance Evaluation
Before considering howwell our approach achieves the goals

set out in §1, we consider how practical it is for actually run-

ning inference. This section shows that our implementation

is capable of competing with real-world probabilistic pro-

gramming systems, suggesting that the choice of algebraic

effects as a foundation does not imply a compromise on per-

formance. We compare with two state-of-the-art systems

designed with programmable inference as an explicit goal:

MonadBayes
3
[Ścibior et al. 2018], a Haskell library that uses

a monad transformer effect system, and Gen
4
[Cusumano-

Towner et al. 2019], an embedded language in Julia.

We compared themean execution times of four algorithms:

Single-Site Metropolis-Hastings (SSMH), Multinomial Par-

ticle Filter (MPF), Particle Metropolis-Hastings (PMH), and

Resample-Move Particle Filter (RMPF). Each algorithm is

applied across three types of model: linear regression, hid-

den Markov model, and Latent Dirichlet allocation. These

experiments were carried out on an Intel Core i7-9700 CPU

with 16GB RAM.

On average, we outperform either one or both of the other

systems across all algorithms, sometimes asymptotically or

by several orders of magnitude. When varying the number

of iterations performed or particles used by each algorithm

3
github.com/tweag/monad-bayes

4
github.com/probcomp/Gen.jl

https://github.com/tweag/monad-bayes
https://github.com/probcomp/Gen.jl

Effect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Seattle, WA, USA

(a) Execution times of inference algorithms (top) with varying number of algorithm iterations or particles. The right-hand axis fixes the

number of observations. PMH-50 indicates 50 MH updates that vary in the number of particles, and RMPF-10 indicates 10 particles that vary

in the number of MH updates.

(b) Execution times of inference algorithms (right) with varying number of observations. The right-hand axis fixes the number of algorithm

iterations or particles. PMH-50-10 indicates 50 MH updates that use 10 particles; RMPF-10-1 indicates 10 particles that use 1 MH update.

Figure 14. Performance comparison of our system, ProbFX, with MonadBayes and Gen in terms of mean execution times. The

number of executions per mean is left to the control of the benchmarking suites, Criterion (Haskell) and BenchmarkTools.jl

(Julia). Truncated line plots indicate an algorithm being killed early by the host machine for certain benchmark parameters.

Missing line plots indicate an algorithm not being readily implemented in the system.

https://hackage.haskell.org/package/criterion
https://github.com/JuliaCI/BenchmarkTools.jl

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

in Fig. 14a, our performance scales linearly across all models.

Our performance remains linear when varying the number of

observations provided to models in Fig. 14b, except for RMPF

where, like MonadBayes and Gen, we scale quadratically.

Against MonadBayes, for SSMH we are on average 15x
slower for linear regression, and 1.8x faster for other mod-

els. The former result is likely because of the specific linear

regression model used, which varies only in the number of

observe operations, and in contrast to our implementation,

their version of SSMH does not store log weights for indi-

vidual observations, but instead simply sums over them. For

MPF, PMH, and RMPF, we average faster by 27x, 16x, and 4.9x
across all models. When increasing the number of particles

in MPF and PMH, the runtime of MonadBayes scales quadrat-

ically, and the process is killed when more than a moderate

number of particles are used. We suspect this is due to their

use of the ListT monad transformer to represent collections

of particles, which in our experience scales poorly as the size

of the transformer stack grows.

Comparing with Gen, we are roughly 1.1x and 72x faster
for SSMH and MPF, the latter arising mainly because Gen’s

MPF implementation scales quadratically with the number

of model observations, and for RMPF, we are on average

2.9x slower. We do not compare PMH since it is not directly

provided in Gen, and so leave this to future work.

6 Qualitative Comparison
§1 identified two key forms of extensibility central to pro-

grammable inference, of which we have seen several exam-

ples in the preceding sections:

1. Reinterpretable models. Different algorithms require

custom semantics for how models sample and observe, as
well as fine-grained control over model execution in order

to implement essential behaviours like suspended par-

ticles and tracing. “Programmability” here means being

able to easily customise how models execute in order to

derive or adapt inference algorithms.

2. Modular, reusable algorithms. Different algorithms

from the same broad family implement key behaviours

like resampling or proposing differently. “Programmabil-

ity” here means being able to plug alternative behaviours

into an existing algorithmwithout reimplementing it from

scratch, but also being able to define new abstract algo-

rithms that are easily pluggable in this way.

Given that inference programming is often undertaken by

domain experts, for whom the activity may primarily be a

means to an end, programmability matters. Here we look at

how programmability is achieved in existing systems, briefly

considering dynamically typed settings in § 6.1, and then

turning in more detail to MonadBayes in § 6.2, the main

existing system based on typed effects.

6.1 Dynamically typed approaches
Most programmable inference systems to date have been

implemented in dynamic languages. We consider Venture,

Gen, Pyro, and Edward; other mainstream systems like An-

glican [Tolpin et al. 2016] and Turing [Ge et al. 2018] were

not designed with inference programming in mind.

Reinterpretable models. In Venture [Mansinghka et al.

2014], modelling and inference instructions are interleaved,

with the inference code affecting the semantics of preced-

ing modelling code; this is flexible but lacks a clear delina-

tion between model and inference. Gen (in Julia) provides

a black-box interface for interacting with models, exposing

capabilities such as simulating and tracing, but the opera-

tions are non-programmable (have fixed meanings). Pyro

[Bingham et al. 2019] and Edward [Moore and Gorinova

2018] (in Python) are more flexible, relying on a stack of

programmable coroutines that are sequentially invoked by

sample and observe calls; this has some flavour of algebraic

effects, allowing bespoke semantics for sample and observe,
albeit without a type discipline for tracking effects and as-

sociating them to handlers, and requiring global state to

maintain the coroutine stack.

Control over model execution is realised in different ways.

For particle stepping, Gen requires the programmer to man-

age this themselves, parameterising their model on the num-

ber of steps to be executed. In Pyro, the programmer must

implement a method step for any model they want to execute

in this way. Other dynamic languages rely on continuation-

passing-style transformations [Goodman 2014; Tolpin et al.

2016]. Algebraic effects seem to offer a clear advantage here,

providing handlers with access to the continuation and mak-

ing idioms like stepwise execution easy to implement in

inference code, rather than requiring any changes to models.

Modular, reusable algorithms. Venture offers a range

of high-level inference procedures as reusable primitives,

but new inference primitives must be written in Venture’s

DSL, which cannot reuse external inference code. In Gen,

Pyro, and Edward, the inference libraries are implemented

using regular host-language functions. While technically

reusable, the lack of an effect discipline means these func-

tions tend to mix arbitrary computation with model inter-

actions, rather than being organised explicitly around the

key operations of the algorithm, making them challenging

to reuse in new contexts.

6.2 MonadBayes
MonadBayes is a Haskell library for typed programmable

inference based on the Monad Transformer Library (MTL).

MTL is an imperative programming framework that allows

the programmer to stack monads, producing a combined

effect consisting of “layers” of elementary monadic effects

called monad transformers [Kiselyov et al. 2013]. A given

set of monads may be layered in different ways; moreover

Effect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Seattle, WA, USA

Sampling and observing as type class methods
class Monad m⇒ MSamp m where
rand :: m Double

class Monad m⇒ MCond m where
score :: LogP→ m ()

Monad for weighting a model
data Weighted m a = W (StateT LogP m a)
instance MSamp m⇒ MSamp (Weighted m) where
rand = lift ◦ rand

instance Monad m⇒ MCond (Weighted m) where
score w = W (modify (+ w))

Monad for tracing a model
data Traced m a = Tr (Weighted (FreeT SamF m) a) (m (Trace′ a))
instance MSamp m⇒ MSamp (Traced m) where
rand = Tr rand (fmap singleton rand)

instance MCond m⇒ MCond (Traced m) where
score w = Tr (score w) (score w >> pure (score w))

(a) MonadBayes

Sampling and observing as data constructors
data Sample a where
Sample :: Dist d a ⇒ d→ Sample a

data Observe a where
Observe :: Dist d a ⇒ d→ a→ Observe a

Handler for weighting a model
likelihood :: Handler Observe es a (a , LogP)
likelihood = handleWith 0 (_w x→ Val (x, w))
(_w (Observe d y) k → k (w + logProb d y) y)

Handler for tracing a model
reuseTrace :: Trace → Handler Sample es a (a , Trace)
reuseTrace 𝜏0 = handleWith 𝜏0 (_𝜏 x→ Val (x, 𝜏))
(_𝜏 (Sample d 𝛼) k→ do r← call random

let (r′ , 𝜏 ′) = findOrInsert 𝛼 r 𝜏
k 𝜏 ′ (draw d r′))

(b) Our library

Figure 15. Support for reinterpretable models

layers can be abstract, with their operations defined by a type

class. To invoke an operation of a specific abstract monad m
from the stack, the user (or library) must define how each

monad transformer abovem relays that operation call further
down the stack. A program written in MTL, whose type

is an abstract stack of monad transformers, determines its

semantics by instantiating to a particular concrete stack.

Reinterpretablemodels. InMonadBayes, reinterpretable

models are provided by MTL’s support for abstract monad

stacks. The constrained type (MSamp m, MCond m)⇒ m a rep-
resents a model, where the type constructor m is an abstract

stack of monad transformers, each providing semantics for

sampling (rand) and observing (score) by implementing the

type classes MSamp and MCond in Fig. 15a. Following the

usual MTL pattern, each concrete monad must either give a

concrete behaviour for rand and/or score, or relay that oper-

ation to a monad further down the stack. For example, the

Weighted m monad is for weighting a model m; it updates a
stored weight when observing with score, but simply dele-

gates any calls to rand to its contained monad m, using lift.
The analogue of MSamp and MCond in our library are the

concrete datatypes Sample and Observe in Fig. 15b, whose

operations are also abstract (now as data constructors), but

with semantics given by effect handlers rather than class

instances; the counterpart to the Weighted m monad is the

likelihood handler which interprets Observe to accumulate

a weight. The analogue of relaying comes “for free” in the

algebraic effects implementation, via handleWith (§1).

While monad transformers are both compositional and

type-safe, the network of relaying that arises in MonadBayes

is non-trivial. More than one concrete monad in the stack

may provide sample and observe behaviours (such as Traced

in Fig. 15a, which recursively applies rand and score to its

components); others may opt not to relay. As relaying is

carried out implicitly, via type class resolution, the eventual

runtime behaviour of a model may not be obvious. With

algebraic effects, the correspondence between operations

and their semantics is usually more evident, in the form of

handlers, such as the reuseTrace and likelihood handlers in

Fig. 15b which provide semantics for Sample and Observe.
For control over model execution e.g. for particle stepping,

MonadBayes requires the programmer to use specific con-

trol effects, namely the free monad transformer FreeT and

the Coroutine monad. Although model authors are oblivious

to this particular detail, inference code can still require a

significant amount of plumbing which can obscure the key

operations of the algorithm. Algebraic effects instead pro-

vide access to the continuation in each handler, allowing the

advertised effect signature to remain domain-specific.

Modular, reusable algorithms. The reusable building
blocks in MonadBayes are datatypes that implement the type

classes MSamp and MCond from Fig. 15a, such as Weighted
and Traced. Inference algorithms are functions that instan-

tiate a model’s type from an abstract stack to a specific se-

quence of these datatypes. To illustrate, the (simplified) type

of rmpf in Fig. 16a, read inside-out, instantiates the supplied

model to “list of weighted, traced executions”. This expresses

Resample-Move Particle Filter as a computation that nests

Metropolis-Hastings (using Traced) inside a particle filter (us-
ing ListT for particles). Conversely, the type of pmh suggests

that Particle Metropolis-Hastings uses a particle filter in-

side Metropolis-Hastings. Thus the construction of inference

algorithms out of reusable parts is expressed primarily at

the type level: by selecting combinations of datatypes, one

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

rmpf :: Traced (Weighted (ListT IO)) a → ...

pmh :: Weighted (ListT (Traced IO)) a → ...

(a)MonadBayes

rmpf = handleResamplermpf ◦ pfilter stepModelrmpf where
stepModelrmpf = reuseTrace ◦ advance

pmh = handleProposeim ◦ mh execModelpmh where
execModelpmh = handleResamplemul ◦ pfilter stepModelpmh

(b) Our library

Figure 16. Support for inference as modular building blocks

determines the specific sampling and conditioning effects

that occur at run-time, and the order in which they interact.

Algebraic effects are similar in a way: the programmer also

selects an ordering of abstract operations when instantiating

the effect signature es in Comp es a. However, the operations’
semantics are not determined by the effect types themselves,

but are given separately by effect handlers. For instance,

the algorithm rmpf in Fig. 16b is implemented by choosing

a composition of handlers stepModelrmpf for executing the

model, plus a handler handleResamplermpf for the inference ef-

fect. Here, constructing inference algorithms out of reusable

parts is expressed mainly at the value level, via effect han-

dler composition.

While each of the concrete monads in MonadBayes is by

itself intuitive, for sophisticated algorithms like rmpf the
transformer stacks can become unwieldy. To extend an algo-

rithm with a new monad, perhaps with its own type class

operations, requires each existing monad in the stack to pro-

vide a corresponding instance, and the new monad in turn

to implement each supported operation in the stack. Thus

programmability comes with a certain cost in terms of the

amount of boilerplate required. With algebraic effects, sup-

port for new semantics is often more lightweight, requiring

only a new handler to define the relevant operations. For ex-

ample by swapping out the Resample handler in multinomial

particle filter (§ 4.1), we were able to derive several other

variants not discussed in the paper such as residual and sys-
tematic particle filter [Doucet et al. 2009], and also compose

these parts to form other algorithms like Resample-Move

Particle Metropolis-Hastings [Chopin et al. 2013].

7 Conclusion and Future Work
Typed functional languages like Haskell offer a type-safe and

compositional foundation for inference programming. How-

ever, the intersection of these paradigms can involve a steep

learning curve for individuals not already well versed in both.

This paper presented a technique based on algebraic effects

and operations for explicating the core structure of inference

algorithms, and effect handlers as an intuitive and modular

interface for programming them. We used this technique to

implement some off-the-shelf algorithms in a modular way.

One area of future work is to explore the existing Haskell

support for automatic differentiation [Kmett et al. 2021;

van den Berg et al. 2022] and its interplaywith effect handlers,

which would enable modern inference techniques like HMC

[Chen et al. 2014] and variational autoencoders [Kingma and

Welling 2013] that require differentiable models. Another

is to formalise some properties of our library. For exam-

ple, MonadBayes has modular proofs that ensure each of its

monad transformers correctly produces an “unbiased sam-

pler” for inference [Ścibior et al. 2017]; it may be possible to

transfer the semantics of monad transformers to an algebraic

effect setting, perhaps using work by Schrijvers et al. [2019]

that specifies when one is expressable in terms of the other.

Finally, we are interested in how effect handlers compare

to “unembedding” [Matsuda et al. 2023] as a technique for

embedding abstract probabilistic programs; this may allow

regular Haskell-bound variables to be assigned the various

non-standard semantics that come with probabilistic lan-

guages, e.g. of random variables, or optimisable variables

that make use of differentiation.

Acknowledgements
We thank the Bristol Programming Languages research group

for helping this work to thrive. This work is partly funded by

the EPSRC grant EXHIBIT: Expressive High-Level Languages
for Bidirectional Transformations (EP/T008911/1).

References
Nathanael L Ackerman, Cameron E Freer, and Daniel M Roy. 2011. Noncom-

putable conditional distributions. In 2011 IEEE 26th Annual Symposium
on Logic in Computer Science. IEEE, 107–116. https://doi.org/10.1109/
LICS.2011.49

ChristopheAndrieu, NandoDe Freitas, ArnaudDoucet, andMichael I Jordan.

2003. An introduction to MCMC for machine learning. Machine learning
50, 1 (2003), 5–43. https://doi.org/10.1023/A:1020281327116

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects

and handlers. Journal of logical and algebraic methods in programming
84, 1 (2015), 108–123. https://doi.org/10.1016/j.jlamp.2014.02.001

Isabel Beichl and Francis Sullivan. 2000. The metropolis algorithm. Com-
puting in Science & Engineering 2, 1 (2000), 65–69. https://doi.org/10.
1109/5992.814660

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj

Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall,

and Noah D Goodman. 2019. Pyro: Deep universal probabilistic program-

ming. The Journal of Machine Learning Research 20, 1 (2019), 973–978.

https://doi.org/10.5555/3322706.3322734
Tianqi Chen, Emily Fox, and Carlos Guestrin. 2014. Stochastic gradient

hamiltonian monte carlo. In International conference on machine learning.
PMLR, 1683–1691. https://doi.org/10.48550/arXiv.1402.4102

Nicolas Chopin, Pierre E Jacob, and Omiros Papaspiliopoulos. 2013. SMC2:

an efficient algorithm for sequential analysis of state space models. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology) 75, 3
(2013), 397–426. https://doi.org/10.1111/j.1467-9868.2012.01046.x

Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K

Mansinghka. 2019. Gen: a general-purpose probabilistic programming

system with programmable inference. In Proceedings of the 40th acm
sigplan conference on programming language design and implementation.
221–236. https://doi.org/10.1145/3314221.3314642

https://doi.org/10.1109/LICS.2011.49
https://doi.org/10.1109/LICS.2011.49
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1109/5992.814660
https://doi.org/10.1109/5992.814660
https://doi.org/10.5555/3322706.3322734
https://doi.org/10.48550/arXiv.1402.4102
https://doi.org/10.1111/j.1467-9868.2012.01046.x
https://doi.org/10.1145/3314221.3314642

Effect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Seattle, WA, USA

Johan Dahlin, Fredrik Lindsten, and Thomas B Schön. 2015. Particle

Metropolis–Hastings using gradient and Hessian information. Statistics
and computing 25, 1 (2015), 81–92. https://doi.org/10.1007/s11222-014-

9510-0

John Darlington, Yi-ke Guo, Hing Wing To, and Jin Yang. 1995. Parallel

Skeletons for Structured Composition. SIGPLAN Not. 30, 8 (aug 1995),
19–28. https://doi.org/10.1145/209937.209940

P.M. Djuric, J.H. Kotecha, Jianqui Zhang, Yufei Huang, T. Ghirmai, M.F.

Bugallo, and J. Miguez. 2003. Particle filtering. IEEE Signal Processing
Magazine 20, 5 (2003), 19–38. https://doi.org/10.1109/MSP.2003.1236770

Arnaud Doucet, Adam M Johansen, et al. 2009. A tutorial on particle filter-

ing and smoothing: Fifteen years later. Handbook of nonlinear filtering
12, 656-704 (2009), 3.

Charles W Fox and Stephen J Roberts. 2012. A tutorial on variational

Bayesian inference. Artificial intelligence review 38, 2 (2012), 85–95.

https://doi.org/10.1007/s10462-011-9236-8

Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for

flexible probabilistic inference. In International Conference on Artificial
Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca,
Lanzarote, Canary Islands, Spain. 1682–1690. https://doi.org/10.17863/

CAM.42246

Walter R Gilks and Carlo Berzuini. 2001. Following a moving target—Monte

Carlo inference for dynamic Bayesian models. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology) 63, 1 (2001), 127–146.
https://doi.org/10.1111/1467-9868.00280

Noah D Goodman. 2014. The Design and Implementation of Probabilistic

Programming Languages. http://dippl.org.

Daniel Hillerström and Sam Lindley. 2018. Shallow effect handlers. In

Asian Symposium on Programming Languages and Systems. Springer,
415–435. https://doi.org/10.1007/978-3-030-02768-1_22

Jeroen D Hol, Thomas B Schon, and Fredrik Gustafsson. 2006. On resam-

pling algorithms for particle filters. In 2006 IEEE nonlinear statistical
signal processing workshop. IEEE, 79–82. https://doi.org/10.1109/NSSPW.

2006.4378824

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114 (2013). https://doi.org/10.48550/

arXiv.1312.6114

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible

Effects. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell
(Vancouver, BC, Canada) (Haskell ’15). Association for Computing Ma-

chinery, New York, NY, USA, 94–105. https://doi.org/10.1145/2804302.

2804319

Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible effects:

an alternative to monad transformers. ACM SIGPLAN Notices 48, 12
(2013), 59–70. https://doi.org/10.1145/2578854.2503791

Edward Kmett, Barak Pearlmutter, and Jeffrey Mark Siskind. 2010-2021. ad:

Automatic Differentiation. Haskell package at https://hackage.haskell.

org/package/ad.

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and

Modular Interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (San Francisco, Cal-

ifornia, USA) (POPL ’95). Association for Computing Machinery, New

York, NY, USA, 333–343. https://doi.org/10.1145/199448.199528

VikashMansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-

order probabilistic programming platformwith programmable inference.

arXiv preprint (2014). https://doi.org/10.48550/arXiv.1404.0099

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul,

Yutian Chen, and Martin Rinard. 2018. Probabilistic Programming

with Programmable Inference. SIGPLAN Not. 53, 4 (jun 2018), 603–616.

https://doi.org/10.1145/3296979.3192409

Kazutaka Matsuda, Samantha Frolich, Meng Wang, and Nicolas Wu. 2023.

Embedding by Unembedding. Proceedings of the ACM on Programming
Languages 7, ICFP, Article 189 (aug 2023). https://doi.org/10.1145/

3607830

Dave Moore and Maria I Gorinova. 2018. Effect handling for composable

program transformations in Edward2. arXiv preprint arXiv:1811.06150
(2018). https://doi.org/10.48550/arXiv.1811.06150

Minh Nguyen, Roly Perera, Meng Wang, and Nicolas Wu. 2022. Modu-

lar Probabilistic Models via Algebraic Effects. Proceedings of the ACM
on Programming Languages 6, ICFP, Article 104 (aug 2022). https:

//doi.org/10.1145/3547635

Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. 2019.

Monad transformers and modular algebraic effects: what binds them

together. In Proceedings of the 12th ACM SIGPLAN International Sympo-
sium on Haskell. 98–113. https://doi.org/10.1145/3331545.3342595

Adam Ścibior and Ohad Kammar. 2015. Effects in Bayesian inference. In

Workshop on Higher-Order Programming with Effects (HOPE). https:

//www.cs.ubc.ca/~ascibior/assets/pdf/hope.pdf

Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Functional

Programming for Modular Bayesian Inference. Proceedings of the
ACM on Programming Languages 2, ICFP, Article 83 (2018), 29 pages.
https://doi.org/10.1145/3236778

Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang,

Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, and Zoubin

Ghahramani. 2017. Denotational Validation of Higher-Order Bayesian

Inference. Proc. ACM Program. Lang. 2, POPL, Article 60 (dec 2017),

29 pages. https://doi.org/10.1145/3158148

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood.

2016. Design and implementation of probabilistic programming lan-

guage anglican. In Proceedings of the 28th Symposium on the Imple-
mentation and Application of Functional programming Languages. 1–12.
https://doi.org/10.1145/3064899.3064910

Birthe van den Berg, Tom Schrijvers, James McKinna, and Alexander

Vandenbroucke. 2022. Forward-or Reverse-Mode Automatic Differ-

entiation: What’s the Difference? Available at SSRN 4358090 (2022).

https://doi.org/10.48550/arXiv.2212.11088

David Wingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Light-

weight implementations of probabilistic programming languages via

transformational compilation. In Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics. JMLRWorkshop

and Conference Proceedings, 770–778.

Received 2023-06-01; accepted 2023-07-04

https://doi.org/10.1007/s11222-014-9510-0
https://doi.org/10.1007/s11222-014-9510-0
https://doi.org/10.1145/209937.209940
https://doi.org/10.1109/MSP.2003.1236770
https://doi.org/10.1007/s10462-011-9236-8
https://doi.org/10.17863/CAM.42246
https://doi.org/10.17863/CAM.42246
https://doi.org/10.1111/1467-9868.00280
http://dippl.org
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1109/NSSPW.2006.4378824
https://doi.org/10.1109/NSSPW.2006.4378824
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2578854.2503791
https://hackage.haskell.org/package/ad
https://hackage.haskell.org/package/ad
https://doi.org/10.1145/199448.199528
https://doi.org/10.48550/arXiv.1404.0099
https://doi.org/10.1145/3296979.3192409
https://doi.org/10.1145/3607830
https://doi.org/10.1145/3607830
https://doi.org/10.48550/arXiv.1811.06150
https://doi.org/10.1145/3547635
https://doi.org/10.1145/3547635
https://doi.org/10.1145/3331545.3342595
https://www.cs.ubc.ca/~ascibior/assets/pdf/hope.pdf
https://www.cs.ubc.ca/~ascibior/assets/pdf/hope.pdf
https://doi.org/10.1145/3236778
https://doi.org/10.1145/3158148
https://doi.org/10.1145/3064899.3064910
https://doi.org/10.48550/arXiv.2212.11088

	Abstract
	1 Introduction
	1.1 Background: An Embedding of Extensible Effects
	1.2 Effects for Probabilistic Models

	2 Inference Patterns
	3 Inference Pattern: Metropolis-Hastings
	3.1 Pattern Instance: Independence Metropolis
	3.2 Pattern Instance: Single-Site Metropolis-Hastings

	4 Inference Pattern: Particle Filter
	4.1 Pattern Instance: Multinomial Particle Filter
	4.2 Pattern Instance: Resample-Move Particle Filter
	4.3 Pattern Instance: Particle Metropolis-Hastings

	5 Performance Evaluation
	6 Qualitative Comparison
	6.1 Dynamically typed approaches
	6.2 MonadBayes

	7 Conclusion and Future Work
	References

