
Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional

Programs using Unidirectional Sketches

Masaomi Yamaguchi1,2, Kazutaka Matsuda1*, Cristina
David2 and Meng Wang2

1*Graduate School of Information Sciences, Tohoku University,
Sendai, Miyagi, Japan.

2Currently at Fujitsu, Japan.
3 University of Bristol, BS8 1QU, Bristol, Avon, UK.

*Corresponding author(s). E-mail(s): kztk@tohoku.ac.jp;
Contributing authors: masaomi.yamaguchi.t4@dc.tohoku.ac.jp;

cristina.david@bristol.ac.uk; meng.wang@bristol.ac.uk;

Abstract

We propose a technique for synthesizing bidirectional programs from
the corresponding unidirectional code plus input/output examples. The
core ideas are: (1) constructing a sketch using the given unidirectional
program as a specification, and (2) filling the sketch in a modular fash-
ion by exploiting the properties of bidirectional programs. These ideas
are enabled by our choice of programming language, HOBiT, which
is specifically designed to maintain the unidirectional program struc-
ture in bidirectional programming, and keep the parts that control
bidirectional behavior modular. To evaluate our approach, we imple-
mented it in a tool called Synbit and used it to generate bidirectional
programs for intricate microbenchmarks, as well as for a few larger,
more realistic problems. We also compared Synbit to a state-of-the-
art unidirectional synthesis tool on the task of synthesizing backward
computations. This is an extended version of the paper “Synbit:
Synthesizing Bidirectional Programs using Unidirectional Sketches”,
published at OOPSLA 2021. In addition to the OOPSLA’21 paper,
this journal will contain additional formalization and detailed examples.

Keywords: program synthesis, bidirectional transformation, domain specific
language, programming by example, functional language

1

Springer Nature 2021 LATEX template

2 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

1 Introduction

Transforming data from one format to another is a common task of pro-
gramming: compilers transform program text into syntax trees, manipulate
the trees and then generate low-level code; database queries transform base
relations into views; model-driving software engineering transforms one model
into another. Very often, such transformations will benefit from being bidirec-
tional, allowing changes to the targets to be mapped back to the sources too
(for example the view-update problem in databases [1, 2], bidirectional model
transformation [3], and so on).

As a response to this need, programming languages researchers started
to design specialized programming languages for writing bidirectional trans-
formations. In particular as pioneered by Pierce’s group at Pennsylvania, a
bidirectional transformation (BX), also known as a lens [4], is modeled as a
pair of functions between source and view data objects, one in each direction.
The forward function get :: S → V maps a source onto a view, and the corre-
sponding backward function put :: S×V → S reflects any changes in the view
back to the source. Note that get is not necessarily injective. Accordingly put ,
in addition to the updated view, also takes the original source as an argument.
This makes it possible to recover some of the source data that is not present in
the view. Of course, not all pairing of get/put forms are valid BX; they must
be related by specific properties known as round-tripping.

get s = v implies put (s, v) = s (Acceptability)

put (s, v) = s′ implies get s′ = v (Consistency)

for all s, s′ ∈ S and v ∈ V . Here, Acceptability states that no changes to the
source happen if there is no change to the view, and Consistency states that
all changes to the view must be captured in the updated source.

A BX language allows the transformations in both directions to be
programmed together and is expected to guarantee round-tripping by con-
struction.

This is a challenging problem for language design, and consequently com-
promises had to be made (in particular to usability) in favor of guaranteeing
round-tripping. In the original lens design [4], lenses can only be composed
by stylized lens combinators, which is inconvenient to program with. A lot of
research has gone into this area since (for example Matsuda et al. [5], Bohan-
non et al. [6], Voigtländer [7], Pacheco et al. [8], Matsuda and Wang [9]). The
state of the art has progressed a long way since. This includes a language
HOBiT [9], which follows a line of research [5, 7, 10, 11] that aims to produce
BX code that is close in structure to how one will program the get func-
tion alone in a conventional unidirectional language. Despite the progresses
in language design, BX programming is still considerably more difficult than
conventional programming, especially when sophisticated backward behaviors
are required. This complexity is largely inherent as one is asked to do more in

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 3

less: defining behaviors in both directions in a single definition. Even in a lan-
guage like HOBiT, where programmers are allowed (and indeed encouraged)
to approach BX programming from the convenience of conventional unidirec-
tional programming, there are still (necessary) additional code components
that need to be added to the basic program structure to specify non-trivial
backward behaviors.

Unidirectional Program as Sketch

In this paper we introduce Synbit, a program synthesis system that makes
BX programming more approachable to mainstream programmers. In par-
ticular, we propose using unidirectional code (i.e., a definition of get in
a Haskell-like language) as a sketch of the bidirectional program (which
embodies both get and put). Consequently, programmers familiar with unidi-
rectional programming can obtain bidirectional programs from unidirectional
ones and input/output examples. In the neighboring field of software verifica-
tion, expressing specifications (in our case sketches) as normal code has the
effect of boosting the adoption of formal tools in industry [12], something that
bidirectional programming research as a whole may benefit from.

This program sketch idea fits well with the language HOBiT. Unlike most
BX languages, HOBiT is designed to keep bidirectional code as similar in
structure as possible to how one may program the unidirectional get . Conse-
quently, it is able to benefit from such a sketch and allow the synthesis process
to mostly focus on parts of the code that specially handle intricate bidirec-
tional behaviors. This is an attractive solution. On one hand, the specifications
are familiar: users simply write normal unidirectional programs (together with
input/output examples). On the other hand, the specifications as sketches are
useful in the synthesis process because they reduce the search space. Moreover,
this design supports gradual “bidirectionalization” done by incrementally con-
verting existing unidirectional programs into bidirectional ones. As it will be
shown in a comprehensive evaluation in Section 5, our system is highly effec-
tive and able to produce high-quality bidirectional programs in a wide range
of scenarios.

Off-the-shelf synthesis is a non-solution

Before diving into the details of our proposed solution, we would like to take a
step back and answer a question that may already be in some readers’ minds:
will program synthesis completely replace the need for bidirectional languages?
That is, how about using generic synthesizers to derive a put from an exist-
ing get in a standard unidirectional language? After all, there already exist
bidirectionalization techniques [5, 7] that are able to derive a put from a get
though in restricted situations.

When applied naively, this approach does not work. As an experiment, we
tried using the state-of-the-art program synthesizer Smyth [13] to generate
the put from concrete examples and appropriate sketches. To simplify the
problem, we ignored the round-tripping property between get and put , and

Springer Nature 2021 LATEX template

4 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

tried to generate any put (even one that violates the laws). However, even in
this simplified scenario, the synthesizer failed to find a put for simple examples
(see Section 5.3 for more details).

This is not surprising because, while powerful, program synthesis is very
hard due to the vast search space. The most common ways in which existing
synthesis techniques circumvent this are by picking a reduced domain specific
language to generate programs in [14] and by seeding the program search
with a sketch representing the program structure [15]. In this paper, we are
interested in synthesizing general purpose programs and therefore we do not
adopt the first strategy.

Contributions:

In this paper, we present an application of program synthesis to the area
of bidirectional programming, by providing an automated technique for
generating bidirectional transformations in the language HOBiT. Specifically,

• We design a system that takes unidirectional code and and concrete
input/output examples as inputs (Section 3.2) and generate HOBiT code
that execute bidirectionally.

• We optimize the synthesis by exploiting bidirectional programming proper-
ties, domain-specific knowledge of HOBiT and type information to efficiently
prune the search space. In particular, we generate specialized program
sketches from the unidirectional code (Section 3.3), which are then filled in
a modular manner by separating the solving of dependent synthesis tasks
(Sections 3.4 and 3.5).

• We present a classification of bidirectional programming benchmarks based
on the amount of information from the source that is being lost through
the forward transformation (Section 5.1). We believe that such a classifica-
tion is valuable for evaluating the capabilities of our bidirectional synthesis
technique.

• We implemented our bidirectional synthesis technique in a tool called Syn-
bit, and used it to generate bidirectional programs for the set of benchmarks
discussed above (Section 5). The prototype implementation of Synbit is
available in the artifact1 or the repository2.

2 Background: the HOBiT language

HOBiT [9] is a state-of-the-art higher-order bidirectional programming lan-
guage. A distinct feature of HOBiT is its support of a programming style
that is close to that of conventional unidirectional programming. The design
of the language largely separates the core structure of programs (which can be
shared with the unidirectional definition of get) from the specification of back-
ward behaviors that are specific to bidirectional programming. In this section,
we will introduce the core features of HOBiT with a focus on demonstrating

1https://doi.org/10.5281/zenodo.5494504
2https://github.com/masaomi-yamaguchi/synbit

https://doi.org/10.5281/zenodo.5494504
https://github.com/masaomi-yamaguchi/synbit

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 5

its suitability as a target of sketch-based program synthesis. Curious readers
who are interested in the full expressiveness power of HOBiT and the formal
systems are encouraged to read the original paper [9].

2.1 A Simple Example

Before getting into HOBiT programs, we start with a familiar definition in
Haskell below.

append :: [a]→ [a]→ [a]
append xs ys = case xs of [] → ys

a : x → a : append x ys

In the definition, we use explicit case branching (instead of syntax sugar in
Haskell) to highlight the structure of the code.

A corresponding bidirectional program in HOBiT (appendB :: B[a] →
B[a] → B[a]) will include forward behaviour (get) just as append , and addi-
tionally suitable backward behavior (put). The B-annotated types (highlighted
in blue) are bidirectional types in HOBiT, representing data that are subject
to bidirectional computation. B-typed values are manipulated only by oper-
ations that satisfy the round-tripping laws, which is enough to ensure the
round-tripping property of a whole program [9]. As we will see in the rest of
the section, bidirectional types can be mixed with normal unidirectional types
to support flexible programming and greater expressiveness.

Bidirectional functions of type Bσ → Bτ can be executed as bidirectional
transformations between σ and τ in HOBiT’s interactive environment (or,
read-eval-print loop) via :get and :put. For example, one can run appendB
forwards

> :get (uncurryB appendB) ([1, 2], [3, 4])
[1, 2, 3, 4]

and backwards.

> :put (uncurryB appendB) ([1, 2], [3, 4]) [5, 6, 7, 8]
([5, 6], [7, 8])

Note that we have uncurried appendB before execution by uncurryB :: (Ba→
Bb→ Bc)→ B(a, b)→ Bc so that it fits the pattern of Bσ → Bτ for bidirec-
tional execution. Specifically (uncurryB appendB) has type B([a], [a])→ B[a],
and its put has type ([a], [a])→ [a]→ ([a], [a]).

Now we are ready to explore bidirectional behaviors.

2.1.1 Simple Backward Behavior

The simplest behavior of put , as adopted in Voigtländer [7], is to only allow
in-place update of views. In the case of appendB , it means that the changes

Springer Nature 2021 LATEX template

6 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

to the length of the view list will result in an error.

> :put (uncurryB appendB) ([1, 2], [3, 4]) [5, 6, 7, 8]
([5, 6], [7, 8])
> :put (uncurryB appendB) ([1, 2], [3, 4]) [1, 2, 3]
Error: ...

To achieve this behavior, a definition in HOBiT reads the following.

appendB :: B[a]→ B[a]→ B[a]
appendB xs ys = case xs of [] → ys

a : x → a : appendB x ys

As one can see, this definition is almost identical to that of append with only
the language constructs such as case and data constructors being replaced
by their bidirectional counterparts (underlined and highlighted in blue) that
handle values of bidirectional types.

This simplicity comes from the design of HOBiT, as well as the modesty of
the scenario. Given that the function is parametric in the list elements, in-place
updates mean that the backward execution may simply trace back exactly the
same control flow of the original forward execution. This can be achieved by
recursing according to the original source (the first argument of put) and only
using the updated view (the second argument of put) as a supplier of element
values. Therefore, no additional specification is required in the code.

2.1.2 Branch Switching

HOBiT is not limited to such simple behaviors. Its bidirectional language
constructs seen above set us up for more sophisticated cases. Let’s say that we
now want to handle structural updates in the view, allowing the list length to
vary.

> :get (uncurryB appendB) ([1, 2], [3, 4])
[1, 2, 3, 4]
> :put (uncurryB appendB) ([1, 2], [3, 4]) [5, 6, 7, 8]
([5, 6], [7, 8])
> :put (uncurryB appendB) ([1, 2], [3, 4]) [5, 6, 7, 8, 9]
([5, 6], [7, 8, 9])
> :put (uncurryB appendB) ([1, 2], [3, 4]) [5]
([5], [])

When the length of the view list changes, we try to change the second list of
the source to accommodate that. If the length becomes shorter than that of
the first source list, the second source list will be empty and the first source
list will also change accordingly.

As one can see, this behavior can no longer be achieved by simply tracing
back the original control flow of the forward execution. The backward execution

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 7

will have to recurse a different number of times from the original, and how
this is done will need to be additionally specified in the code. Here enters a
definition in HOBiT that does exactly this.

appendB :: B[a]→ B[a]→ B[a]
appendB xs ys = case xs of [] → ys

with const True by λ .λ . []
a : x → a : appendB x ys

with not ◦ null by λs.λ . s

The code is longer than the last version, as expected, but the program structure
remains the same: the additional specification for more sophisticated backward
behavior is modularly grouped at the end of each case branch. Recall that we
plan to use the unidirectional code as sketches to synthesize bidirectional code;
this resemblance to the unidirectional code means that the synthesizing effort
may now concentrate on the part specifying bidirectional behaviors, increasing
its effectiveness.

In the above code, we used two distinctive HOBiT features known as
exit conditions (marked by the with keyword) and reconciliation functions
(marked by the by keyword). Both are for the purpose of controlling the back-
ward behavior, especially when it no longer follows the original control flow (a
behavior we call branch switching).

Exit conditions.

An exit condition is an over-approximation of the forward-execution result of
the branch, which always evaluates to True if the branch is taken (dynamically
checked in HOBiT). Hence, an exit condition in a case expression has type
τ → Bool if the whole case expression has type Bτ . The exit conditions are
then used as branching conditions in the backward execution. For example, in
the above case of appendB , an empty list as view will choose the first branch,
as the view does not match the condition not ◦null of the second branch. Exit
conditions often overlap; when multiple branches match, the original branch
used in the forward execution is preferred. If impossible (as the exit condition
of that branch does not hold), the topmost branch will be taken. Like the
case of the in-place update we saw previously, if the view-list length is not
changed, then in the backward execution of appendB , the exit conditions of
the original branches (now used as branching conditions) are always satisfied,
and therefore the original branches are always taken.

The situation becomes more interesting when the view update does change
the length of the list, for example by making it shorter. In this case, the view
list will be exhausted before the original number of recursions are completed.
As a result, the backward execution will now see [] as its view input and a
non-empty list as its source input. This means that the original branch at this
point is the second branch, but the exit condition of that does not hold, which
forces the first branch to be taken—a branch switch.

Springer Nature 2021 LATEX template

8 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Reconciliation functions.

We have seen that exit conditions may force branches to switch, which is crucial
for handling interesting changes to the view. However, it only solves half of
the problem; naive branch switching typically results in run-time failure. The
reason is simple: when branch switching happens, the two arguments of put are
in an inconsistent state for the branch; e.g., for append , having a non-empty
source list (and an empty view list) is inconsistent for the branch [] → ys.
Reconciliation functions are used to fix this inconsistency. Basically, they are
functions that take the inconsistent sources and views and produce new sources
that are consistent with the branch taken. For example, in the definition above,
the first branch will have [] as the new source, because a switch to this branch
means an empty view and the branch expects the source to be the empty
list for further put execution of the branch body. In general, a reconciliation
function in a case expression is a function of type σ → τ → σ, provided that
the whole case expression has type Bτ , with its scrutinee of type Bσ.

An interesting observation of this particular example of append is that the
reconciliation function of the cons branch (i.e., λs.λ .s above) is actually never
used. Recall that branch switching only happens when the backward execution
tries to follow the original branch but the exit condition of the branch is not
satisfied by the updates to the view. This will never happen in the nil branch
above with the exit condition const True, which is always satisfied. In other
words, regardless of the view update there will not be branch switching to the
cons branch and therefore its reconciliation function is never executed. This
behavior matches the behavior of append which recurses on the first source
list: when the view list is updated to be shorter than the first source list, the
recursion will need to be cut short (thus branch switching to the nil branch);
but when the view list is updated to be longer, the additional elements will
simply be added to the second source list, which does not affect the recursion
(and thus no need of branch switching).

In summary, with reconciliation functions, the backward execution may
recover from inconsistent states and resume with a new source. This is key to
successful branch switching and the handling of structural updates to the view.

Round-tripping

It is also worth noting that branch switching in HOBiT does not threaten
the round-tripping properties. Intuitively, the key principle of round-tripping
is that a branch taken in a forward/backward execution should also be taken
in a subsequent backward/forward execution [4, 9, 16–19]. When a branch
switches in the backward execution, the new branch will produce a source
value that matches the pattern of the new branch, ensuring that a subsequent
forward execution will take the same branch. Since the exit conditions are
checked as valid post conditions, this correspondence of forward/backward
branchings is established, and consequently it guarantees round-tripping. An
inappropriate reconciliation function will make the backward execution fail but
not break round-tripping. More details can be found in the original paper [9].

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 9

In this paper, we not only rely on the fact that HOBiT programs always
satisfy round-tripping, but we also leverage the principle for effective synthesis
(Section 3.5.2).

One can also observe that the exit conditions and reconciliation functions in
appendB are quite simple themselves. However, their interaction with the rest
of the code is intricate. Programmers who write them are therefore required to
have a good understanding of how backward execution works and how it can
be influenced, which may not come naturally. This combination of simplicity
in form and complication in behavior makes it a fertile ground for program
synthesis, which we set out to explore in this paper.

2.1.3 Mixing Bidirectional and Unidirectional Programming

We end this section with another example of variants of append ’s backward
behavior and its implementation in HOBiT. The example also demonstrates
a feature of HOBiT that supports a mixture of unidirectional and bidirec-
tional programming for greater expressiveness. Let us consider the following
definition.

appendBc :: B[a]→ [a]→ B[a]
appendBc xs ys = case xs of

[] → !ys
with λv. length v length ys by λ .λ . []

a : x → a : appendBc x ys
with λv. length v 6 length ys by λ .λ(v :). [v]

Noticeably, the type of the function is a mixture of bidirectional and uni-
directional types, with the second argument as a normal list. Recall that
bidirectional types represent data that are updatable; this type means that the
second list is fixed with respect to backward execution. Note that ! is an oper-
ator to make the program well-typed by lifting a constant to the bidirectional
world.

We will look at a few sample runs before going into the details of the defini-
tion. Note that since the second argument is constant in backward execution,
there is no longer the need to uncurry the function; one can simply partially
apply it as shown below.

> :get (λxs. appendBc xs ";") "apple"
"apple;"

> :put (λxs. appendBc xs ";") "apple" "pineapple;"

"pineapple"

> :put (λxs. appendBc xs ";") "apple" "plum;"

"plum"

Springer Nature 2021 LATEX template

10 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

In this case, the second list is ";" and changes in the view can only affect the
first list. Any attempt to change the last part of the view will (rightly) fail.

> :put (λxs. appendBc xs ";") "apple" "apple."

Error: ...

Now let us go back to the definition. The fact that the second argument ys
is now of a normal (non-bidirectional) type means that it can be used in the
exit conditions and reconciliation functions (which only involve unidirectional
terms). During backward execution, the exit conditions dictate that the recur-
sion will terminate (the first branch taken) when the view list is the same
length as the original ys. In addition, since ys has a normal type, it will need
to be lifted (as a constant) to the bidirectional world by ! so that the case
expression becomes well typed. We again refer interested readers to HOBiT’s
original paper [9] for lifting in more general forms.

The mixture of unidirectional and bidirectional programming is a challenge
to program synthesis as the search space has become much larger. Still, the
fundamental has not changed: a definition of get remains a good sketch for
HOBiT programs.

3 Synthesis of HOBiT Programs using
Unidirectional Programs as Sketches

In this section, we describe our technique for synthesizing bidirectional pro-
grams in HOBiT. Throughout the section, we will use the familiar case of
append as the running example.

3.1 Overview

Before presenting the technical details, we start with an informal overview
of the synthesis process. Synbit takes in a unidirectional program (written
in a subset of Haskell) and a small number of input/output examples of the
required backward behavior, and produces a HOBiT program that behaves like
the input unidirectional program in the forward direction and is guaranteed
to satisfy the round-tripping laws and conform to the given examples in the
backward direction. More details on the guarantees of our system are given
later in Section 3.7.

As an example, in the case of append , we provide the following specification
to Synbit.

append :: [Int]→ [Int]→ [Int]
append = λxs. λys. case xs of {[]→ ys; (a : x)→ a : append x ys}
:put (uncurryB appendB) ([1, 2, 3], [4, 5]) [6, 2] = ([6, 2], [])

The definition of append above is completely standard. The user-provided
input/output example specifies that the view list may be updated to a smaller

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 11

length. As we have seen in Section 2, append needs to be uncurried before
bidirectional execution, which is also reflected in the input/output example
above where the source is a pair of lists. One interesting observation is that
this bidirectional execution provides a call context of the function to be syn-
thesized, which speeds up the synthesis process by narrowing down the choices
of appendB ’s type. Note that the above append is specialized in Int. This
is because polymorphism is not the main topic in our synthesis procedure.
We focus on simple types in this section and will explain the treatment of
polymorphism later in Section 4.

It is worth nothing that the input/output example above is in fact carefully
chosen to trigger branch switching. One might notice that append [1, 2, 3] [4, 5]
and append [6, 2] [] take different execution paths (in terms of branching struc-
ture). Hence, the input/output example tells Synbit to synthesize appropriate
exit conditions and reconciliation functions for branching switching regarding
such updates. In general, users are encouraged to provide examples that cover
their intended updates, especially ones for which the given unidirectional pro-
gram takes different execution paths to force Synbit to synthesize approaching
exit conditions and reconciliation functions suitable for the branch switching.

For the given specification, Synbit produces the following result.

appendB :: B[Int]→ B[Int]→ B[Int]
appendB = λxs. λys. case xs of

[] → ys
with λv. case v of {x→ True; → False}
by λs.λv. case v of {x→ []}

a : x → a : appendB x ys
with λv. case v of {z : zs → True; → False}
by λs.λv. case v of {z : zs → s}

As one can see, this program is equivalent to the hand-written definition
in Section 2; the only difference is that the synthesized version does not use
library functions such as const and null .3

Roughly speaking, the synthesis process that produces the above result
involves two major components: the generation of a suitable sketch with holes
and the filling of the holes. We will look at the main steps below.

Generation of sketches

The sketch is expected to be largely similar in structure to the unidirectional
definition (thanks to the design of HOBiT), but there are a few details to
be ironed out. First of all, one needs to decide the type of the target func-
tion. Recall that HOBiT is a powerful language that supports the mixing
of unidirectional and bidirectional programming. Thus, for a type such as
append ’s, there are several possibilities such as B[Int] → B[Int] → B[Int],

3Obvious cosmetic simplification could be made to part of the code for readability. But that is
an orthogonal concern.

Springer Nature 2021 LATEX template

12 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

B[Int] → [Int] → B[Int], [BInt] → B[Int] → B[Int], and so on. It is therefore
crucial to narrow down the choices to control the search space. The call con-
text in the input/output example(s) in the specification is useful for this step,
as it can effectively restrict its type. We will discuss more details on this in
Section 3.3. For now, it is sufficient to know that for the specification given in
this example, the only viable type is appendB :: B[Int]→ B[Int]→ B[Int].

The next step is to build a sketch based on the unidirectional definition
given in the specification. The type we have from above straightforwardly
implies that the case construct in append ’s definition is to be replaced by the
bidirectional case, which expects exit conditions and reconciliation functions
to be added (as holes (�) in the sketch).

appendB = λxs. λys. case xs of
[] → ys with � by �
a : x → a : appendB x ys with � by �

Both the exit conditions and reconciliation functions are simply unidirec-
tional functions. Thus in theory, one can try to use a generic synthesizer to
generate them. However, this naive method will miss out on a lot of infor-
mation that we know about these functions. Recall that, given a case branch
p → e, its corresponding exit condition must return true for all possible eval-
uations of e; similarly, the results of its reconciliation function must match p
and the second argument of the reconciliation function must be an evaluation
result of e. We therefore capture such knowledge with specialized sketches,
which make use of two types of specialized holes that are parameterized with
additional information: exit-condition hole (�e(e)), and reconciliation-function
hole (�r(p, e)). This results in the following sketch for this example.

appendB = λxs. λys. case xs of
[] → ys with �e(ys) by �r([], ys)
a : x → a : appendB x ys

with �e(a : appendB x ys)
by �r((a : x), a : appendB x ys)

In the spirit of component-based synthesis [20, 21], we generate expressions
to fill holes in the sketch by composing components from a library that includes
case and case expressions, Bool constructors and operators, as well as list
and tuple constructors. As we will explain in Section 3.2, this library can be
augmented with auxiliary components provided by the user.

In this example, the sketch generation is quite deterministic. In general,
especially when multiple functions must be synthesized together and auxiliary
components are provided, there could be multiple candidate sketches. In such
a case, we use a lazy approach that nondeterministically tries exploring one
candidate and generating any other.

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 13

Sketch completion step I: shape-restricted holes

With the sketch ready, we can proceed to fill the holes. As a first step in the
sketch completion process, we make use of the information captured by the
specialized holes to generate some parts of the code for exit conditions and
reconciliation functions. This step does not involve any search.

appendB = λxs. λys. case xs of
[] → ys

with λv. case v of {x→ �; → False}
by λs.λv. case v of {x→ �([])}

a : x → a : appendB x ys
with λv. case v of {z : zs → �; → False}
by λs.λv. case v of {z : zs → �(a : x)}

The specialized holes are replaced with λ-abstractions with case struc-
tures. The result involves a different type of holes we call shape-restricted holes
(�(p)); such holes can only be filled with expressions that may match the pat-
tern p. For example, for �(a : x), the empty list is not a valid candidate. A
generic hole (�) is a special case where the pattern is a wildcard that matches
every term.

For exit conditions, the translation used the information encoded by exit
condition holes to figure out when False should be returned—recall that, for
a case branch p → e, exit conditions should return False for any results that
cannot be produced by e. In the case of appendB , this means that for the second
branch in the sketch, the exit condition should return False for any empty list.
(Here, z and zs are fresh variables.) For the first branch, this information does
not help us eliminate any candidates. (Again, x is a fresh variable.) The case
construct generation uses all the information encoded by the exit condition
holes. Consequently, the holes left in the sketch are generic ones.

For reconciliation functions, the newly generated shape-restricted holes
capture the fact that for a case branch p → e, the result of the reconciliation
function must match p. Thus, the first branch of appendB has �([]) while the
second one �(a : x). We further know that the second argument of the recon-
ciliation function must be a result of e, which allows us to generate the case
structure shown in the sketch.

Sketch completion step II: search and filtering

The last step is to fill the remaining shape-restricted holes. At this point, we
leave off using the information in the unidirectional input program, and turn
our attention to the input/output example(s). To fill the holes, we generate
β-normal forms where functions are η-expanded, and filter the candidates by
checking against the examples(s). A problem with using the example(s) to filter
out incorrect candidates is that it is for the whole program, which includes
several holes. A naive use of the example(s) means that filtering has to be

Springer Nature 2021 LATEX template

14 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

delayed until late in the synthesis process when all the holes are filled. This is
inefficient.

Conversely, our ideal goal is to have a modular filtering process, where we
can simultaneously check candidate exit conditions and reconciliation func-
tions independently of each other. For this purpose, our solution is to leverage
domain-specific knowledge of HOBiT.

Specifically, we make use of the fact that put (s, v) and get (put (s, v)) must
follow the same execution trace in terms of taken branches, as explained in the
discussion on round-tripping in HOBiT (see the corresponding paragraph in
Section 2). This enables us to fix the control flow of the put behavior for the
given input/output example(s) without referring to exit conditions, so that we
can separate the search for exit conditions from reconciliation functions. We
will discuss this in more detail later in the overview, as well as in Section 3.5.

Moreover, the use of the trace information also enables us to address the
issue of non-terminating put executions. In a naive generate-and-test syn-
thesis approach, some of the generated candidates may be non-terminating,
which poses issues for the testing phase. As we assume that the put execu-
tion must always follow the finite branching trace of get , we never generate
such programs. Here, we assumed that the input/output unidirectional pro-
gram is terminating for the original and updated sources of the input/output
examples. More details on this will be presented in Section 3.5.2.

Filtering of exit conditions based on branch traces

We continue with the partially filled sketch for appendB above (reproduced
below), with the holes numbered for easy reference.

appendB = λxs. λys. case xs of
[] → ys

with λv. case v of {x→ �1; → False}
by λs.λv. case v of {x→ �([])3}

a : x → a : appendB x ys
with λv. case v of {z : zs → �2; → False}
by λs.λv. case v of {z : zs → �(a : x)4}

What are the constraints on the holes that we can derive from the
input/output example below?

:put (uncurryB appendB) ([1, 2, 3], [4, 5]) [6, 2] = ([6, 2], [])

As mentioned above, :put (uncurryB appendB) ([1, 2, 3], [4, 5]) [6, 2]
must choose the branches chosen by :get (uncurryB appendB) ([6, 2], []).
We shall call a history of chosen branches a branch trace. For
:get (uncurryB appendB) ([6, 2], []), the branch trace is:

(i) the cons branch (where xs is [6, 2]),

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 15

(ii) the cons branch (where xs is [2]),
(iii) the nil branch (where xs is []).

We now follow the same trace for :put ((uncurryB appendB) ([1, 2, 3], [4, 5]) [6, 2])
and each step will give rise to a constraint on the exit condition of the branch.

(i) a : append x ys (and therefore the v) has the value of the updated
view [6, 2], and �2 must evaluate to True in this context. Therefore,
�2[6/z, [2]/zs, [6, 2]/v] ≡ True.

(ii) a : append x ys (and therefore the v) has the value of the updated
view [2], and �2 must evaluate to True in this context. Therefore,
�2[2/z, []/zs, [2]/v] ≡ True.

(iii) ys (and therefore the v) has the value of [], and �1 must evaluate to True
in this context. Therefore, �1[[]/x, []/v] ≡ True.

These constraints are useful in generating the exit conditions independently.
As a matter of fact, in the case of appendB both �1 and �2 are simply filled
by the expression True which satisfies all the constraints.

There are no trace constraints generated for holes 3 and 4 though. So they
will be generated according to the shape restrictions only. Hole 3 must be []
while Hole 4 can be filled by a non-empty list. Recall that, in this example,
the reconciliation functions of the cons branch are never used. And therefore,
arbitrary default terms will fill Hole 4 just fine, which produces the output we
saw at the beginning of this subsection.

Filtering of reconciliation functions based on branch traces

The branch traces are also used to filter reconciliation functions. (This is not
needed in this example as the nil branch was already fixed in the filling of
shape-restricted holes and the cons branch can be arbitrary.) The important
insight here is that reconciliation functions can be filtered independently from
the exit conditions, resulting in significant efficiency gain. The reason is that
the branch traces carry all the information that is needed to test reconciliation
functions (recall that the exit conditions are only for determining branch-
ing in backward execution; and since the branching is known in the branch
traces there is no need for exit conditions.). We will see examples of this in
Section 3.5.2.

In the rest of this section, we will go through each step of the synthesis
process in detail.

3.2 Input to Our Method

Remember from the overview that our technique takes as input some typed
unidirectional code and a set of input/output examples illustrating the back-
ward transformation. Formally, this translates to the following 4-tuple I =
(P,Γ, f1, E):

Springer Nature 2021 LATEX template

16 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Expressions e ::= x | λx.e | e1 e2 | C e | case e0 of {pi → ei}i
| C e | case e0 of {pi → ei with e′i by e′′i }i | !e

Patterns p ::= x | C p
Fig. 1 Syntax of (a part of) HOBiT: x ranges over variables, and C ranges over constructors

• P = {fi = ei}i is a program in the unidirectional fragment of HOBiT, where
fi = ei stands for a function/value definition of fi by the value of ei. The
syntax of the expressions of HOBiT is shown in Fig. 1.

• Γ = {fi : Ai}i is a typing environment for P ; i.e., each ei has type Ai under
Γ.

• f1 is the entry point function, whose type is expected to have the form
σ1 → τ1;4 this is used to prune the search space as explained in Section 3.3.

• E = {(sk, vk, s′k)}k is a (finite) set of well-typed input/output examples for
a bidirectional version of the entry point f1; for the k-th example, sk is the
original source, vk is the updated view and s′k is the updated source.

The input program P may contain functions that are not reachable from
the entry point but can be used during program generation. We call such
functions auxiliary functions and add them to our library of default synthesis
components. As mentioned earlier in Section 3.1, the default library includes
case and case expressions, Bool constructors and operators, as well as list and
tuple constructors.

Example 1 (append) For the appendB example, the input is formally expressed as:

Papp =

{
appendB = λxs. λys. case xs of {[]→ ys; (a : x)→ a : appendB x ys},
uncurryB = . . .

}
Γapp = {appendB : [Int]→ [Int]→ [Int], uncurryB : . . . }
f1app = uncurryB appendB

Eapp = {(([1, 2, 3], [4, 5]), [6, 2], ([6, 2], []))}.
Here, we omit the definition and the type of uncurryB but state it is a part of the
input program. �

3.3 Generation of Sketches

As shown in the overview, we start by generating bidirectional sketches from
the unidirectional code. The basic idea of the sketch generation is to replace
unidirectional constructs with bidirectional ones nondeterministically: when
case is replaced with case, exit conditions and reconciliation functions are left
as holes. Interestingly, replacing all unidirectional constructs (if they have cor-
responding bidirectional ones) may not be the best solution; as demonstrated

4We use metavariables A,B, . . . for types in general and σ, τ, . . . for those that can be sources
or views. In Matsuda and Wang [9], σ-types have a restriction that they do not contain B and→,
but their implementation does not distinguish A-types and σ-types (which in fact is safe). Thus,
we do not strictly respect the restriction on σ-types in our technical development.

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 17

in appendBc :: B[a] → [a] → B[a] in Section 2, we sometimes need to leave
some parts unidirectional to achieve the given bidirectional behavior.

The starting point of sketch generation is deciding the type of the target
function. We expect the unidirectional code to contain an entry point function
f1 : σ1 → τ1 (e.g., uncurry append in Example 1). This helps us reduce the
number of generated type signatures as we know that the target entry point
function to be synthesized must have type Bσ1 → Bτ1. Also, we further prune
the search space by eliminating type signatures that do not obey the call
context in the input/output examples.

Type signature generation

We first define the relation A A′ as: A′ is the type obtained from A by
replacing an arbitrary number of sub-components σ in A by Bσ nondeter-
ministically, as long as σ does not contain function types. We do not replace
σ containing function types to avoid generating apparently non-useful types
such as B(Int→ Int) and B[Int→ Int] 5.

Next, we provide the typing environment generation relation Γ Γ′, where
Γ′ is the typing environment corresponding to the bidirectional program.

Definition 1 (Generation of Typing Environment) For Γ = {f1 : σ1 → τ1} ∪ {fi :
Ai}i>0, the typing environment generation relation Γ Γ′ is defined if Γ′ = {f1 :
Bσ1 → Bτ1} ∪ {fi : A′i}i>0, where Ai A′i for each i > 0. �

Type-directed sketch generation

Once we have (a candidate) typing environment Γ′, the next step is to gener-
ate corresponding sketches in a type-directed manner. Very briefly, the type
system in HOBiT [9] uses a dual context system [22]. The typing relation can
be written as Γ; ∆ ` e : A, where Γ and ∆ respectively are called unidirec-
tional and bidirectional typing environments, and hold variables introduced
by unidirectional and bidirectional contexts respectively.

The definition of (our fragment of) HOBiT’s typing relation is given in
Fig. 2. The definition assumes constructors have simple types C : A1 → · · · →
An → A, which may be instantiation results of their (rank-1) polymorphic
types (such as list constructors (:) and []).

The sketch generation is done by using a relation Γ′; ∆′; A′.Γ ` e : A e′,
which reads that, from a term-in-context Γ; ∅ ` e : A, sketch e′ is generated
according to the given target typing environments Γ′ and ∆′, and target type
A′ so that Γ′; ∆′ ` e′ : A′ holds after the sketch has been completed (i.e., no
unfilled holes) in a type-preserving way. Notice that Γ′, ∆′ and A′ are also a
part of the input in Γ′; ∆′; A′ . Γ ` e : A e′; i.e., its outcome is only e′.

5A function type→ in the B type constructor is non-useful because HOBiT cannot handle it. In
the put execution of HOBiT, it is necessary to check the consistency of variables’ updated values
that are used more than two times. However, the equality of functions is generally unclear. Thus,
a B(∗ → ∗) type term cannot be evaluated in the put direction. For the same reason, the nested
B is non-useful.

Springer Nature 2021 LATEX template

18 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Γ; ∆ ` e : A

Γ(x) = A

Γ; ∆ ` x : A

∆(x) = τ

Γ; ∆ ` x : Bτ

Γ, x : A; ∆ ` e : B

Γ; ∆ ` λx.e : A→ B

Γ; ∆ ` e1 : A→ B Γ; ∆ ` e2 : A

Γ; ∆ ` e1 e2 : B

{Γ; ∆ ` e : Ai}i C : A1 → · · · → An → A

Γ; ∆ ` C e : A

Γ; ∆ ` e0 : A {Γi ` pi : A Γ,Γi; ∆ ` ei : B}i
Γ; ∆ ` case e0 of {pi → ei}i : B

Γ; ∆ ` e : τ

Γ; ∆ ` !e : Bτ

{Γ; ∆ ` ei : Bτi}i C : τ1 → · · · → τn → τ

Γ; ∆ ` C e : Bτ

Γ; ∆ ` e0 : Bτ

{
∆i ` pi : A Γ; ∆,∆i ` ei : B

Γ; ∆ ` e′i : σ → Bool Γ; ∆ ` e′′i : τ → σ → τ

}
i

Γ; ∆ ` case e0 of {pi → ei with e′i by e′′i }i : Bσ

Γ ` p : A

x : A ` x : A

{Γi ` pi : Ai} C : A1 → · · · → An → A

Γ1, . . . ,Γn ` C p : A

Γ ` P
{Γ; ∅ ` ei : Γ(fi)}i

Γ ` f1 = e1; . . . ; fn = en
Fig. 2 Typing rules: ∆ ` p : σ is defined similarly to Γ ` p : A but asserts that the resulting
environment is actually an bidirectional one and every type that occurs in the derivation is
a σ-type.

Fig. 3 provides the sketch generation rules. For simplicity of presentation,
we did not explicitly capture the type of the code to be generated in the spe-
cialized holes in the later sections as it can be recovered from the sketch and
typing environment Γ. However, here we make it explicit by augmenting both
the exit condition hole and the reconciliation hole with the typing environ-
ment Γ and the type of the code to be synthesized: �e(Γ, σ → Bool; e) and
�r(Γ, σ0 → σ → σ0; p, e). Notice that �e and �r have the information of
each branch’s form (e and p → e, respectively) to narrow the search space in
the following synthesis process. If readers are interested in the treatment of
let-polymorphism, please refer to Sec. 4.

We note that the rules are overlapping (i.e., several may be applicable at
a given step), which makes sketch generation nondeterministic. The sketch
generation is defined formally as below.

Definition 2 (Type-Directed Sketch Generation) Suppose that Γ Γ′. Then, for
P = {fi : ei}i, the sketch generation relation P P ′ is defined if P ′ = {fi : e′i}i,
where Γ′; ∅; Γ′(fi) . Γ ` ei : Γ(fi) e′i. �

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 19

Γ′; ∆′; τ . Γ ` e : τ e′

Γ′; ∆′; Bτ . Γ ` e : τ !e′
(G-!)

x : A ∈ Γ x : A′ ∈ Γ′

Γ′; ∆′; A′ . Γ ` x : A x
(G-UVar)

x : σ ∈ Γ x : σ ∈ ∆′

Γ′; ∆′; Bσ . Γ ` x : σ x
(G-BVar)

(Γ′, x : A′1); ∆′; A′2 . (Γ, x : A1) ` e : A2 e′

Γ′; ∆′; (A′1 → A′2) . Γ ` λx.e : A1 → A2 λx.e′
(G-Abs)

Γ′; ∆′; (A′2 → A′) . Γ ` e1 : (A2 → A) e′1 A2 A′2
Γ′; ∆′; A′2 . Γ ` e2 : A2 e′2

Γ′; ∆′; A′ . Γ ` e1 e2 : A e′1 e
′
2

(G-App)

C : A1 → · · · → An → A {Γ′; ∆′; Ai . Γ ` ei : Ai e′i}i
Γ′; ∆′; A . Γ ` C e : A C e′

(G-Con)

C : τ1 → · · · → τn → τ {Γ′; ∆′; Bτi . Γ ` ei : τi e′i}i
Γ′; ∆′; Bτ . Γ ` C e : τ C e′

(G-BCon)

Γ′; ∆′; A′0 . Γ ` e0 : A0 e′0 A0 A′0
{Γi ` pi : A0 Γ′i ` pi : A′0 (Γ′,Γ′i); ∆′; A′ . (Γ,Γi) ` ei : A e′i}i
Γ′; ∆′; A′ . Γ ` case e0 of {pi → ei}i : A case e′0 of {pi → e′i}i

(G-Case)

Γ′; ∆′; Bσ0 . Γ ` e0 : σ0 e′0
{Γi ` pi : σ0 ∆′i ` pi : σ0 Γ′; (∆′,∆′i); Bσ . (Γ,Γi) ` ei : σ e′i

Γ′; ∆′; Bσ . Γ ` case e0 of {pi → ei}i : σ

 case e′0 of

pi → e′i
with �e(Γ′, σ → Bool; e′i)
by �r(Γ′, σ0 → σ → σ0; pi, ei)

i

(G-BCase)

Fig. 3 Sketch generation rules for expressions

3.4 Sketch Completion Step I: Shape-Restricted Holes

In general, there will be several possible sketches for a given unidirectional
program. As mentioned in Section 3.1, in such a case, we use a lazy approach
that nondeterministically tries exploring one candidate and generating any
other. In this section we describe the sketch exploration process. In particular,
we start by using the information captured by the specialized holes to generate
parts of the code for exit conditions and reconciliation functions.

3.4.1 Handling Exit Condition Holes

Remember that an exit condition matching a hole �e(e) should return False
for any results that cannot be produced by e. Then, our idea here is to generate
code that returns False for values that are obviously not the result of e by
checking the form of the result. For example, for �e(a : append x ys), we
generate code returning False for the empty list.

Springer Nature 2021 LATEX template

20 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Let us write P(e) for a pattern that represents an obvious shape of e,
defined as follows (where C is a constructor):

P(e) =

{
C P(e1) . . . P(en) if e = C e1 . . . en

x otherwise (x : fresh)

For example, we have P(a : append x ys) = P(a) : P(append x ys) = z : zs,
where z and zs are fresh, conforming to the second case above. It is quite
apparent that any result of e matches with P(e); in other words, values that
do not match with P(e) cannot be a result of e. Using P(e), we concretize
exit-condition holes as below.

Definition 3 (Partial completion of exit condition holes) Let pe be a pattern P(e).
Then, the exit-condition-hole partial completion relation �e(e) e′, which reads
hole �e(e) is filled by e′, is defined by the rule

�e(e) λv. case v of {pe → �; → False}

Note that the resulting sketch will contain a generic hole �, whose shape is
no longer constrained. For example, �e(a : append x ys) is converted as follows

�e(a : append x ys) λv. case v of {z : zs → �; → False}

3.4.2 Handling Reconciliation Function Holes

Remember that the role of a reconciliation function associated with a branch
is to reconcile the original source with the branch by producing a new “original
source” matching the branch (Section 2). Thus, when the branch has the form
p→ e, the reconciliation function must return a value of the form p[v/x] where
{x} = fv(p). Hence, a natural approach is to generate reconciliation functions
of the form λs.λP(e).p[e/x].

However, only considering expressions of the aforementioned form limits
the use of user-specified auxiliary functions in reconciliation functions. For
example, consider the situation where p = a : as and reverse is provided
as an auxiliary function. If we restrict the form of a hole as λs.λP(e).(� :
�) according to the pattern, generating a term that behaves the same as
λs.λP(e).reverse(s) needs an additional recursion. Thus, we generate rec-
onciliation functions of the form λs.λP(e).�(p) instead. Recall that the
shape-restricted hole �(p) will be filled by expressions that may evaluate to
values shaped p. This idea is formally written as below.

Definition 4 (Partial completion of reconciliation function holes) Let pe be a pat-
tern P(e). Then, the partial completion relation for the reconciliation function hole,
�r(p, e) e′, which reads hole �r(p, e) is filled by e′, is defined by the rule

�r(p, e) λs.λv. case v of {pe → �(p)}

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 21

3.5 Sketch Completion Step II: Search and Filtering

The last step is to fill the remaining shape-restricted and generic holes. This
process involves type-directed generation of candidates and filtering based on
user-provided input/output examples. For simplicity of presentation, we do not
explicitly capture the type of the code to be generated in the shape-restricted
holes; instead, we recover it from the sketch and typing environment Γ.

3.5.1 Generating Candidates for Shape Restricted Holes

In this section, we describe the process of filling in shape restricted holes �(p).
To achieve this, we generate terms of shape p in β-normal forms where func-
tions are η-expanded. Specifically, we produce expressions Up in the following
grammar, which restricts their shape to p:

Up ::= V p | case x V1 . . . Vn of {pi → Upi }i
V p ::= λx.U (p = x)

| x V1 . . . Vn
| C V p11 . . . V pnn (p = C p1 . . . pn or p, p1, . . . , pn are all variables)

To simplify the presentation, we omit p and write V or U if p is a variable.
In this grammar, the purpose of U is to have cases in the outermost positions
(but inside λ); a case in a context K[case e of {pi → ei}i] can be hoisted
as case e of {pi → K[ei]}i, which is a transformation known as commuting
conversion. If p is not a variable, we can only generate constructors as specified
by p (p = C p1 . . . pn or (p, p1, . . . , pn) are all variables). Otherwise, if p is
a variable, the only knowledge we assume about it is its type. Thus, any of
the productions for V p would be considered. Note that x may be a component
function that users provided.

The ability to generate cases in U is especially useful for synthesizing
exit conditions for a branch where P(e) is not precise enough to distinguish
branches. An example is snoc taken from our experiments (Section 5.1), where
we will eventually obtain the following candidate after the sketch completion
step I (the by parts are omitted).

snoc :: B[a]→ Ba→ B[a]
snoc xs b = case xs of

[] → b : [] with λv.case v of {[b]→ �1; → False}
a : x → a : snoc x b with λv.case v of {a : r → �2; → False}

The most precise exit condition for the second branch is one that returns True
for a list whose length is at least 2 and otherwise returns False. Such an exit
condition is obtained by filling �2 with case r of {[]→ False; : → True},
which can be generated from U but not from V . This indeed is key to the
success for snoc (Table 1) in our experiments, as the input/output examples
given for snoc (Table 2) reject exit conditions obtained by filling �2 with
True/False.

Springer Nature 2021 LATEX template

22 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Types are used for two purposes in this type-directed generation. The
rather obvious purpose is to limit the search space for x and C; notice that,
since we know their types, we also know the types of their arguments allowing
us to perform type-directed synthesis for them as well. The other purpose is
to reduce redundancy with respect to η-equivalence by only generating λx.U
for function types and cases only for non-function types. A caveat is the gen-
eration of x V1 . . . Vn at the scrutinee position of case, which cannot be done
in a type-directed way as its type is not given a priori ; instead, its type is
synthesized by using the type of x.

It is worth noting that, though our term generation method is similar to
Osera and Zdancewic [23], there are subtle differences. One of the differences is
that we rely on the lazy nondeterministic generation [24], which delays genera-
tion until the investigation of the generation results. Another subtle difference
is that we use p for filtering. This is for optimization. Recall that we synthe-
size a reconciliation function of the form λs.λv. case v of {P(e)→ �(p)} for a
branch p→ e by filling �(p) with a term Up, as the return value of the reconcil-
iation function must match p. Since this constraint is orthogonal and common
to all input/output examples, we fuse the filtering process to the generation
process. This is especially useful for synthesizing a reconciliation function for a
branch with a pattern involving complex constants such as "section", as seen
in XML queries examples examined in Section 5.2.1; note that the (even lazy)
trial-and-error approach takes a vast amount of time to produce "section"

as it can only be obtained after trying smaller strings than "section". See
Fig. 13 for a concrete synthesis result where this works effectively.

3.5.2 Filtering Based on Branch Traces

As explained in the discussion on round-tripping in HOBiT (see the corre-
sponding paragraph in Section 2), we leverage the fact that put (s, v) and
get (put (s, v)) must follow the same execution trace in terms of taken
branches. This enables us to fix the control flow of the put behavior for the
given input/output example(s) without referring to exit conditions, making it
possible to separate dependent synthesis tasks.

While the example appendB in Section 3.1 only showed how filtering works
for exit conditions, we provide another example illustrating filtering based on
branch traces for both exit conditions and reconciliation functions. Then, we
provide the formal definition of filtering based on branch traces. Finally, we
conclude with a discussion on pruning away programs that would otherwise
cause non-terminating put executions.

Example of filtering exit conditions and reconciliation functions
based on branch traces

Consider the following program

f :: Either Int Int→ Bool
f x = case x of {Left x→ True; Right x→ False}

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 23

that comes with two input/output examples that negate the view and cause
the sources to flip: E = {(Left 42,False,Right 42), (Right 42,True, Left 42)}
(remember that an input/output example is the tuple of the original source,
the original view and the updated source). Suppose that from the given uni-
directional code, we obtain the following candidate before any filtering is
done.

f x = case x of
Left x → True with λv.case v of {True→ �1; False→ False}

by λs.λv.case v of {True→ �2}
Right x → False with λv.case v of {False→ �3; True→ False}

by λs.λv.case v of {False→ �4}

We first discuss filtering of exit conditions. For the first example,
:get f (Right 42) takes the second branch, meaning that we obtain the con-
straint �3[False/v] ≡ True. For the second example, :get f (Left 42) takes the
first branch, generating the constraint �1[True/v] ≡ True. A solution for these
constraints is �1 = True and �3 = True.

Now, let us focus on the reconciliation functions. If we consider the branch
trace generated by the get and evaluate the put for the given examples, we
obtain the following constraints:

• For :put f (Left 42) False, we must switch branches to the second branch,
meaning that the reconciliation function corresponding to the second branch
gets triggered, generating the constraint: :put f (�4[False/v]) False =
Right 42.

• For :put f (Right 42) True, we must switch branches to the first branch,
meaning that the reconciliation function corresponding to this branch gets
triggered, generating the constraint: :put f (�2[True/v]) True = Left 42.

From these constraints, one possible solution is �2 = Left 42 and �3 =
Right 42. While this solution obeys the given example, a better one would be
�2 = case s of {Left x→ s; Right y → Left y} and �3 = case s of {Left x→
Right x; Right y → s}; each s in the branch bodies in �2 and �3 can be arbi-
trary, as they will never be used. The suboptimal solution could be filtered
out by our synthesis engine if other examples such as :put f (Left 37,False) =
Right 37 were provided by the user.

As a note, for both the previous example and the running example appendB
in Section 3.1, we only generate positive constraints (i.e., that evaluate to True)
for the holes in exit conditions. However, in certain cases, negative constraints
(i.e., that evaluate to False) may also be generated. This happens when branch
switching implies that the original branch’s exit condition evaluates to False.
We encountered such situations for lengthTail and reverse in Section 5. In
such a case, the choice of reconciliation functions may affect the generated
constraints as they specify new sources.

Springer Nature 2021 LATEX template

24 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Formalization of Filtering based on Branch Traces

Here, we provide details on the filtering based on branch traces. A trace is
a tree that preserves information about which branches of case were chosen
during the get or put evaluation. The syntax of such a trace is as follows:

tr ::= ε | Br(tr0, j, tr1) | [tr1, . . . , trn]

Here, Br(tr0, j, tr1) is a trace for case E0 of {pi → ei with v′i by v′′i }i,
where tr0 is the trace for E0, j stands for the j-th branch that was chosen,
and tr1 is the trace for Ej . The traces tr1, . . . , trn in [tr1, . . . , trn] correspond
to the arguments of a constructor application C e1 , . . . , en. We abbreviate
[tr1, . . . , trn] to tr when n is obvious.

Primer on HOBiT’s formal semantics. To understand the definition of filter-
ing based on branch traces, one needs to know the formal semantics of HOBiT.
The semantics of HOBiT is defined so that a term-in-context ∅; ∆ ` e : Bσ
defines a bidirectional transformation between ∆ and σ. However, it is not clear
how to interpret function abstractions and applications to achieve this goal.
Thus, HOBiT adopts the staged semantics; it first evaluates λs away to obtain
a first-order residual expression E from e, and then interprets E as a bidirec-
tional transformation between ∆ and σ. Specifically, we use three evaluation
relations: e ⇓ v is for unidirectional evaluation to obtain residual expressions,
and µ `G E ⇒ u and µ `P E ⇐ u a µ′ for bidirectional evaluation of residual
expressions. Intuitively, µ `G E ⇒ u means that a residual expression E is
evaluated in get direction to obtain the original view v from the the original
source environment µ. Contrarily, µ `PT E ⇐tr v a µ′ means that a residual
expression E is evaluated in put direction to obtain the updated source envi-
ronment µ′ from the the original source environment µ and the updated view
v.

Values v, residual expressions E and first-order values u are defined as
follows.

v ::= True | False | [] | v1 : v2 | λx.e | E
E ::= x | True | False | [] | E1 : E2 | case E0 of {pi → ei with v′i by v′′i }i | !u
u ::= True | False | [] | u1 : u2

Intuitively, v, E, and u represent evaluation results of A-, Bτ -, and τ -typed
expressions, respectively. For more details on HOBiT, please see HOBiT’s
original paper [9].

Synbit’s evaluation rules with traces. The rules for the unidirectional eval-
uation relation are rather standard, as excerpted in Fig. 4. The bidirectional
constructs (i.e., bidirectional constructors and bidirectional case) are frozen,
i.e., treated as ordinary constructors in this evaluation.

For filtering based on trace branches we make use of the evaluation rela-
tions µ `GT E ⇒tr u and µ `PT E ⇐tr u a µ′, defined by the rules in
Fig. 5. Intuitively, similar to HOBiT’s semantics, µ `GT E ⇒tr v means that a

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 25

x ⇓ x
(f = e) ∈ P e ⇓ v

f ⇓ v
e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v

e1 e2 ⇓ v λx.e ⇓ λx.e
e0 ⇓ E0 {e′i ⇓ v′i e′′i ⇓ v′′i }i

case e0 of {pi → ei with e′i by e′′i }i ⇓ case E0 of {pi → ei with v′i by v′′i }i
Fig. 4 Unidirectional evaluation rules (excerpt)

program E is reduced to the original view v under the the original source envi-
ronment µ through a trace tr . Accordingly, µ `PT E ⇐tr v a µ′ means that
a program E is evaluated according to its put behavior such that the updated
source environment µ′ is obtained from the the original source environment µ
and the updated view v through a trace tr . These traced evaluation relations
only differ from the original get and put evaluation relations [9] in reference
to traces. Thus, we omit the definitions of the original, untraced evaluation
relations µ `G E ⇒ u and µ `P E ⇐ u a µ′, even though they appear in
Fig. 5.

In the evaluation rules, we write JpK for the semantics of pattern matching
by p: i.e., JpK u is a partial function that returns a binding µ with dom(µ) =
fv(p) and u = pµ if such µ exists (and fails otherwise). In HOBiT, JpK is
injective and thus has a left inverse JpK−1. The rules for case (i.e., Tg-BCase,
Tp-BCase1, and Tp-BCase2) implicitly assume that dom(µi) (i.e., fv(pi))
and dom(µ) are disjoint; we assume appropriate α-renaming that is consistent
in get and put to fulfill the condition. To separate environments, the evaluation
rules use µ1]X,Y µ2 which behaves similarly to the disjoint union µ1]µ2, while
also ensuring dom(µ1) ⊆ X and dom(µ2) ⊆ Y . The operator / is defined by:

(µ′ / µ)(x) =

{
µ′(x) if x ∈ dom(µ′)

µ(x) if x ∈ dom(µ) \ dom(µ′)

The operator g is defined as: µ1 g µ2 = µ1 ∪ µ2 if µ1(x) = µ2(x) for all
x ∈ dom(µ1) ∩ dom(µ2), and otherwise µ1 g µ2 is undefined.

Finally, we describe the filtering process using the rules shown in Fig. 5.
Let P ′ = {fi = e′i}i be a synthesized program that will be checked by the
filtering process, and let (s, v, s′) be an input/output example of the backward
behavior. We check whether :put f1 s v = s′ is established and its trace
coincides with the trace of :get f1 s

′ = v by the following procedure:

1. Let x be a fresh variable. Find E1 that meets e′1 x ⇓ E1.
2. Obtain the trace tr that meets {x 7→ s′} `GT E1 ⇒tr v.
3. Calculate µ′ that meets {x 7→ s} `PT v ⇐tr E1 a µ′. If there is no such
µ′, the synthesized program is inconsistent with the trace tr and should be
filtered out.

4. Check whether (µ′ / {x 7→ s})(x) equals to s′, which means :put f1 s v =
s′. If established, the candidate program is consistent with the given
input/output example.

Springer Nature 2021 LATEX template

26 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

µ `GT x⇒ε µ(x)
(Tg-Var)

µ `PT x⇐ε u a {x = u}
(Tp-Var)

{µ `GT ei ⇒tri ui}i
µ `GT C e⇒tr C u

(Tg-BCon)
{µ `PT ei ⇐tri ui a µ

′
i}i

µ `PT C e⇐tr C u a
j
µ′i

(Tp-BCon)

µ `GT !u⇒ε u
(Tg-!)

µ `PT !u⇐ε u a ∅
(Tp-!)

µ `GT E0 ⇒tr0 u0 JpiK u0 = µi ei ⇓ Ei
µ] µi `GT Ei ⇒tri u v′i u ⇓ True

µ `GT case E0 of {pi → ei with v′i by v′′i } ⇒Br(tr0,i,tri)
u

(Tg-BCase)

µ `G E0 ⇒ u0 JpiK u0 = µi v′i u ⇓ True
ei ⇓ Ei µ] µi `PT Ei ⇐tri u a µ′]dom(µ),dom(µi)

µ′i
JpiK−1 (µ′i / µi) = u′0 µ `PT E0 ⇐tr0 u

′
0 a µ′0

µ `PT case E0 of {pi → ei with v′i by v′′i } ⇐Br(tr0,i,tri)
u a µ′0 g µ′

(Tp-BCase1)

µ `G E0 ⇒ u0 JpiK u0 = µi v′i u ⇓ False v′j u ⇓ True
{v′k u ⇓ False}k<j v′′j u0 u ⇓ urec0 JpjK urec0 = µj

ej ⇓ Ej µ] µj `PT Ej ⇐tri u a µ′]dom(µ),dom(µj)
µ′j

JpjK−1 (µ′j / µj) = u′0 µ `PT E0 ⇐tr0 u
′
0 a µ′0

µ `PT case E0 of {pi → ei with v′i by v′′i } ⇐Br(tr0,j,tri)
u a µ′0 g µ′

(Tp-BCase2)

Fig. 5 get and put evaluation rules with traces

For illustration, we use appendB , and assume the following example was
given as the backward behavior:

:put (uncurryB appendB) ([1, 2, 3], [4, 5]) [6, 2] = ([6, 2], [])

The trace of
:get (uncurryB appendB) ([6, 2], []) = [6, 2]

and the trace of the above :put must coincide. The trace of this :get (after
evaluating uncurryB) is obtained as follows:

{xs = [6, 2], ys = []} `GT appendBbody ⇒Br(ε,1,[ε,Br(ε,1,[ε,Br(ε,0,ε)])]) [6, 2]

where

appendBbody = case xs of [] → ys
with const True by λ .λ . []

a : x → a : appendB x ys
with not ◦ null by λs.λ . s

Here, the resulting overall trace is

tr = Br1(ε2, 1, [ε3,Br4(ε5, 1, [ε6,Br7(ε8, 0, ε9)])])

(for easy identification, we numbered the individual traces). Next, we explain
how this is obtained. The first step of the evaluation of get is the case branch.
Since we have xs = [6, 2], the second branch (cons case) is chosen. Thus, by

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 27

Tg-BCase (reproduced below),

µ `GT E0 ⇒tr0 u0 JpiK u0 = µi ei ⇓ Ei
µ] µi `GT Ei ⇒tri u v′i u ⇓ True

µ `GT case E0 of {pi → ei with v′i by v′′i } ⇒Br(tr0,i,tri) u
(Tg-BCase)

the whole trace tr has the form of Br1(tr2, 1, tr3), where tr2 is the trace of
the evaluation of xs, and tr3 is the trace of the evaluation of a : appendB x ys
under {a = 6, x = [2], ys = [], . . . }. By Tg-Var (reproduced below), we have
tr2 = ε2,

µ `GT x⇒ε µ(x)
(Tg-Var)

and by Tg-BCon (reproduced below), we have tr3 = [tr4, tr5] for some trace
tr4 and tr5.

{µ `GT ei ⇒tri ui}i
µ `GT C e⇒tr C u

(Tg-BCon)

Since tr4 is the trace of the evaluation of a, we have tr4 = ε3 by Tg-Var.
Then, we focus on tr5, which is the trace of the evaluation of appendB x ys
under {x = [2], ys = [], . . . }. Thus, we have6

{xs = [2], ys = [], . . . } `GT appendBbody ⇒tr5
v5

for some value v5. The second branch (cons case) is again chosen, and we
obtain tr5 = Br4(ε5, 1, [ε6, tr6]) for some trace tr6. Since tr6 is the trace of the
evaluation of appendB x ys under {x = [], ys = [], . . . }, we have

{xs = [], ys = [], . . . } `GT appendBbody ⇒tr6
v6

for some value v6. Since we have xs = [], the first branch (nil case) is chosen.
Thus, by Tg-BCase, we have tr6 = Br7(tr7, 0, tr8) for some tr7 and tr8.
Since tr7 is the trace of the evaluation of xs, we have tr7 = ε8 by Tg-Var. By
Tg-Var, we have tr8 = ε9. As a result, the whole trace of the get direction is
computed as:

tr = Br1(ε2, 1, [ε3,Br4(ε5, 1, [ε6,Br7(ε8, 0, ε9)])])

Then, we check if :put (uncurryB appendB) ([1, 2, 3], [4, 5]) [6, 2] goes
through the same trace tr as get . Essentially, this means that the following
relation must hold:

{xs = [1, 2, 3], ys = [4, 5]} `PT appendBbody
⇐Br(ε,1,[ε,Br(ε,1,[ε,Br(ε,0,ε)])]) [6, 2] a µ′ (†)

6If we follow the evaluation rules precisely, we will evaluate appendBbody[x/xs, ys/ys] with α-
renaming of a and x bound in appendBbody, which would bring further complication and thus is
ignored here.

Springer Nature 2021 LATEX template

28 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

with µ′ = {xs = [6, 2], ys = []}. In this evaluation, we also make use of the trace
to determine the rule to be applied. For example, in the backward evaluation
of appendBbody above, we know from the trace that the second branch (cons
case) is chosen. Also, we know from the original environment, which maps xs
to [1, 2, 3], that branch switching does not happen. Thus, the last rule used in
the evaluation must be Tp-BCase1 (reproduced below).

µ `G E0 ⇒ u0 JpiK u0 = µi v′i u ⇓ True
ei ⇓ Ei µ] µi `PT Ei ⇐tri u a µ′]dom(µ),dom(µi) µ

′
i

JpiK−1 (µ′i / µi) = u′0 µ `PT E0 ⇐tr0 u
′
0 a µ′0

µ `PT case E0 of {pi → ei with v′i by v′′i } ⇐Br(tr0,i,tri) u a µ
′
0 g µ

′ (Tp-BCase1)

Then, we need to check the following conditions that appear as the premises of
the rule (we shall omit the get evaluation of scrutinee and the obvious pattern
matching as they are not relevant here).

(not ◦ null) [6, 2] ⇓ True

{a = 1, x = [2, 3], ys = [4, 5], . . . } `PT a : appendB x ys
⇐tr3 [6, 2] a µ′1]{ys,... },{a,x} µ

′
2

(∗)

{xs = [1, 2, 3], . . . } `PT xs
⇐tr2

Ja : xK−1(µ′2 / {a = 1, x = [2, 3]}) a µ′3
µ′ = µ′1 g µ

′
3

Here, tr2, tr3, . . . are the traces that appeared in the get evaluation; hence
tr2 = ε and tr3 = [tr4, tr5] = [ε,Br(ε, 1, [ε,Br(ε, 0, ε)])] for example. The first
condition clearly holds, and the third condition can be solved by Tp-Var
(reproduced below) with µ′3 = {xs = Ja : xK−1(µ′2 / {a = 1, x = [2, 3]})}.

µ `PT x⇐ε u a {x = u}
(Tp-Var)

So, let’s focus on the second condition (∗). By Tp-BCon (reproduced below),

{µ `PT ei ⇐tri
ui a µ′i}i

µ `PT C e⇐tr C u a
j
µ′i

(Tp-BCon)

this condition is reduced to

{a = 1, . . . } `PT a⇐tr4
6 a µ′4

and checking whether tr5 is the trace of the backward evaluation of append x ys
under {x = [2, 3], ys = [4, 5], . . . } for the updated view [2] to yield µ′5 such that
µ′1]{xs,ys},{a,x} µ

′
2 = µ′4 g µ

′
5. By Tp-Var, it is easy to see that the former

holds with µ′4 = {a = 6}. The latter holds if (and only if)7

{xs = [2, 3], ys = [4, 5], . . . } `PT appendBbody ⇐tr5
[2] a µ′6

7Similar to Footnote 6.

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 29

holds with tr5 = Br(ε, 1, [ε, tr6]) = Br(ε, 1, [ε,Br(ε, 0, ε)]) and µ′5 = {x =
µ′6(xs), ys = µ′6(ys)}. Again, in the backward evaluation of appendBbody , we
know from the trace tr5 that the second branch (cons case) must be chosen, and
from the original environment {xs = [2, 3], . . . } that the branch is the original
one. Thus, the last rule used for the evaluation must be Tp-BCase1. Thus,
to make the above traced backward evaluation hold, it suffices (and needs)
that the following conditions hold (again, we shall ignore irrelevant premises
of Tp-BCase1).

(not ◦ null) [2] ⇓ True

{a = 2, x = [3], ys = [4, 5], . . . } `PT a : appendB x ys
⇐[ε,tr6] [2] a µ′7]{ys,... },{a,x} µ

′
8

(∗∗)

{xs = [2, 3], . . . } `PT xs ⇐ε Ja : xK−1(µ′8 / {a = 2, x = [3]}) a µ′9
µ′6 = µ′7 g µ

′
9

The first condition clearly holds, and the third condition can be solved by Tp-
Var with µ′9 = {xs = Ja : xK−1(µ′8 / {a = 2, x = [3]}). The second condition
(∗∗) is further reduced to conditions:

{a = 2, . . . } `PT a⇐ε 2 a µ′10

{xs = [3], ys = [4, 5], . . . } `PT appendBbody ⇐tr6 [] a µ′11

µ′7]{ys,... },{a,x} µ
′
8 = µ′10 g {x = µ′11(xs), ys = µ′11(ys)}.

Clearly, by Tp-Var, the first condition holds with µ′10 = {a = 2}.
Thus, let’s focus on the second condition. Unlike the previous cases, the
trace tr6 = Br(ε, 0, ε) says that the evaluation must use the first branch
(nil case), which is different from the original branch (taken under the
environment {xs = [3], . . . }). Thus, the last rule used in the evalua-
tion {xs = [3], ys = [4, 5], . . . } `PT appendBbody ⇐tr6 [] a µ′11 must be Tp-
BCase2 (reproduced below), meaning that branch switching happened.

µ `G E0 ⇒ u0 JpiK u0 = µi v′i u ⇓ False v′j u ⇓ True

{v′k u ⇓ False}k<j v′′j u0 u ⇓ urec
0 JpjK urec

0 = µj
ej ⇓ Ej µ] µj `PT Ej ⇐tri u a µ′]dom(µ),dom(µj) µ

′
j

JpjK−1 (µ′j / µj) = u′0 µ `PT E0 ⇐tr0 u
′
0 a µ′0

µ `PT case E0 of {pi → ei with v′i by v′′i } ⇐Br(tr0,j,tri) u a µ
′
0 g µ

′ (Tp-BCase2)

Since we have
(λ .λ . []) [3] [] ⇓ []

we then check other premises of the rule instance (again, we shall ignore the
irrelevant ones):

(not ◦ null) [] ⇓ False

(const True) [] ⇓ True

{ys = [4, 5], . . . } `PT ys ⇐ε [] a µ′12]{ys,... },∅ ∅

Springer Nature 2021 LATEX template

30 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

{xs = [3], . . . } `PT xs ⇐ε J[]K−1(∅ / ∅) a µ′13

µ′11 = µ′12 g µ
′
13.

The first two clearly hold, and by Tp-Var, the third and forth ones hold with
µ′12 = {ys = []} and µ′13 = {xs = []}. Thus, we have µ′11 = {xs = [], ys = []} to
satisfy the fifth condition. Then, we can solve the constraints on environments
obtained so far as: µ′8 = {a = 2, x = []}, µ′7 = {ys = []}, µ′9 = {xs =
[2]}, µ′6 = {xs = [2], ys = []}, µ′5 = {x = [2], ys = []}, µ′1 = {ys = []},
µ′2 = {a = 6, x = [2]}, and µ′3 = {xs = [6, 2]}. Now, we are ready to check
µ′ = {xs = [6, 2], ys = []} = µ′1 g µ

′
3 to conclude (†).

Discussion on pruning non-terminating programs based on branch
traces

Using branch traces also helps us prune away programs that would cause non-
terminating put executions. It is known that synthesis of recursive functions is
a challenging problem [25], especially for programming-by-examples, because
a synthesized function may diverge for a given example. Waiting for a timeout
is inefficient and there is no clear way to set an appropriate time limit. In
our approach, assuming that the given get execution is terminating for the
input/output examples, we never generate such diverging candidate programs.
The reason is that we only generate programs whose put execution follows the
finite branch trace of the get , and are thus terminating.

3.6 Heuristics

In this section, we discuss some heuristics we found effective when exploring
the search space.

Assigning costs to choices. Our generation is prioritized by assigning a pos-
itive cost to each nondeterministic choice in the sketch generation. Programs
with lower costs are generated earlier than those with higher costs. An advan-
tage of this approach is that it is easy to integrate with lazy nondeterministic
generation methods [24], which is the core of our prototype implementation.
Another advantage is that smaller programs naturally have higher priority
(i.e., lower costs), as the generation of large programs usually involves many
choices, reflecting our belief that smaller programs are typically preferable.

Canonical forms of Bool-typed expressions. Generation of Bool-typed
expressions is a common task, especially in our context as exit conditions
always return Bool values. However, a naive generation of Bool-typed expres-
sions may lead to redundancies, for example, True&&e and e may be considered
two distinct expressions during the search. So when filling holes of type Bool, we
generate expressions in disjunctive normal form, in which atomic propositions
are expressions of the form x V1 . . . Vn with x : A1 → · · · → An → Bool ∈ Γ.
While this eliminates redundancy due to distributivity, associativity and zero
and unit elements, it does not address commutativity and idempotence. Pro-
vided that there is a strict total order ≺ on expressions, both sorts of
redundancy could be addressed easily by generating e2 after e1 so that e1 ≺ e2

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 31

holds. Currently we do not do this in our implementation in order to avoid the
additional overhead of checking e1 ≺ e2.

Other effective improvements. In addition to the heuristics mentioned
above, we make use of some simple but effective techniques. For example, for
case with a single branch, we do not try to synthesize exit conditions or rec-
onciliation functions. An exit condition λ .True and a reconciliation function
λs.λv.s suffice for such a branch. We do not generate redundant case expres-
sions such as λs.λv.case v of{z → · · · }. When the pattern p of a branch does
not contain any variables, we deterministically choose λ .λ .p as its reconcili-
ation function. For a case whose patterns {P(ei)}i do not overlap, we do not
leave holes in exit conditions as replacing them with True is sufficient.

3.7 Soundness and Incompleteness

Our proposed method is sound for the given input/output examples in the
sense that it synthesizes a bidirectional transformation such that its put behav-
ior is consistent with the input/output examples, and its get behavior coincides
with the given get program for the sources that appear in the examples. This
is obvious because we check the conditions in the last step (i.e., filtering) in
our synthesis; recall that the last step involves the get execution to obtain a
trace to filter out the put behavior. It is worth noting that the get behavior of
a synthesized function may be less defined than a given get program, because
our method may synthesize exit conditions that are not postconditions; recall
that they are checked dynamically in HOBiT (Section 2). We heuristically
try to avoid this by prioritizing True over False in the synthesis of exit condi-
tions, which works effectively for all the cases discussed in Section 5 but is not
a guarantee, especially with components. We could address this by inferring
postconditions and using them as exit conditions, which is left for future work.

In contrast, our proposed method is incomplete. This is due to the use of the
sketches obtained from the unidirectional code to prune the search space. While
this makes our approach efficient, it may remove potential solutions. Such
situations are captured by the examples lines and lookup, where the solutions
do not follow the sketches, in the experimental evaluation in Section 5.1.

4 Discussion on let-polymorphism

Synbit supports let-polymorphism as illustrated by some get programs used
in the experiments (Section 5.1), such as append :: [a] → [a] → [a] and
reverse :: [a] → [a] that have polymorphic types. However, for simplicity, we
assumed simple types in our formal development (e.g., Fig. 2 and 3).

The handling of bidirectional programs with (rank 1) polymorphic types
is mostly straightforward. For example, for the sketch generation in Fig. 3, we
can leverage the fact that in the standard typing system for let polymorphism
[26], expressions can only have monomorphic types. As a consequence, we can
say A and A’ in Γ′; ∆′; A′ . Γ ` e : A e′ are always monomorphic.
Also, these types A and A’ are fully determined in advance of the generation,

Springer Nature 2021 LATEX template

32 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

because A comes from the typing derivation of the original get program and
A′ is obtained from A by inserting B. The types A and A’ may contain type
variables but they are rigid (i.e., not subject to unification). Note that we can
access to the typing derivation of the original get program as well as the code
itself.

Though it is still straightforward, a slightly more careful discussion is
needed for the type-directed generation of terms to fill shape-restricted
holes (Section 3.5.1), where types being used for type-directed generation may
not be immediately clear. In an extreme case, for example, if the component
functions contain const :: a→ b→ a, we have no immediate information of the
type to generate its second argument as it cannot be determined by instan-
tiation of a. This suggests that we may need to consider explicit handing of
type variables and unification in the term generation, which complicates the
system. Fortunately though, our back-end system for (lazy) nondeterministic
generation is powerful enough to address the issue without introducing any
additional complication; in the system, a logic (i.e., unifiable) variable (e.g.,
(non-rigid) type variable) can be expressed by nondeterministic generation of
all the things (e.g., monomorphic types) to substitute for it, and by the share
operator, which is for sharing (non-deterministic) computational results [24].

5 Experiments

We implemented the proposed idea as a proof-of-concept system, Syn-
bit, in Haskell.8 Synbit is given as an extension to the original HOBiT
implementation [9].

We measure the effectiveness of our proposed method in the following three
experiments.

• Microbenchmarks, classified in terms of information loss (Section 5.1).
• More realistic problems including XML transformations and string parsing

(Section 5.2).
• Comparisons with the other state-of-the-art synthesis methods (Section 5.3).

The experiments were conducted on a Windows Subsystem for Linux
(WSL) 2 running on a laptop PC with 2.30 GHz Intel(R) Core(TM) i7-4712HQ
CPU and 16 GB memory, 13 GB out of which were assigned to WSL 2. The
host OS was Windows 10 (build NO. 19042.685), and the guest OS was Ubuntu
20.04.1 LTS. We used GHC 8.6.5 to compile Synbit with the optimization
flag -O2. Execution times were measured by Criterion9, a popular library in
Haskell for benchmarking, which estimates the true execution time by the
least-squares method. Any case running longer than 10 minutes was reported
as a timeout.

8The implementation is available in the artifact https://doi.org/10.5281/zenodo.5494504 or in
https://github.com/masaomi-yamaguchi/synbit

9https://hackage.haskell.org/package/criterion

https://doi.org/10.5281/zenodo.5494504
https://github.com/masaomi-yamaguchi/synbit
https://hackage.haskell.org/package/criterion

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 33

5.1 Microbenchmarks Classified by Information-Loss

To construct the microbenchmarks, we classify programming problems accord-
ing to the level of difficulty. Recall that the main challenge of lenses is to
incorporate the information that is in the source but absent in the view in order
to create an updated source. For structure rich data represented by algebraic
datatypes, this includes the structure of the source data, especially the part
that the get function recurs on. With that, we arrive at the following classes.

Class 1 All information of the recursion structure is present in the view (e.g.,
map).
Class 2 Some information of the recursion structure is present in the view
(e.g., append).
Class 3 No information of the recursion structure is present in the view (e.g.,
lookup).

The rule of thumb is that the more information is present in the view, the
easier is it to define a put that handles structural changes to the view. Take
map as an example, the function is bijective in terms of the list structure. As
a result, a put function can share the recursion structure of the get , mapping
whatever structural changes from the view back to the source. This becomes
harder with the loss of structure information in the view. Take append as
an example. The boundary between the first source list, which get recurs on,
and the second source list is gone in the view. As a result, if a put function
is to share the recursive structure of the get , the backward execution will
always try to replenish the first source list first before leaving the remaining
view elements as the second source list.10 This is what appendB does. Any
divergence from this behavior will require a different recursive structure for
put , which drastically increases the search space as it loses the guidance of the
get-based sketch.

We thus expect that the performance of Synbit varies according to the dif-
ficulty classes. For Class-1 problems, synthesis is likely to be successful for any
given input/output examples (thus handling any structural changes); for Class-
2 problems, synthesis is likely to be successful for some given input/output
examples; and for Class-3 problems, synthesis is only possible for input/output
examples that are free from structural changes.

The benchmark programs and the synthesis results are summarized in
Table 1, which should be read together with Table 2 where the input/out-
put examples used for the experiments are shown (which can also be used as
a reference for the forward execution behaviors of the input functions). Also,
we used the following auxiliary functions: equality over natural numbers for
lengthTail , reverse and appendBc, and length in addition for the latter two.
The function marked by (∗) includes a small adaptation to its standard defini-
tion which will be explained below. The definitions of all the functions listed

10unless we know that the second list is fixed as in appendBc

Springer Nature 2021 LATEX template

34 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Table 1 The results of experiments for categorized examples

Problem Recursion on Class Result Time (s)

double Nat 1 Yes 0.050
uncurryReplicate Nat 1 Yes 0.050
mapNot List 1 Yes 0.052
mapReplicate Nat and List 1 Yes 0.13
snoc List 1 Yes 0.15
length List 1 Yes 0.040
lengthTail List (tail recursive) 1 Yes 0.22

reverse(∗) List (tail recursive) 1 Yes 1.3
mapFst List 1 Yes 0.016
add Nat 2 Yes 0.045
append List 2 Yes 0.034
appendBc List 2 Yes 5.6
professor List 2 Yes 0.023
lines List 2 Timeout -
lookup List 3 Timeout -

Table 2 Input/output examples: for readability, we shall write n for Sn Z (integer
constants are also used in snoc, reverse, mapFst and append), and stn/prn/pr ′n for
Student "stn"/Professor "prn"/Professor "prn’".

Program Original Source (Original View) Updated View Updated Source

double
1 2 6 3
5 10 4 2

replicate
(’a’, 2) "aa" "bbb", (’b’, 3)
(True, 3) [True, True, True] [False,False] (False, 2)

mapNot [True, False] [False, True] [True, True, False] [False, False, True]

mapReplicate
[(’b’, 2)] ["bb"] ["aaa", "b", "cc"] [(’a’, 3), (’b’, 1), (’c’, 2)]
[(’a’, 3), (’b’, 1), (’c’, 2)] ["aaa", "b", "cc"] ["bb"] [(’b’, 2)]

snoc
([1, 2, 3], 4) [1, 2, 3, 4] [1, 2, 3] ([1, 2], 3)
([1, 2, 3], 4) [1, 2, 3, 4] [1, 2, 3, 4, 5, 6] ([1, 2, 3, 4, 5], 6)

length [1, 2] 2 4 [1, 2, 0, 0]
/lengthTail [2, 0] 2 1 [2]

reverse
[True, True] [True, True] [False, True, True] [True, True, False]
[1, 2, 3, 4] [4, 3, 2, 1] [6, 5] [5, 6]

mapFst
[(1, ’a’), (2, ’b’), (3, ’c’)] [1, 2, 3] [1, 3] [(1, ’a’), (3, ’b’)]
[(2, ’b’), (3, ’c’)] [2, 3] [0, 1, 2, 3] [(0, ’b’), (1, ’c’),

(2, ’a’), (3, ’a’)]

add
(2, 3) 5 7 (2, 5)
(2, 3) 5 1 (1, 0)

append
([1, 2, 3, 4], [5]) [1, 2, 3, 4, 5] [6, 2] ([6, 2], [])
([1, 2, 3, 4], [5]) [1, 2, 3, 4, 5] [1, 2, 3, 4, 5, 6] ([1, 2, 3, 4], [5, 6])

appendBc
"apple" "apple;;" "pineapple;;" "pineapple"

"apple" "apple;;" "plum;;" "plum"

professor
[st1, st2, pr1, st3, pr2] [pr1, pr2] [pr′1, pr′2, pr′3] [st1, st2, pr′1, st3, pr′2, pr′3]

[st1, st2, pr1, st3, pr2] [pr1, pr2] [pr′1] [st1, st2, pr′1, st3]

lines
"aa\nbb\ncc" [”aa”, ”bb”, ”cc”] ["aa", "bb"] "aa\nbb"
"aa" [”aa”] ["aa", "bb"] "aa\nbb"
"aa\n" [”aa”] ["aa", "bb"] "aa\nbb\n"

lookup
([(1, 10), (2, 200), (3, 33)], 2) 200 10 ([(1, 10), (2, 200), (3, 33)], 1)
([(1, 10), (2, 200), (3, 33)], 2) 200 33 ([(1, 10), (2, 200), (3, 33)], 3)

and the full synthesis results can be found in the artifact11 or the repository12

together with the implementation.

Class 1

As we can see, Synbit handles programs in this class with ease. An interesting
case is reverse. On the conceptual level, the function is embarrassingly bijective

11https://doi.org/10.5281/zenodo.5494504
12https://github.com/masaomi-yamaguchi/synbit

https://doi.org/10.5281/zenodo.5494504
https://github.com/masaomi-yamaguchi/synbit

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 35

and should be straightforward to invert. However, in practice the story is much
more complicated, especially for the linear-time accumulative list reversal (the
naive non-accumulative implementation has quadratic complexity in a func-
tional language). It is well known in the program inversion literature [27, 28]
that tail recursive functions (which are often needed for accumulation) are
challenging to handle due to overlapping branch bodies. The reverse definition
we use in the benchmark includes a small fix: it takes an additional parame-
ter that represents the length of the list in the accumulation parameter. It is
sufficient to guarantee the success of Synbit.

Class 2

As we can see, Synbit also performs well for this class. But as explained
above, the success is conditional on the input/output examples that the put
is required to satisfy. Take append as an example, if the following example is
included, which demands the second list being filled before the original first
list is fully reconstructed, the synthesis will fail, as a solution must have a
different recursion structure from that of the sketch.

Original Source (Original View) Updated View Updated Source
([1, 2, 3, 4], [5]) [1, 2, 3, 4, 5] [6, 2] ([6], [2])

An interesting case is lines, which splits a string by ’\n’ to produce a list
of strings. The synthesis becomes a lot harder when the examples (as seen in
Table 2) require the preservation of the existence of the newline in the last
position. This combined with structural changes to the view list cannot be
captured by the recursion structure of the sketch, which explains the failure.

Class 3

Functions such as lookup completely lose the source structures. Consequently,
Synbit will not be able to handle any example of structural changes. In the
case of lookup, a structural change means that the view value is changed to
another value associated to a different key in the source (as seen in Table 2).
Just for demonstration, if only non-structural changes are considered, as in
the following example where the changed view does not switch to a different
key, Synbit will be able to successfully generate a program.

Original Source (Original View) Updated View Updated Source
([(1, 10), (2, 200), (3, 33)], 2) 200 10 ([(1, 10), (2, 10), (3, 33)], 2)

However, this is not interesting as the strength of HOBiT lies in its ability to
handle structural changes through branch switching.

5.2 Larger and More Involved Example

Next, we evaluate Synbit on some larger examples, which are closer to realistic
use cases. In particular, we look at two types of transformations: XML queries
and string parsing.

Springer Nature 2021 LATEX template

36 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

<book><title>Data on the Web</title>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author><author>Dan Suciu</author>
<section id="intro" difficulty="easy">
<title>Introduction</title><p>...</p>
<section><title>Audience</title><p>...</p></section>
<section>
<title>Web Data and the Two Cultures</title>
<p>...</p>
<figure height="400" width="400">
<title>Traditional client/server architecture</title>
<image source="csarch.gif"/>
</figure>
<p>...</p>
</section>
</section>
<section id="syntax" difficulty="medium">...</section>
</book>

Fig. 6 An XML document used as an original source for Queries Q1 to Q6.

5.2.1 XML Transformations

We examined six queries from XML Query Use Cases13 (“TREE” Use Case).
Table 3 provides brief explanations for these queries and Figure 6 shows the
skeleton of the XML document used as the original source for them. Such XML
documents are represented in HOBiT by a rose-tree datatype. We ignored
Document Type Definitions for simplicity—we could handle such constraints
by fusing a partial identity function checking them to a get function. We
also provided the constant “title” as an auxiliary component to our synthesis
engine.

Table 4 contains the results of this experiment. Column “Updates” indi-
cates the updates of the source query triggered by the given input/output
examples, whereas columns “LOCin” and “LOCsyn” denote the number of lines
of code in the original and the synthesized query, respectively. The results
show that Synbit can synthesize fairly large HOBiT programs. In particular,
the number of AST nodes synthesised ranges from 73 (for Q4) to 471 (for Q5),
corresponding to 17 lines of code for Q4 and 80 for Q5. (The programs are too
large to be displayed in the main body of this paper. See Appendix A.2 for the
concrete input and output of Synbit for Q1, which serves as a representative
of the six to illustrate their complexity.)

The reason Q6 takes significantly more time than the rest is that it assumes
that each section has a title element. Consequently, when handling insertion
of sections, the generated reconciliation function needs to construct a section
with a title.

5.2.2 Lexer and Parser

We also examined a simple recursive decent (specifically, LL(1)) lexer and
parser. The lexer takes in strings (i.e., {(,), S, Z, +}∗) and returns a sequence

13https://www.w3.org/TR/xquery-use-cases

https://www.w3.org/TR/xquery-use-cases

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 37

Table 3 Explanations of the examined XML queries: the descriptions are quoted from
XML Query Use Case, where “Book1” refers the source XML.

Problem Description (quoted)

Q1 “Prepare a (nested) table of contents for Book1, listing all the sections
and their titles. Preserve the original attributes of each <section> ele-
ment, if any.”

Q2 “Prepare a (flat) figure list for Book1, listing all the figures and their
titles. Preserve the original attributes of each <figure> element, if any.”

Q3 “How many sections are in Book1, and how many figures?”

Q4 “How many top-level sections are in Book1?”

Q5 “Make a flat list of the section elements in Book1. In place of its original
attributes, each section element should have two attributes, containing
the title of the section and the number of figures immediately contained
in the section.”

Q6 “Make a nested list of the section elements in Book1, preserving their
original attributes and hierarchy. Inside each section element, include
the title of the section and an element that includes the number of
figures immediately contained in the section.”

Table 4 The results of experiments for XML examples.

LOCin ASTin Updates in I/O examples Time (s) LOCsyn ASTsyn

Q1 11 136
Add attribute(s)

0.35 42 319Remove section(s)
Change title(s)
and attribute value(s)

Q2 23 199

Remove figure(s)

0.97 69 406Change title(s)
Change attribute value(s)
Add Attribute

Q3 20 191
Decrease figure count

0.43 63 339Increase section count
Decrease section count

Q4 9 97 Increase section count 0.14 26 170Decrease section count

Q5 35 342

Decrease figure count

1.2 115 813Increase figure count
Remove section(s)
Change title(s)

Q6 31 236

Increase figure count(s)

10 90 530Decrease figure count(s)
Add section(s) with title
and figure count
Change title(s)

of tokens represented by the following datatype.

data Token = TNum Nat | LPar | RPar | Plus

Note that natural numbers such as S(S(Z)) are processed in this step. Then,
the parser takes in the output of the lexer, i.e., a sequence of the tokens above,

Springer Nature 2021 LATEX template

38 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Table 5 Experimental results for the lexer and parser.

LOCin ASTin Updates Time (s) LOCsyn ASTsyn

Lexer 15 88
Change on natural numbers
remove/insert tokens 0.094 69 265

Parser 10 45
Replacement of
whole AST and back 0.55 29 121

pExp :: B[Token]→ BExp
pExp ts = let (e, []) = go ts in e

go :: B[Token]→ B(Exp, [Token])
go ts = case ts of

TNum n : r → (ENum n , r)

with λv. case v of {(ENum ,)→ True; → False}
by λs.λv. case v of {(ENum a,)→ TNum a : s}

LPar : r1 → let (e1,RPar : Plus : LPar : r2) = go r1 in
let (e2,RPar : Plus : LPar : r3) = go r2 in

(EAdd e1 e2 , r3)

with λv. case v of {(EAdd ,)→ True; → False}
by λs.λv. case v of

{(EAdd ,)→ LPar : TNum Z : RPar : Plus : LPar : TNum Z : RPar : s}

Fig. 7 Synthesized Bidirectional Parser

and returns an abstract syntax tree, according to the following grammar.

s ::= n | (s)+(s)

The lexer and parser considered here are injective, which is uncommon
in practice. Typically, a lexer loses information about white spaces (layout-
ing) and comments, and a parser may remove syntactic sugars and redundant
parentheses14. Sometimes, though, such lost information is attached to the
abstract syntax trees, making the parsing process injective [29–31].

Table 5 summarizes the experimental results. In Figure 7, we provide the
parser generated by Synbit as it is the more intricate of the two. Notice that
the LPar case in go requires quite an involved reconciliation function. Please
refer to Appendix A.3 to see the concrete input and output of Synbit.

5.3 Comparison with Smyth

A fair comparison with other synthesis systems is not always easy due to the
different set-ups. For example, we cannot compare directly with Optician [32–
34], the state of the art lens synthesizer, as its inputs and outputs are too
different from ours (see Section 6 for a non-experimental comparison).

Instead, we pick Smyth [13], a state-of-the-art synthesis tool that syn-
thesizes unidirectional programs from sketches and input/output examples—a
set-up that is similar to ours. We provide to Smyth hand-written sketches
of put in the form of “base case sketches” [13], which are incomplete pro-
grams for which the step case branches are left as holes while the base case

14A notable exception is the parser for GHC/Haskell, which keeps syntactic sugars and
parentheses for better error messaging.

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 39

Table 6 Results of comparative experiments with Smyth: “No” means that Smyth
reported failure in 10 min.

Problem Class Synbit Smyth

double 1 Yes Yes
uncurryReplicate 1 Yes Yes
mapNot 1 Yes Yes
mapReplicate 1 Yes Yes
snoc 1 Yes No
length 1 Yes Yes
lengthTail 1 Yes Yes
reverse 1 Yes No
mapFst 1 Yes No
add 2 Yes No
append 2 Yes No
appendBc 2 Yes No
professor 2 Yes No
lines 2 Timeout Timeout
lookup 3 Timeout Yes

branches are pre-filled, and the same input/output examples as the experi-
ments in Table 2. We omit the round-tripping requirement for Smyth and
only check whether the tool is able to produce put functions that satisfy the
input/output examples.

Table 6 shows the results of the comparison (with more details in the
artifact15 or the repository16). Synbit successfully synthesized 13 out of 15
cases, whereas Smyth succeeded only in 7 cases. We believe that the main
reason for the difference is the required put functions tend to be quite complex,
usually more so than their corresponding get . It is worth noting that Smyth
succeeded for lookup, where Synbit failed. For this particular case, a put
program that conforms to the input/output example is represented by the
key-value-flipped version of get , which was ruled out in Synbit by a sketch.

6 Related work

Optician

Optician [32–34] is the state-of-the-art framework for synthesizing lenses [4, 6,
35, 36]. Both their framework and ours implicitly guarantee the round-tripping
properties by using bidirectional programming languages (lenses/HOBiT) as
targets. However, a direct comparison of performance is difficult due to the very
different set-ups. Their target lenses are specialized for string transformations,
while HOBiT considers general datatypes. And correspondingly, the core of
their input specification is regular expressions describing data formats, while
that of ours is standard functional programs serving as sketches.

15https://doi.org/10.5281/zenodo.5494504
16https://github.com/masaomi-yamaguchi/synbit

https://doi.org/10.5281/zenodo.5494504
https://github.com/masaomi-yamaguchi/synbit

Springer Nature 2021 LATEX template

40 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Due to such differences in set-ups, even though we could translate a speci-
fication for Optician (regular expressions and input/output examples) to one
for Synbit (a get program and input/output examples), such a translation
would involve many arbitrary choices (especially the choice of a get for Syn-
bit) that affect synthesis, effectively ruling out a meaningful comparison (see
Appendix A.1 for an illustrative example on the difficulty).

Despite the very different approaches, it is interesting to observe a common
design principle shared by both: leveraging the strengths of the underlying bidi-
rectional languages. Optician’s regular-expression-based specification matches
perfectly with the simplicity of the lens languages and their close connection to
advanced types, while Synbit takes full advantage of HOBiT’s alignment to
conventional functional programming. On a more technical note, Optician [34]
is able to prioritize the generated programs by quantitative information flow.
It is not clear how this may be used in Synbit as the computation of the
quantitative information flow will be difficult for a language with arbitrary
recursion.

Other synthesis efforts for bidirectional programming

Both the proposed approach and optician do not support matching lenses [37],
which limits synthesized bidirectional transformations. One might think that
the I/O example for mapFst in Table 2 is a bit unnatural and that it should
behave as follows instead.

Original Source (Original View) Updated View Updated Source
[(1, ’a’), (2, ’b’), (3, ’c’)] [1, 2, 3] [1, 3] [(1, ’a’), (3, ’c’)]

To achieve this goal, we need to know the correspondence between 3 in the
view and (3, ’c’) in the source, or matching [37] of elements. Finding appro-
priate matching is known to be the alignment problem in this context, which
can typically be solved by using keys that identity elements in a container.
For example, in the above I/O example, one implicitly assumes that the first
component of a pair in the source list plays as a key, and 3 in the view and
(3, ’c’) should match as they have the same key 3. Currently, neither HOBiT
used in Synbit nor the lenses [4, 6, 35, 36] used in Optician do not handle key
constraints.

In a vision paper, Voigtländer [38] suggests some directions of synthesiz-
ing bidirectional programs from get programs by leveraging the round-tripping
properties. Specifically, he suggests using the round-tripping properties to gen-
erate input/output examples for synthesis. Using Acceptability, if one can
generate s in some ways (assuming the totality of get), then examples of back-
ward behavior may arise from put (s, get s) = s. But a naive application of
this without considering Consistency may result in incorrect put behavior
such as put (s, v) = s. To remedy the situation, Voigtländer suggests restrict-
ing put to use the second argument v; i.e., the argument must be relevant in
the sense of relevant typing. Voigtländer also suggests using Consistency to
restrict the form of put to satisfy put (s, v) ∈ get−1(v), which is indeed effec-
tive for simple gets such as get = head (in this case the right-hand side must

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 41

have the form of v :). However, synthesis in this direction does not guaran-
tee correctness with respect to round-tripping, and an additional verification
process will then be needed.

The PINS framework [39] applies path-based synthesis to program inver-
sion, a program transformation that derives the inverse of an (injective)
program. The path-based synthesis was able to derive inverses for involved
programs such as LZ77 and LZW compression which the other existing inver-
sion methods at the present time cannot handle. However, since it focuses only
on a finite number of paths, the system does not guarantee correctness: the
resulting programs may not always be inverses. PINS also uses sketches and
component functions given by users.

Program inversion

Program inversion is a technique related to bidirectional programming, but
there are important differences. In program inversion, input programs are
expected to be injective and thus serve as complete specifications, which is not
the case in bidirectional programming. As a result, in Synbit input/output
examples are used to further specify the required backward behavior. Despite
the differences, program inversion and bidirectional programming do share
some common techniques. For example, using postconditions (as exit condi-
tions in HOBiT) to determine control flows (especially branches) in inverses
is a very common approach in the literature [16, 17, 40–44]. A more interest-
ing connection is the concept of partial inversion [45], which uses binding-time
analysis before inversion so that the inverses can use static data as inputs
as well. Types in HOBiT can be seen as binding time where non-B-types
are seen as static, and our type-directed sketch generation (Section 3.3), with
the lazy nondeterministic generation, can be viewed as a type-based binding-
time analysis [46]. The idea of partial inversion is further extended so that
the return values of inverses are treated as “static inputs” as well [47], and
the pin operator [48] is proposed to capture such a behavior in an invertible
language. However, the utility of the operator in bidirectional programming
rather than invertible programming is still under exploration, and thus our
current synthesis method does not include it.

Bidirectionalization

Bidirectionalization is a program transformation that derives a bidirectional
transformation from a unidirectional transformation. In a sense, this can be
seen as a simple type of synthesis. Matsuda et al. [5], based on the constant-
complement view updating [1], analyze injectivity (information-loss) of a
program and then derive a complement by gathering lost information to obtain
a bidirectional version. This method requires a strong restriction on input
programs for effective analysis: they must be affine (no variables can be used
more than once) and treeless [49] (only variables can be arguments of func-
tions) so that the injectivity analysis becomes exact. Voigtländer [50] makes

Springer Nature 2021 LATEX template

42 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

use of parametricity [51, 52] to interpret polymorphic functions as bidirec-
tional transformations. The technique is restricted to polymorphic functions.
Probably more importantly, it can only handle non-structural updates—the
equivalent of HOBiT without the ability of branch switching. Several exten-
sions of the idea have been proposed [10, 53, 54]. In general, bidirectionalization
is far less expressive than the state-of-the-art synthesis frameworks such as
Optician/lenses and Synbit/HOBiT.

General program synthesis

A popular direction in program synthesis that inspired our work is program
sketching, where programmers express their insights about a program by writ-
ing sketches, i.e., partial programs encoding the structure of a solution while
leaving its low-level details unspecified in the form of holes [15]. As opposed
to our technique, Solar-Lezama’s technique [15] can only be applied to integer
benchmarks and does not support other data types such as lists or trees. Also,
it mostly focuses on properties, rather than examples, by relying on Counterex-
ample Guided Inductive Synthesis (CEGIS) [55], where a candidate solution is
iteratively refined based on counterexamples provided by a verification tech-
nique. There is actually a large body of works based on the CEGIS architecture
[20, 56–60]. Often, such approaches expect formal specifications describing the
behavior of the target program, which can be difficult to write or expensive to
check against using automated verification techniques. Conversely, our spec-
ification consists of the unidirectional program and input/output examples
without requiring prior understanding of logic.

The original work on program sketching has inspired a multitude of follow-
up directions. Some of the most related to our work are Katayama [61], Feser
et al. [62], Osera and Zdancewic [23], Lubin et al. [13], which, similarly to
our technique, are type-directed and guided by input/output examples. As
opposed to these approaches, we exploit information about the unidirectional
program in order to prune the search space for the bidirectional correspondent.
As shown in our experimental evaluation, simply applying synthesis techniques
designed for unidirectional code is not effective.

Another direction that inspired us is that of component-based synthesis [20,
21], where the target program is generated by composing components from a
library. Similarly to these approaches, we use a given library of components as
the building blocks of our program generation approach.

Equivalence reduction

Program synthesis techniques make use of equivalence reduction in order to
reduce the number of equivalent programs that get explored. For example,
Albarghouthi et al. [25] prune the search space using observational equivalence
with respect to a set of input/output examples, i.e., two programs are consid-
ered to be in the same equivalence class if, for all given inputs in the set of
input/output examples, they produce the same outputs. Alternatively, Smith
and Albarghouthi [63] generate only programs in a specific normal form, where

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 43

term rewriting is used to transform a program into its normal form. In [64],
Koukoutos et al. make use of attribute grammars to only produce certain types
of expressions in their normal form, thus skipping other expressions that are
syntactically different, yet semantically equivalent. In our work, we found that
the lightweight heuristics described in Section 3.6 worked well. However, we
do plan on exploring some of the equivalence reduction techniques discussed
here as future work.

7 Conclusion

We proposed a synthesis method for bidirectional transformations, whose nov-
elty lies in the use of get programs as sketches. We described the idea in
detail and implemented it in a prototype system Synbit, where lazy nondeter-
ministic generation has played an important role. Through the experiments,
we demonstrated the effectiveness of the proposed method and clarified its
limitations.

A future direction is to make use of program analysis and verification tech-
niques in the synthesis of exit conditions. This would enable us to guarantee
stronger soundness as discussed in Section 3.7. Another future direction is
to extend the target language (HOBiT) based on our experience in order to
synthesize more bidirectional transformations.

Acknowledgments. We thank Eijiro Sumii and Oleg Kiselyov for their
helpful and instructive comments on an earlier stage of this research, and
Hiroshi Unno for fruitful discussions on future directions. We also thank the
members of the Bristol Programming Languages research group for creating
the wonderful environment for this work. This work was partially supported
by Japan Society for the Promotion of Science KAKENHI JP15H02681,
JP19K11892, JP20H04161, and JP22H03562, Japan Society for the Promotion
of Science Bilateral Program JPJSBP120199913, the Kayamori Foundation of
Informational Science Advancement, Royal Society University Research Fel-
lowship UF160079, Royal Society grant IES\R3\170104, and Engineering and
Physical Sciences Research Council grant EP/T008911/1.

A Appendix

A.1 More Discussion on the Difficulty of Side-by-Side
Comparison with Optician

Due to the very different set-ups, a side-by-side comparison of Synbit and
Optician is problematic. The arbitrary choices required to bridge the gap make
a fair comparison out of reach. We illustrate this problem with an exam-
ple (extr-fname.boom in Fig. 8) taken from the artifact associated with the
Optician papers [32, 34].

The specification describes the task of separating a path into a file
and a directory path. As one can see, most of the code is devoted to

Springer Nature 2021 LATEX template

44 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

specifying the input and output formats (NONEMPTYDIRECTORY and
FILEANDFOLDER). The input/output examples are specified by the using
clause: createrex provides an example of how a source is related to a view.
Note that this specification targets the synthesis of bijective transformations;
so the backward behavior does not require the original source.

Let us consider how we can encode this specification to be used by Synbit.
As a first step, we need to decide the types for inputs and outputs. One candi-
date is using strings (lists of characters in HOBiT). In such a case, it is natural
to divide the task into three subtasks: (1) parsing (of type String → S), (2)
core transformation (of type S → T), and (3) printing (of type T → String),
such that the interesting computation is done in the middle. For the com-
parison to Optician, it makes sense to only consider the core transformation;
parsing and printing are coupled with lens combinators used in Optician and
are not synthesized separately from the core transformation.

We then need to decide the domain (S) and range (T) of the core trans-
formation. One option is to use S = (NonEmpty String,Bool) and T =
(String,Bool, [String]), where:

type NonEmpty a = (a, [a]) -- head-biased non-empty lists

Another option is to use datatypes that mirror the structure of regular
expressions, such as:

data LC = LA | LB | · · · | LZ
data UC = UA | UB | · · · | UZ
data C = Lower LC | Upper UC | UnderScore | Dot | Hyphen
type LocalFolder = (C, [C])
type Directory = (Bool, [LocalFolder])
type NonEmptyDirectory = (Bool, LocalFolder, [LocalFolder])
type FileAndFolder = (LocalFolder,Directory)

In this particular case, the choice between the two does not affect the core
transformation part much; in both cases, it essentially performs a trans-
formation from head-biased nonempty lists to last-biased ones, with some
arrangement of products. So, one can think that the essential part of this trans-
formation is a function of type headBiased2LastBiased :: (A, [A]) → ([A], A)
for some concrete type A. Note that abstracting the concrete type A by a type
variable a here gives us the information that the components of the lists are
not touched by the transformation.

The above set-up may sound reasonable but actually omits important
internal details. Optician internally tries to expand r∗ into either rr∗|ε or
r∗r|ε nondeterministically [34], which eventually transforms rr∗ (head-biased
non-empty lists) into r(r∗r|ε) = rr∗r|r (one-step expansions of last-biased
nonempty lists). The core transformation involves no structural transforma-
tions after this expansion. However, this expansion of the Kleene star conflicts
with Synbit, where the input and output types have to be fixed beforehand.

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 45

let LOWERCASE : regexp = "a" | "b" | . . . (* omitted *) · · · | "z"
let UPPERCASE : regexp = "A" | "B" | . . . (* omitted *) · · · | "Z"
let LOCALFOLDER : regexp =

(LOWERCASE | UPPERCASE | " " | "." | "-")
. (LOWERCASE | UPPERCASE | " " | "." | "-")∗

let DIRECTORY : regexp = ("/" | "") . (LOCALFOLDER . "/")∗
let NONEMPTYDIRECTORY : regexp =

("/" | "") . LOCALFOLDER . ("/" . LOCALFOLDER)∗
let FILEANDFOLDER : regexp =

"file: " . LOCALFOLDER . "\nfolder: " . DIRECTORY
let extract file : (lens in NONEMPTYDIRECTORY ⇔ FILEANDFOLDER) =

synth NONEMPTYDIRECTORY ⇔ FILEANDFOLDER
using {

createrex("/Users/amiltner/lens/tests/flashfill/extract-filename.txt",
"file: extract-filename.txt\n
folder: /Users/amiltner/lens/tests/flashfill/"),

createrex("tests/flashfill/extract-filename.txt",
"file: extract-filename.txt\nfolder: tests/flashfill/")

}

Fig. 8 extr-fname.boom for bijective-lens synthesis (excerpt)

Optician dynamically searches for a suitable-for-synthesis regular expression
among equivalent ones mainly by converting them to “sum-of-product” forms
and then by applying the expansion above [34].

Trying to give a concrete definition of the transformation is even more prob-
lematic, with semantically equivalent definitions having very different effects
on synthesis. For example, if we define headBiased2LastBiased :: (A, [A]) →
([A], A) as the following:

headBiased2LastBiased (a, as) = initlast a as
initlast a [] = ([], a)
initlast a (b : bs) = let (i, l) = initlast b bs in (a : i, l)

Synbit has no problem in synthesizing a bidirectional version of it. On the
other hand, the following equivalent definition does not work well.

headBiased2LastBiased (a, as) = (init a as, last a as)
init a [] = []
init a (b : bs) = a : init b bs
last a [] = a
last a (b : bs) = last b bs

The reason for this is that the bijective transformation is separated into non-
injective components init and last . Non-injectivity is usually not a problem as
Synbit is designed to handle them with put. But in this case, the information
that the non-injective functions are combined to form a bijection is lost in
the separation, which restricts the updates that the backward function may
handle. Synbit will (correctly) insist that the input data discarded by init/last
cannot be changed in the backward execution (otherwise, the round-tripping
properties will be (locally) violated), which in this case results in a useless

Springer Nature 2021 LATEX template

46 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

data Tree a = N a [Tree a] -- polymorphic tree type

data Lab = A [Char] [Char] -- Attribute
| T [Char] -- Text
| E [Char] -- Element

q1 :: Tree Lab -> Tree Lab
q1 t = let N (E "book") ts = t

in N (E "toc") (q1_section ts)

q1_section :: [Tree Lab] -> [Tree Lab]
q1_section l = case l of

[] -> []
N (A a b) [] : rest -> N (A a b) [] : q1_section rest
N (E "title") title : rest -> N (E "title") title : q1_section rest
N (E "section") xs : rest -> N (E "section") (q1_section xs) : q1_section rest
node:rest -> q1_section rest

Fig. 9 Input get program

bidirectional program that rejects all changes (and of course the synthesis fails
at this point as the input/output examples cannot be satisfied).

In a similar manner, the opposite direction of encoding Synbit examples
in Optician is also problematic. A lot of cases will simply fail to translate, and
for the rest, particular ways of encoding are required for Optician to work well.
Due to this, a side-by-side comparison of the two systems will be forced and
unlikely to produce meaningful results.

It is apparent that Optician and Synbit occupy very different parts of the
synthesis design space. This difference is driven by the differences in the under-
lying languages they target: lenses vs. HOBiT. Lenses are tricky to program
with, but the language itself is very simple; it, therefore, makes sense to have a
separate specification system that is removed from the target implementation.
In contrast, HOBiT focuses more on programmability, and the specification
system may naturally take advantage of the fact. In a sense, lenses may be
considered to benefit more from synthesis, as it relieves the need to program
directly in them. On the other hand, Synbit demonstrates the impact of
the language design: it not only improves programmability but also enables
effective synthesis methods.

A.2 A Concrete Input and Output for Q1

To demonstrate that Synbit is able to generate relatively large and complex
(for automatic program synthesis) programs, we give here the input specifica-
tion and synthesized output corresponding to Q1 in our experiments (Table 4
in Section 5.2.1). Figures 9, 10, 11 and 12 represent the input specification
given to Synbit and Figure 13 is the corresponding output. Here, we used
the rose tree datatype Tree (Fig. 9) to express XML fragments. Note that the
output involves non-trivial exit conditions and reconciliation functions.

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 47

N
(E "book")
[N (E "title") [N (T "Data on the Web") []]
, N (E "author") [N (T "Serge Abiteboul") []]
, N (E "author") [N (T "Peter Buneman") []]
, N (E "author") [N (T "Dan Suciu") []]
, N

(E "section")
[N (A "id" "intro") []
, N (A "difficulty" "easy") []
, N (E "title") [N (T "Introduction") []]
, N (E "p") [N (T "Text ... ") []]
, N

(E "section")
[N (E "title") [N (T "Audience") []]
, N (E "p") [N (T "Text ... ") []]]

, N
(E "section")
[N (E "title") [N (T "Web Data and the Two Cultures") []]
, N (E "p") [N (T "Text ... ") []]
, N

(E "figure")
[N (A "height" "400") []
, N (A "width" "400") []
, N

(E "title")
[N (T "Traditional client/server architecture") []]

, N (E "image") [N (A "source" "csarch.gif") []]]
, N (E "p") [N (T "Text ...") []]]]

, N
(E "section")
[N (A "id" "syntax") []
, N (A "difficulty" "medium") []
, N (E "title") [N (T "A Syntax For Data") []]
, N (E "p") [N (T "Text ... ") []]
, N

(E "figure")
[N (A "height" "200") []
, N (A "width" "500") []
, N (E "title") [N (T "Graph representations of structures") []]
, N (E "image") [N (A "source" "graphs.gif") []]]

, N (E "p") [N (T "Text ... ") []]
, N

(E "section")
[N (E "title") [N (T "Base Types") []]
, N (E "p") [N (T "Text ...") []]]

, N
(E "section")
[N (E "title") [N (T "Representing Relational Databases") []]
, N (E "p") [N (T "Text") []]
, N

(E "figure")
[N (A "height" "250") []
, N (A "width" "400") []
, N (E "title") [N (T "Examples of Relations") []]
, N (E "image") [N (A "source" "relatios.gif") []]]]

, N
(E "section")
[N (E "title") [N (T "Representing Object Databases") []]
, N (E "p") [N (T "Text ... ") []]]]]

Fig. 10 Original source

Springer Nature 2021 LATEX template

48 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

N
(E "toc")
[N (E "title") [N (T "Data on the Web") []]
, N

(E "section")
[N (A "id" "intro") []
, N (A "newattr" "attr") [] -- added
, N (A "difficulty" "easy") []
, N (E "title") [N (T "Introduction") []]
, N (E "section") [N (E "title") [N (T "Audience") []]]]
-- , N
-- (E "section")
-- [N (E "title") [N (T "Web Data and the Two Cultures") []]]

, N
(E "section")
[N (A "id" "syntax") []
, N (A "difficulty" "hard") [] -- easy -> hard
, N (E "title") [N (T "A Syntax For Data") []]
, N (E "section") [N (E "title") [N (T "Base Types") []]]
, N

(E "section")
[N

(E "title")
[N (T "Representing Relational Databases and so on") []]] -- changed title

, N
(E "section")
[N (E "title") [N (T "Representing Object Databases") []]]

, N (E "section") [N (E "title") [N (T "new section") []]]] -- added
, N (E "section") [N (E "title") [N (T "new section") []]]] -- added

Fig. 11 Updated view (with comments added to denote the changes from an original view)

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 49

N
(E "book")
[N (E "title") [N (T "Data on the Web") []]
, N (E "author") [N (T "Serge Abiteboul") []]
, N (E "author") [N (T "Peter Buneman") []]
, N (E "author") [N (T "Dan Suciu") []]
, N

(E "section")
[N (A "id" "intro") []
, N (A "newattr" "attr") [] -- added
, N (A "difficulty" "easy") []
, N (E "title") [N (T "Introduction") []]
, N (E "p") [N (T "Text ... ") []]
, N

(E "section")
[N (E "title") [N (T "Audience") []]
, N (E "p") [N (T "Text ... ") []]]]
-- , N
-- (E "section")
-- [N (E "title") [N (T "Web Data and the Two Cultures") []]
-- , N (E "p") [N (T "Text ... ") []]
-- , N
-- (E "figure")
-- [N (A "height" "400") []
-- , N (A "width" "400") []
-- , N
-- (E "title")
-- [N (T "Traditional client/server architecture") []]
-- , N (E "image") [N (A "source" "csarch.gif") []]]
-- , N (E "p") [N (T "Text ...") []]]]

, N
(E "section")
[N (A "id" "syntax") []
, N (A "difficulty" "hard") [] -- easy -> hard
, N (E "title") [N (T "A Syntax For Data") []]
, N (E "p") [N (T "Text ... ") []]
, N

(E "figure")
[N (A "height" "200") []
, N (A "width" "500") []
, N (E "title") [N (T "Graph representations of structures") []]
, N (E "image") [N (A "source" "graphs.gif") []]]

, N (E "p") [N (T "Text ... ") []]
, N

(E "section")
[N (E "title") [N (T "Base Types") []]
, N (E "p") [N (T "Text ...") []]]

, N
(E "section")
[N

(E "title")
[N (T "Representing Relational Databases and so on") []] -- changed title

, N (E "p") [N (T "Text") []]
, N

(E "figure")
[N (A "height" "250") []
, N (A "width" "400") []
, N (E "title") [N (T "Examples of Relations") []]
, N (E "image") [N (A "source" "relatios.gif") []]]]

, N
(E "section")
[N (E "title") [N (T "Representing Object Databases") []]
, N (E "p") [N (T "Text ... ") []]]

, N (E "section") [N (E "title") [N (T "new section") []]]] -- added
, N (E "section") [N (E "title") [N (T "new section") []]]] -- added

Fig. 12 Updated source (with comments added to denote the changes from the original
source)

Springer Nature 2021 LATEX template

50 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

q1 :: BX (Tree Lab) -> BX (Tree Lab)
q1 = \t -> case* t of

N (E "book") ts ->
N (E (| "toc" |)) (q1_section ts)
with (\x1 -> True)
reconciled by (\x0 -> \x1 -> x0)

q1_section :: BX [Tree Lab] -> BX [Tree Lab]
q1_section = \l -> case* l of

[] ->
![]
with (\x1 -> case x1 of

[] -> True
_ -> False)

reconciled by (\x0 -> \x1 -> [])
N (A a b) [] : rest ->

(|N (A a b) ![] : q1_section rest|)
with (\x1 -> case x1 of

N (A x2 x3) [] : x4 -> True
_ -> False)

reconciled by (\x0 -> \x1 -> case x1 of
N (A x2 x3) [] : x4 ->

N (A x2 x2) [] : x0)
N (E "title") title : rest ->

(|N (E (| "title" |)) title : q1_section rest|)
with (\x1 -> case x1 of

N (E "title") x2 : x3 -> True
_ -> False)

reconciled by (\x0 -> \x1 -> case x1 of
N (E "title") x2 : x3 -> x0)

N (E "section") xs : rest ->
(|N (E (| ["section"] |)) (q1_section xs) : q1_section rest|)
with (\x1 -> case x1 of

N (E "section") x2 : x3 -> True
_ -> False)

reconciled by (\x0 -> \x1 -> case x1 of
N (E "section") x2 : x3 ->

N (E "section") x2 : x0)
node : rest ->

q1_section rest
with (\x1 -> True)
reconciled by (\x0 -> \x1 -> x0)

Fig. 13 Output of Synbit

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 51

tokenize :: [Char]→ [Token]
tokenize cs = case cs of

[] → []
’(’ : cs′ → LPar : tokenize cs′

’)’ : cs′ → RPar : tokenize cs′

’+’ : cs′ → Plus : tokenize cs′

’Z’ : cs′ → TNum Z : tokenize cs′

’S’ : ’(’ : cs′ → let (n, ’)’ : cs′′) = num cs′ in
TNum (S n) : tokenize cs′′

num :: [Char]→ (Nat, [Char])
num cs = case cs of

’Z’ : cs′ → (Z, cs′)
’S’ : ’(’ : cs′ → let (n, ’)’ : cs′′) = num cs′ in

(S n, cs′′)

Fig. 14 An Unidirectional Lexer

Table 7 Input/output examples of lexer: for readability, we shall write v for
[LPar, LPar,TNum (S (S Z)),RPar,Plus, LPar,TNumZ,RPar,RPar,Plus, LPar,TNum (S Z),RPar].

Original Source (Original View) Updated View Updated Source
"S(S(S(Z)))" [TNum (S (S (S Z)))] [TNum (S (S Z))] "S(S(Z))"
"((S(S(Z)))+(Z))+(S(Z))" v [TNum Z] "Z"
"Z" [TNum Z] v "((S(S(Z)))+(Z))+(S(Z))"
"Z" [TNum Z] [TNum (S (S Z))] "S(S(Z))"

Table 8 Input/output examples of parser: for readability, we shall write s for
tokenize "((S(S(Z)))+(Z))+(S(Z))" and v for
EAdd (EAdd (ENum (S (S Z))) (ENum Z)) (ENum (S Z)).

Original Source (Original View) Updated View Updated Source
s v [TNum (S (S Z))] "S(S(Z))"
"S(S(Z))" [TNum (S (S Z))] v s

A.3 A Concrete Input and Output for Lexer and Parser

To demonstrate that Synbit is able to generate a simple recursive decent
(specifically, LL(1)) lexer and parser, we give here the input get function
and specification, and synthesized output corresponding to our experiments
in Section 5.2.2. For lexer, Figure 14, Table 7 and Figure 15 represent the
given get , the input specification and the corresponding output respectively.
For parser, Figure 16, Table 8 and Figure 7 (in Section 5.2.2) represent the
given get , the input specification and the corresponding output respectively.

Springer Nature 2021 LATEX template

52 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

tokenize :: B[Char]→ B[Token]
tokenize cs = case cs of

[] → []

with λv. case v of {[]→ True; → False}
by λ .λ . []

’(’ : cs′ → LPar : tokenize cs′

with λv. case v of {LPar : → True; → False}
by λs.λv. case v of {LPar : → ’(’ : s}

’)’ : cs′ → RPar : tokenize cs′

with λv. case v of {RPar : → True; → False}
by λs.λv. case v of {RPar : → ’)’ : s}

’+’ : cs′ → Plus : tokenize cs′

with λv. case v of {Plus : → True; → False}
by λs.λv. case v of {Plus : → ’+’ : s}

’Z’ : cs′ → TNum Z : tokenize cs′

with λv. case v of {TNum Z : → True; → False}
by λs.λv. case v of {TNum Z : → ’Z’ : s}

’S’ : ’(’ : cs′ → let (n, ’)’ : cs′′) = num cs′ in
TNum (S n) : tokenize cs′′

with λv. case v of {TNum (S) : → True; → False}
by λs.λv. case v of {TNum (S) : → ’S’ : ’(’ : ’Z’ : ’)’ : s}

num :: [Char]→ (Nat, [Char])
num cs = case cs of

’Z’ : cs′ → (Z,cs′)

with λv. case v of {(Z,)→ True; → False}
by λs.λv. case v of {(Z,)→ ’Z’ : s}

’S’ : ’(’ : cs′ → let (n, ’)’ : cs′′) = num cs′ in
(S n,cs′′)

with λv. case v of {(S ,)→ True; → False}
by λs.λv. case v of {(S ,)→ ’S’ : ’(’ : s}

Fig. 15 Synthesized Bidirectional Lexer

pExp :: [Token]→ Exp
pExp ts = let (e, []) = go ts in e

go :: [Token]→ (Exp, [Token])
go ts = case ts of

TNum n : r → (ENum n , r)
LPar : r1 → let (e1,RPar : Plus : LPar : r2) = go r1 in

let (e2,RPar : Plus : LPar : r3) = go r2 in
(EAdd e1 e2 , r3)

Fig. 16 An Unidirectional Parser

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 53

Declarations

Conflicts of interest

All the authors declare they have no conflict of interest.

Funding

This work was partially supported by the Royal Society University Research
Fellowship UF160079, the EPSRC grant EP/T008911/1, the Royal Soci-
ety grant IES\R3\170104, JSPS KAKENHI (JP15H02681, JP19K11892,
JP20H04161, JP22H03562), JSPS Bilateral Program (JPJSBP120199913), and
the Kayamori Foundation of Informational Science Advancement.

References

[1] Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM
Trans. Database Syst. 6(4), 557–575 (1981). https://doi.org/10.1145/
319628.319634

[2] Hegner, S.J.: Foundations of canonical update support for closed
database views. In: ICDT, pp. 422–436 (1990). https://doi.org/10.1007/
3-540-53507-1 93

[3] Stevens, P.: In: Lämmel, R., Visser, J., Saraiva, J. (eds.) A Landscape
of Bidirectional Model Transformations, pp. 408–424. Springer, Berlin,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3 10. https:
//doi.org/10.1007/978-3-540-88643-3 10

[4] Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.:
Combinators for bidirectional tree transformations: A linguistic approach
to the view-update problem. ACM Trans. Program. Lang. Syst. 29(3)
(2007). https://doi.org/10.1145/1232420.1232424

[5] Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidi-
rectionalization transformation based on automatic derivation of view
complement functions. In: Proceedings of the 12th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2007, Freiburg,
Germany, October 1-3, 2007, pp. 47–58 (2007). https://doi.org/10.1145/
1291151.1291162. https://doi.org/10.1145/1291151.1291162

[6] Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.:
Boomerang: resourceful lenses for string data. In: Necula, G.C., Wadler, P.
(eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2008, San Francisco, Cali-
fornia, USA, January 7-12, 2008, pp. 407–419 (2008). https://doi.org/10.
1145/1328438.1328487. https://doi.org/10.1145/1328438.1328487

https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/319628.319634
https://doi.org/10.1007/3-540-53507-1_93
https://doi.org/10.1007/3-540-53507-1_93
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1291151.1291162
https://doi.org/10.1145/1291151.1291162
https://doi.org/10.1145/1291151.1291162
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1328438.1328487

Springer Nature 2021 LATEX template

54 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

[7] Voigtländer, J.: Bidirectionalization for free! (pearl). In: Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’09, pp. 165–176. Association for Com-
puting Machinery, New York, NY, USA (2009). https://doi.org/10.1145/
1480881.1480904. https://doi.org/10.1145/1480881.1480904

[8] Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for ”putback”
style bidirectional programming. In: Proceedings of the ACM SIG-
PLAN 2014 Workshop on Partial Evaluation and Program Manipulation,
PEPM 2014, January 20-21, 2014, San Diego, California, USA, pp. 39–
50 (2014). https://doi.org/10.1145/2543728.2543737. http://doi.acm.org/
10.1145/2543728.2543737

[9] Matsuda, K., Wang, M.: Hobit: Programming lenses without using lens
combinators. In: Ahmed, A. (ed.) Programming Languages and Sys-
tems - 27th European Symposium on Programming, ESOP 2018, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10801, pp. 31–59
(2018). https://doi.org/10.1007/978-3-319-89884-1 2. https://doi.org/10.
1007/978-3-319-89884-1 2

[10] Matsuda, K., Wang, M.: Applicative bidirectional programming with
lenses. In: Proceedings of the 20th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2015, Vancouver, BC, Canada,
September 1-3, 2015, pp. 62–74 (2015). https://doi.org/10.1145/2784731.
2784750. https://doi.org/10.1145/2784731.2784750

[11] Matsuda, K., Wang, M.: ”bidirectionalization for free” for monomorphic
transformations. Sci. Comput. Program. 111, 79–109 (2015). https://doi.
org/10.1016/j.scico.2014.07.008

[12] Chong, N., Cook, B., Kallas, K., Khazem, K., Monteiro, F.R., Schwartz-
Narbonne, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.: Code-level model
checking in the software development workflow. In: ICSE-SEIP 2020:
42nd International Conference on Software Engineering, Software Engi-
neering in Practice, Seoul, South Korea, 27 June - 19 July, 2020, pp.
11–20 (2020). https://doi.org/10.1145/3377813.3381347. https://doi.org/
10.1145/3377813.3381347

[13] Lubin, J., Collins, N., Omar, C., Chugh, R.: Program sketching with
live bidirectional evaluation. Proc. ACM Program. Lang. 4(ICFP), 109–
110929 (2020). https://doi.org/10.1145/3408991

[14] Gulwani, S.: Automating string processing in spreadsheets using input-
output examples. In: Ball, T., Sagiv, M. (eds.) Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming

https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/2543728.2543737
http://doi.acm.org/10.1145/2543728.2543737
http://doi.acm.org/10.1145/2543728.2543737
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1016/j.scico.2014.07.008
https://doi.org/10.1016/j.scico.2014.07.008
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1145/3408991

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 55

Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pp.
317–330 (2011). https://doi.org/10.1145/1926385.1926423. https://doi.
org/10.1145/1926385.1926423

[15] Solar-Lezama, A.: The sketching approach to program synthesis. In:
Hu, Z. (ed.) Programming Languages and Systems, 7th Asian Sym-
posium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5904, pp. 4–13
(2009). https://doi.org/10.1007/978-3-642-10672-9 3. https://doi.org/10.
1007/978-3-642-10672-9 3

[16] Lutz, C.: Janus: a time-reversible language. Letter to R. Landauer.
Available on: http://tetsuo.jp/ref/janus.pdf (1986)

[17] Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible func-
tional language. In: RC, pp. 14–29 (2011). https://doi.org/10.1007/
978-3-642-29517-1 2. https://doi.org/10.1007/978-3-642-29517-1 2

[18] Ko, H., Zan, T., Hu, Z.: Bigul: a formally verified core language for
putback-based bidirectional programming. In: Proceedings of the 2016
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipu-
lation, PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pp.
61–72 (2016). https://doi.org/10.1145/2847538.2847544. http://doi.acm.
org/10.1145/2847538.2847544

[19] Hu, Z., Ko, H.: Principles and practice of bidirectional programming
in bigul. In: Bidirectional Transformations - International Summer
School, Oxford, UK, July 25-29, 2016, Tutorial Lectures, pp. 100–150
(2016). https://doi.org/10.1007/978-3-319-79108-1 4. https://doi.org/10.
1007/978-3-319-79108-1 4

[20] Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-
based program synthesis. In: Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, pp. 215–224 (2010). https://doi.org/
10.1145/1806799.1806833. https://doi.org/10.1145/1806799.1806833

[21] Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-
based synthesis for complex apis. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pp. 599–612 (2017). http:
//dl.acm.org/citation.cfm?id=3009851

[22] Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM
48(3), 555–604 (2001). https://doi.org/10.1145/382780.382785

https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
http://tetsuo.jp/ref/janus.pdf
https://doi.org/10.1007/978-3-642-29517-1_2
https://doi.org/10.1007/978-3-642-29517-1_2
https://doi.org/10.1007/978-3-642-29517-1_2
https://doi.org/10.1145/2847538.2847544
http://doi.acm.org/10.1145/2847538.2847544
http://doi.acm.org/10.1145/2847538.2847544
https://doi.org/10.1007/978-3-319-79108-1_4
https://doi.org/10.1007/978-3-319-79108-1_4
https://doi.org/10.1007/978-3-319-79108-1_4
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
http://dl.acm.org/citation.cfm?id=3009851
http://dl.acm.org/citation.cfm?id=3009851
https://doi.org/10.1145/382780.382785

Springer Nature 2021 LATEX template

56 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

[23] Osera, P., Zdancewic, S.: Type-and-example-directed program synthe-
sis. In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015, pp. 619–
630 (2015). https://doi.org/10.1145/2737924.2738007. https://doi.org/
10.1145/2737924.2738007

[24] Fischer, S., Kiselyov, O., Shan, C.: Purely functional lazy nondetermin-
istic programming. J. Funct. Program. 21(4-5), 413–465 (2011). https:
//doi.org/10.1017/S0956796811000189

[25] Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthe-
sis. In: Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, pp.
934–950 (2013). https://doi.org/10.1007/978-3-642-39799-8 67. https://
doi.org/10.1007/978-3-642-39799-8 67

[26] Damas, L., Milner, R.: Principal type-schemes for functional programs. In:
Conference Record of the Ninth Annual ACM Symposium on Principles
of Programming Languages, Albuquerque, New Mexico, USA, January
1982, pp. 207–212 (1982). https://doi.org/10.1145/582153.582176. https:
//doi.org/10.1145/582153.582176

[27] Matsuda, K., Inaba, K., Nakano, K.: Polynomial-time inverse com-
putation for accumulative functions with multiple data traversals. In:
Proceedings of the ACM SIGPLAN 2012 Workshop on Partial Evalua-
tion and Program Manipulation, PEPM 2012, Philadelphia, Pennsylvania,
USA, January 23-24, 2012, pp. 5–14 (2012). https://doi.org/10.1145/
2103746.2103752. https://doi.org/10.1145/2103746.2103752

[28] Nishida, N., Vidal, G.: Program inversion for tail recursive functions.
In: Proceedings of the 22nd International Conference on Rewriting Tech-
niques and Applications, RTA 2011, May 30 - June 1, 2011, Novi Sad,
Serbia, pp. 283–298 (2011). https://doi.org/10.4230/LIPIcs.RTA.2011.
283. https://doi.org/10.4230/LIPIcs.RTA.2011.283

[29] de Jonge, M., Visser, E.: An algorithm for layout preservation in
refactoring transformations. In: Software Language Engineering - 4th
International Conference, SLE 2011, Braga, Portugal, July 3-4, 2011,
Revised Selected Papers, pp. 40–59 (2011). https://doi.org/10.1007/
978-3-642-28830-2 3. https://doi.org/10.1007/978-3-642-28830-2 3

[30] Kort, J., Lämmel, R.: Parse-tree annotations meet re-engineering con-
cerns. In: 3rd IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM 2003), 26-27 September 2003, Amsterdam,
The Netherlands, p. 161 (2003). https://doi.org/10.1109/SCAM.2003.
1238042. https://doi.org/10.1109/SCAM.2003.1238042

https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1017/S0956796811000189
https://doi.org/10.1017/S0956796811000189
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/2103746.2103752
https://doi.org/10.1145/2103746.2103752
https://doi.org/10.1145/2103746.2103752
https://doi.org/10.4230/LIPIcs.RTA.2011.283
https://doi.org/10.4230/LIPIcs.RTA.2011.283
https://doi.org/10.4230/LIPIcs.RTA.2011.283
https://doi.org/10.1007/978-3-642-28830-2_3
https://doi.org/10.1007/978-3-642-28830-2_3
https://doi.org/10.1007/978-3-642-28830-2_3
https://doi.org/10.1109/SCAM.2003.1238042
https://doi.org/10.1109/SCAM.2003.1238042
https://doi.org/10.1109/SCAM.2003.1238042

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 57

[31] Pombrio, J., Krishnamurthi, S.: Resugaring: lifting evaluation sequences
through syntactic sugar. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, pp. 361–371 (2014). https://doi.org/10.
1145/2594291.2594319. https://doi.org/10.1145/2594291.2594319

[32] Miltner, A., Fisher, K., Pierce, B.C., Walker, D., Zdancewic, S.: Syn-
thesizing bijective lenses. Proc. ACM Program. Lang. 2(POPL), 1–1130
(2018). https://doi.org/10.1145/3158089

[33] Maina, S., Miltner, A., Fisher, K., Pierce, B.C., Walker, D., Zdancewic,
S.: Synthesizing quotient lenses. Proc. ACM Program. Lang. 2(ICFP),
80–18029 (2018). https://doi.org/10.1145/3236775

[34] Miltner, A., Maina, S., Fisher, K., Pierce, B.C., Walker, D., Zdancewic,
S.: Synthesizing symmetric lenses. Proc. ACM Program. Lang. 3(ICFP),
95–19528 (2019). https://doi.org/10.1145/3341699

[35] Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Proceed-
ings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-
28, 2011, pp. 371–384 (2011). https://doi.org/10.1145/1926385.1926428.
https://doi.org/10.1145/1926385.1926428

[36] Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. In: Proceed-
ing of the 13th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008,
pp. 383–396 (2008). https://doi.org/10.1145/1411204.1411257. https://
doi.org/10.1145/1411204.1411257

[37] Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.:
Matching lenses: alignment and view update. In: Hudak, P., Weirich,
S. (eds.) Proceeding of the 15th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2010, Baltimore, Maryland, USA,
September 27-29, 2010, pp. 193–204. ACM, ??? (2010). https://doi.org/
10.1145/1863543.1863572. https://doi.org/10.1145/1863543.1863572

[38] Voigtländer, J.: Ideas for connecting inductive program synthesis and
bidirectionalization. In: Proceedings of the ACM SIGPLAN 2012
Workshop on Partial Evaluation and Program Manipulation, PEPM
2012, Philadelphia, Pennsylvania, USA, January 23-24, 2012, pp. 39–
42 (2012). https://doi.org/10.1145/2103746.2103757. https://doi.org/10.
1145/2103746.2103757

[39] Srivastava, S., Gulwani, S., Chaudhuri, S., Foster, J.S.: Path-based
inductive synthesis for program inversion. In: Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and

https://doi.org/10.1145/2594291.2594319
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.1145/3158089
https://doi.org/10.1145/3236775
https://doi.org/10.1145/3341699
https://doi.org/10.1145/1926385.1926428
https://doi.org/10.1145/1926385.1926428
https://doi.org/10.1145/1411204.1411257
https://doi.org/10.1145/1411204.1411257
https://doi.org/10.1145/1411204.1411257
https://doi.org/10.1145/1863543.1863572
https://doi.org/10.1145/1863543.1863572
https://doi.org/10.1145/1863543.1863572
https://doi.org/10.1145/2103746.2103757
https://doi.org/10.1145/2103746.2103757
https://doi.org/10.1145/2103746.2103757

Springer Nature 2021 LATEX template

58 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pp.
492–503 (2011). https://doi.org/10.1145/1993498.1993557. https://doi.
org/10.1145/1993498.1993557

[40] Korf, R.E.: Inversion of applicative programs. In: IJCAI, pp. 1007–1009
(1981)

[41] Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible pro-
gramming language. In: Proceedings of the 5th Conference on Computing
Frontiers, 2008, Ischia, Italy, May 5-7, 2008, pp. 43–54 (2008). https://doi.
org/10.1145/1366230.1366239. https://doi.org/10.1145/1366230.1366239

[42] Gries, D.: The Science of Programming. Springer, ??? (1981). Chap. 21
Inverting Programs

[43] Glück, R., Kawabe, M.: Revisiting an automatic program inverter for lisp.
SIGPLAN Notices 40(5), 8–17 (2005)

[44] Matsuda, K., Mu, S.-C., Hu, Z., Takeichi, M.: A grammar-based approach
to invertible programs. In: ESOP, pp. 448–467 (2010)

[45] Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term
rewriting systems. In: Term Rewriting and Applications, 16th Interna-
tional Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceed-
ings, pp. 264–278 (2005). https://doi.org/10.1007/978-3-540-32033-3 20.
https://doi.org/10.1007/978-3-540-32033-3 20

[46] Gomard, C.K., Jones, N.D.: A partial evaluator for the untyped lambda-
calculus. J. Funct. Program. 1(1), 21–69 (1991). https://doi.org/10.1017/
S0956796800000058

[47] Almendros-Jiménez, J.M., Vidal, G.: Automatic partial inversion of
inductively sequential functions. In: Implementation and Application
of Functional Languages, 18th International Symp Osium, IFL 2006,
Budapest, Hungary, September 4-6, 2006, Revised Selected Papers, pp.
253–270 (2006). https://doi.org/10.1007/978-3-540-74130-5 15. https://
doi.org/10.1007/978-3-540-74130-5 15

[48] Matsuda, K., Wang, M.: Sparcl: a language for partially-invertible compu-
tation. Proc. ACM Program. Lang. 4(ICFP), 118–111831 (2020). https:
//doi.org/10.1145/3409000

[49] Wadler, P.: Deforestation: Transforming programs to eliminate trees.
Theor. Comput. Sci. 73(2), 231–248 (1990). https://doi.org/10.1016/
0304-3975(90)90147-A

[50] Voigtländer, J.: Bidirectionalization for free! (pearl). In: Proceedings of

https://doi.org/10.1145/1993498.1993557
https://doi.org/10.1145/1993498.1993557
https://doi.org/10.1145/1993498.1993557
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1007/978-3-540-32033-3_20
https://doi.org/10.1007/978-3-540-32033-3_20
https://doi.org/10.1017/S0956796800000058
https://doi.org/10.1017/S0956796800000058
https://doi.org/10.1007/978-3-540-74130-5_15
https://doi.org/10.1007/978-3-540-74130-5_15
https://doi.org/10.1007/978-3-540-74130-5_15
https://doi.org/10.1145/3409000
https://doi.org/10.1145/3409000
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1016/0304-3975(90)90147-A

Springer Nature 2021 LATEX template

Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches 59

the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009,
pp. 165–176 (2009). https://doi.org/10.1145/1480881.1480904. https://
doi.org/10.1145/1480881.1480904

[51] Wadler, P.: Theorems for free! In: Proceedings of the Fourth Interna-
tional Conference on Functional Programming Languages and Computer
Architecture, FPCA 1989, London, UK, September 11-13, 1989, pp.
347–359 (1989). https://doi.org/10.1145/99370.99404. https://doi.org/
10.1145/99370.99404

[52] Reynolds, J.C.: Types, abstraction and parametric polymorphism. In:
Information Processing 83, Proceedings of the IFIP 9th World Computer
Congress, Paris, France, September 19-23, 1983, pp. 513–523 (1983)

[53] Voigtländer, J., Hu, Z., Matsuda, K., Wang, M.: Enhancing semantic bidi-
rectionalization via shape bidirectionalizer plug-ins. J. Funct. Program.
23(5), 515–551 (2013). https://doi.org/10.1017/S0956796813000130

[54] Matsuda, K., Wang, M.: Applicative bidirectional programming: Mixing
lenses and semantic bidirectionalization. J. Funct. Program. 28, 15 (2018).
https://doi.org/10.1017/S0956796818000096

[55] Solar-Lezama, A., Jones, C.G., Bod́ık, R.: Sketching concurrent data
structures. In: PLDI, pp. 136–148 (2008). https://doi.org/10.1145/
1375581.1375599. https://doi.org/10.1145/1375581.1375599

[56] David, C., Kesseli, P., Kroening, D., Lewis, M.: Program synthesis for pro-
gram analysis. ACM Trans. Program. Lang. Syst. 40(2), 5–1545 (2018).
https://doi.org/10.1145/3174802

[57] David, C., Kroening, D., Lewis, M.: Unrestricted termination and non-
termination arguments for bit-vector programs. In: Vitek, J. (ed.) Pro-
gramming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. Lecture Notes in Computer Science, vol.
9032, pp. 183–204 (2015). https://doi.org/10.1007/978-3-662-46669-8 8.
https://doi.org/10.1007/978-3-662-46669-8 8

[58] Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L.C., David, C., Kesseli,
P., Kroening, D., Polgreen, E.: Automated formal synthesis of digital
controllers for state-space physical plants. In: Majumdar, R., Kuncak,
V. (eds.) Computer Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 10426, pp. 462–482 (2017).
https://doi.org/10.1007/978-3-319-63387-9 23. https://doi.org/10.1007/

https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404
https://doi.org/10.1017/S0956796813000130
https://doi.org/10.1017/S0956796818000096
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/3174802
https://doi.org/10.1007/978-3-662-46669-8_8
https://doi.org/10.1007/978-3-662-46669-8_8
https://doi.org/10.1007/978-3-319-63387-9_23
https://doi.org/10.1007/978-3-319-63387-9_23
https://doi.org/10.1007/978-3-319-63387-9_23

Springer Nature 2021 LATEX template

60 Synbit: Synthesizing Bidirectional Programs using Unidirectional Sketches

978-3-319-63387-9 23

[59] Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive
functions. In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Proceed-
ings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA
2013, Part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013,
pp. 407–426 (2013). https://doi.org/10.1145/2509136.2509555. https://
doi.org/10.1145/2509136.2509555

[60] Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Coun-
terexample guided inductive synthesis modulo theories. In: Chockler,
H., Weissenbacher, G. (eds.) Computer Aided Verification - 30th Inter-
national Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 10981, pp. 270–288 (2018).
https://doi.org/10.1007/978-3-319-96145-3 15. https://doi.org/10.1007/
978-3-319-96145-3 15

[61] Katayama, S.: Systematic search for lambda expressions. In: van Eekelen,
M.C.J.D. (ed.) Revised Selected Papers from the Sixth Symposium on
Trends in Functional Programming, TFP 2005, Tallinn, Estonia, 23-24
September 2005. Trends in Functional Programming, vol. 6, pp. 111–126
(2005)

[62] Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure trans-
formations from input-output examples. In: Grove, D., Blackburn, S.M.
(eds.) Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015, pp. 229–239 (2015). https://doi.org/10.1145/2737924.
2737977. https://doi.org/10.1145/2737924.2737977

[63] Smith, C., Albarghouthi, A.: Program synthesis with equivalence reduc-
tion. In: Enea, C., Piskac, R. (eds.) Verification, Model Checking, and
Abstract Interpretation - 20th International Conference, VMCAI 2019,
Cascais, Portugal, January 13-15, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11388, pp. 24–47 (2019). https://doi.org/10.1007/
978-3-030-11245-5 2. https://doi.org/10.1007/978-3-030-11245-5 2

[64] Koukoutos, M., Kneuss, E., Kuncak, V.: An update on deductive synthesis
and repair in the leon tool. In: Piskac, R., Dimitrova, R. (eds.) Proceedings
Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, July
17-18, 2016. EPTCS, vol. 229, pp. 100–111 (2016). https://doi.org/10.
4204/EPTCS.229.9. https://doi.org/10.4204/EPTCS.229.9

https://doi.org/10.1007/978-3-319-63387-9_23
https://doi.org/10.1007/978-3-319-63387-9_23
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.4204/EPTCS.229.9
https://doi.org/10.4204/EPTCS.229.9
https://doi.org/10.4204/EPTCS.229.9

	Introduction
	Unidirectional Program as Sketch
	Off-the-shelf synthesis is a non-solution
	Contributions:

	Background: the HOBiT language
	A Simple Example
	Simple Backward Behavior
	Branch Switching
	Exit conditions.
	Reconciliation functions.
	Round-tripping

	Mixing Bidirectional and Unidirectional Programming

	Synthesis of HOBiT Programs using Unidirectional Programs as Sketches
	Overview
	Generation of sketches
	Sketch completion step I: shape-restricted holes
	Sketch completion step II: search and filtering
	Filtering of exit conditions based on branch traces
	Filtering of reconciliation functions based on branch traces

	Input to Our Method
	Generation of Sketches
	Type signature generation
	Type-directed sketch generation

	Sketch Completion Step I: Shape-Restricted Holes
	Handling Exit Condition Holes
	Handling Reconciliation Function Holes

	Sketch Completion Step II: Search and Filtering
	Generating Candidates for Shape Restricted Holes
	Filtering Based on Branch Traces
	Example of filtering exit conditions and reconciliation functions based on branch traces
	Formalization of Filtering based on Branch Traces
	Primer on HOBiT's formal semantics
	 Synbit's evaluation rules with traces

	Discussion on pruning non-terminating programs based on branch traces

	Heuristics
	Soundness and Incompleteness

	Discussion on let-polymorphism
	Experiments
	Microbenchmarks Classified by Information-Loss
	Class 1
	Class 2
	Class 3

	Larger and More Involved Example
	XML Transformations
	Lexer and Parser

	Comparison with Smyth

	Related work
	Optician
	Other synthesis efforts for bidirectional programming
	Program inversion
	Bidirectionalization
	General program synthesis
	Equivalence reduction

	Conclusion
	Acknowledgments

	Appendix
	More Discussion on the Difficulty of Side-by-Side Comparison with Optician
	A Concrete Input and Output for Q1
	A Concrete Input and Output for Lexer and Parser
	Conflicts of interest
	Funding

