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Abstract
Formal specifications of software applications are hard to
understand, even for domain experts. Because a formal spec-
ification is abstract, reading it does not immediately convey
the expected behaviour of the software. Carefully chosen
examples of the software’s behaviour, on the other hand, are
concrete and easy to understand—but poorly-chosen exam-
ples are more confusing than helpful. In order to understand
formal specifications, software developers need good exam-
ples.
We have created a method that automatically derives a

suite of good examples from a formal specification. Each ex-
ample is judged by our method to illustrate one feature of the
specification. The generated examples give users a good un-
derstanding of the behaviour of the software. We evaluated
our method by measuring how well students understood an
API when given different sets of examples; the students given
our examples showed significantly better understanding.
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gramming by example;
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1 A Running Example
Let us begin by introducing our running example—the Er-
lang process registry. Erlang is a concurrent programming
language in which systems are made up of very many light-
weight processes, each with its own process identifier, or
‘pid’. For illustration, we shall create (dummy) processes us-
ing a function spawn(), which returns the created process’
pid as its result. To enable processes to find each other, they
may be registered under a name, names being Erlang atoms,
which are similar to strings in many other languages. For
example, we might create and register a process like this:

V = spawn() -> '<0.27813.1>',
register(a, V) -> true,
whereis(a) -> '<0.27813.1>'

Here we show the arguments and results of a sequence of
calls in a sample run; '<0.27813.1>' is an example of a dy-
namically created pid, and the atom a is the name assigned to
the pid in this case. We indicate reuse of a result by binding
it to a variable: the result of spawn is bound to the variable
V, then passed as an argument to register. Finally, whereis
looks up a name in the registry and returns the associated
pid.
Processes may only be registered once, as the following

example shows:
V = spawn() -> '<0.27164.1>',
register(b, V) -> true,
register(a, V) -> {'EXIT', badarg}

Here the second call fails with an exception, indicated by
a result of {'EXIT',badarg}. Neither can the same name be
registered twice:

V1 = spawn() -> '<0.28614.1>',
V2 = spawn() -> '<0.28615.1>',
register(c, V1) -> true,
register(c, V2) -> {'EXIT', badarg}

Processes can be removed from the registry using unregister:
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V = spawn() -> '<0.27285.1>',
register(c, V) -> true,
unregister(c) -> true

after which they are no longer returned by whereis:
V = spawn() -> '<0.28240.1>',
register(b, V) -> true,
unregister(b) -> true,
whereis(b) -> undefined

They cannot be removed a second time:
V = spawn() -> '<0.28054.1>',
register(d, V) -> true,
unregister(d) -> true,
unregister(d) -> {'EXIT', badarg}

Once removed, a process can be re-registered, perhaps with
a different name:
V = spawn() -> '<0.27520.1>',
register(c, V) -> true,
unregister(c) -> true,
register(a, V) -> true

We hope that, thanks to these examples, the reader now has
a good understanding of the behaviour of this simple API.
The point, though, is that while the words above were writ-
ten by the authors, the examples were generated and chosen
automatically from a formal specification of the API, using
the methods that are the subject of this paper.

2 The Question
The question we address in this paper is this:

How can we generate examples of API usage, that
enable a person to understand its behaviour?

Previous approaches have extracted examples from a corpus
of uses of the API [4, 19]. Such examples are clearly helpful
in understanding how an API is used, and also in writing
new code to use the API in a similar way. But some useful
examples may be missed, if the corpus does not contain
instances of them. In particular, negative examples (such as
those that raise exceptions above) are less likely to be found
in real code, but do convey useful intuition about what not
to do. Also, examples extracted from real code must usually
be simplified before they are presented to the user, because
real code tends to contain irrelevant operations as well as
those to be exemplified. Static analysis and program slicing
techniques have been used for this.

We instead generate examples from an implementation of
the API, together with a testable formal specification built us-
ing QuickCheck [5], or rather its commercial version Quviq
QuickCheck [1]. Such specifications are developed in order
to test other code, and have been used to test a wide variety of
software [11], the largest project to date being testing of Au-
toSAR Basic Software on behalf of Volvo Cars [2]. Given such
a specification, QuickCheck generates test cases (sequences
of API calls) at random, and checks that the implementation’s

actual behaviour conforms to the specification. When a test
fails, QuickCheck searches for a similar-but-simpler test case
which also fails, terminating with a (locally) minimal failing
test, which is then presented to the user for diagnosis. This
‘shrinking’ process can also be used to find minimal tests
with other properties, such as tests covering a particular line
of code, simply by temporarily redefining ‘test failure’ to
mean ‘covers this line’.
QuickCheck specifications can themselves become rela-

tively large and complex (for example, the AutoSAR Basic
Software specification is 20KLOC of Erlang [2]). As such,
they can be impenetrable for stakeholders such as Volvo
Cars. It can even be difficult to tell whether or not a par-
ticular test case can be generated (because API operations
can have preconditions that might not be satisfiable) [9].
How can we know, then, whether the tests generated from
a formal specification are testing the right thing? In this
context examples of generated tests can be invaluable, not
only to show to stakeholders for validation, but to help the
specification developer understand what the specification
actually says. Random examples are useless for both pur-
poses, though, because they ‘make no sense’—they combine
unrelated operations in meaningless ways (and this is why
they are effective at revealing unexpected interactions!). We
need instead a small set of salient examples, that together con-
vey, to a person, both what is being tested, and the intended
behaviour of the API under test.

In the forthcoming sections we present heuristics for iden-
tifying such salient examples, and we use QuickCheck’s gen-
eration and shrinking to produce a suite of minimal examples,
each illustrating a different point. Because QuickCheck can
generate arbitrary sequences of API calls, then we can con-
struct positive and negative examples that may not exist in
any corpus of code. Because QuickCheck always shrinks test
cases to minimal ones with a given property, then we do not
need any other technique for simplifying the examples that
are found. We claim that the resulting suites of examples are
good at enabling a person to understand the behaviour of
the specified API.
Finally, we have evaluated this claim in human experi-

ments. But how can we determine whether a person ‘un-
derstands’ an API? What do we mean by ‘understands’? We
have chosen to interpret ‘understanding’ as the ability to
predict behaviour: we measure how well subjects can predict
the return values in sequences of API calls, given examples
generated by our heuristics. Our experiments show that sub-
jects can predict behaviour significantly better given our
examples, than given a very plausible alternative—examples
generated to achieve 100% coverage of both specification and
implementation.



Understanding Formal Specifications
through Good Examples Erlang ’18, September 29, 2018, St. Louis, MO, USA

3 State machine models
The heuristics we have developed work with QuickCheck
state machine models [11], which are heavily used for speci-
fying stateful APIs. Here we explain briefly what these mod-
els consist of.
The essential idea is to define a model state that reflects

the state of the system under test at each point in a test case.
In the case of our running example, the process registry, the
model state consists of:

• a set of pids that have been spawned, and
• a set of name/pid pairs that should currently be asso-
ciated in the registry.

As a test case is run, QuickCheck computes the model state
at each step by calling state transition functions defined in the
model for each operation. For example, the state transition
function for spawn() adds the new pid to the model state:
spawn_next(Model,Result,[]) ->
Model#model{pids = Model#model.pids ++ [Result]}.

while the state transition function for unregister(Name) re-
moves any pair {Name,Pid} from the model state.
unregister_next(Model,_,[Name]) ->
Model#model{

regs = lists:keydelete(Name,1,Model#model.regs)}.

These are Erlang functions mapping the Model state, an im-
mutable Erlang record (of type ‘model’, with fields pids and
regs), to a new record which is a copy of the original, with
some different field values.

QuickCheck models specify how to generate calls to each
function under test, given the current model state, so calls
to register, for example, are generated by choosing a pid
from the model state. Specifications can also define precon-
ditions for each operation—for example, the precondition for
register says there must be at least one candidate pid to
choose from:
register_pre(Model) ->

Model#model.pids /= [].

This precondition depends only on the model state, but pre-
conditions can of course also depend on the arguments of
the call. QuickCheck only generates test cases in which all
preconditions are satisfied.
Finally, models can specify a postcondition for each op-

eration, that checks the actual result returned by the im-
plementation against the model state before the call. For
example, the postcondition for whereis(Name) checks that
the correct pid was returned (or undefined if Name was not
in the registry).
whereis_post(Model,[Name],Result) ->
Result == proplists:get_value(Name,Model#model.regs).

Given such a state machine model, QuickCheck generates
and runs test cases made up of random sequences of API
calls, in which every precondition is satisfied, and considers

a test to pass if all postconditions are true, and there are no
uncaught exceptions. A failing test is reduced to a minimal
example by shrinking, and then presented to the user for
diagnosis.
The reader may be wondering whether the model just

described is not essentially the same as the implementation?
This is not the case. The model is just a few lines of Erlang
code, while the implementation is one or two thousand lines
of C in the guts of the Erlang virtual machine—because it uses
far more efficient data structures, manages memory explic-
itly, and needs to be thread-safe on multicore processors. So
the model is indeed much simpler than the implementation
whose behaviour it specifies.

4 The idea: finding interactions
What makes an example ‘interesting’? Our intuition springs
from the uninteresting examples that random generation
largely produces: sequences of calls that do not interact, so
that one wonders why they appear together in the same
example. Indeed, all the calls in an interesting example should
be essential to the example—in other words, they should all
interact with each other in some way. We focus, therefore,
on finding examples that illustrate an interaction between
two calls in the sequence.

For example, consider the very first example we presented
in this paper:

V = spawn() -> '<0.27813.1>',
register(a, V) -> true,
whereis(a) -> '<0.27813.1>'

We consider this example to be interesting because it il-
lustrates an interaction between register and whereis: the
call of register affects the return value of the later call to
whereis.

How can we verify that register affects whereis? We do
so by considering a negative example obtained by deleting
the call of register:

V = spawn(),
whereis(a)

Clearly, if we were to run this test, then whereis(a) would
return a different result—undefined—because the name a has
not been registered. But in general, we cannot identify a
dependence by checking whether a return value changes
when a test is re-run. The reason is that a return value may
change for other reasons. For example, rerunning the original
test case may result in

V = spawn() -> '<0.62.0>',
register(a, V) -> true,
whereis(a) -> '<0.62.0>'

in which whereis returns a different result just because pids
are allocated dynamically, and so can vary between runs.
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Instead we consider a negative example in which each call
returns the same result as in the original run, but the call to
register is simply omitted:

V = spawn() -> '<0.27813.1>',
whereis(a) -> '<0.27813.1>'

The key observation is that this behaviour can never happen,
because this sequence of calls and results would violate the
postcondition of whereis. Thus we can determine that the call
to register affects the result of whereis without running
another test! All we need is the model, to verify that the
actual result returned by whereis would have been rejected
by the specification if the call to register had not occurred,
thus implying that whereis would have returned a different
value had the call to register not been made.

We say that this test case exhibits the

‘register/whereis postcondition’

interaction, illustrating a call of register that affects the
postcondition of a subsequent call of whereis. In general,
any test case containing a call to register, whose removal
would cause the postcondition of a subsequent call to whereis
to fail, is said to exhibit the same interaction. Now we can
build up a suite of examples illustrating different interactions
by running random tests, and using the model to collect all
the interactions that each test exhibits. If we observe an
interaction in a random test for which there is not yet an
example in our suite, then we use QuickCheck’s shrinking to
obtain a minimal test case that exhibits that interaction, and
add it to the suite of examples. When random testing fails
to find any new interactions after a sufficiently long period,
the suite of examples is complete.
For example, suppose we add a stop(Pid) operation to

our registry tests, which stops (kills) a running process. Sup-
pose we extend the specification to cover the behaviour of
stop, which requires adding a set of ‘dead pids’ to the model
state, and specifying different behaviours for live and dead
processes. Then our example generator finds three new ex-
amples (which we have labelled with the interaction that
they exhibit):
%% stop/whereis postcondition
V = spawn() -> '<0.27922.1>',
register(a, V) -> true,
stop(V) -> ok,
whereis(a) -> undefined

which shows that whereis will not find dead pids in the
registry,
%% stop/unregister postcondition
V = spawn() -> '<0.27387.1>',
register(c, V) -> true,
stop(V) -> ok,
unregister(c) -> {'EXIT', badarg}

which shows that dead pids can no longer be removed from
the registry, and

%% stop/register postcondition
V1 = spawn() -> '<0.28706.1>',
register(b, V1) -> true,
V2 = spawn() -> '<0.28707.1>',
stop(V1) -> ok,
register(b, V2) -> true

which shows that the names of dead pids can be re-used in
the registry. In fact, all three examples illustrate the same
behaviour—that processes are removed from the registry
when they die—and show the impact on each of the three
registry operations. These examples are typical of those that
our heuristic generates: they contain one call which affects
the postcondition of the final call in the example, and a
minimal set of other calls to set up a situation in which the
first call can affect the second.

4.1 A refinement
The reader should now find it easy to return to the very first
section of this paper, and identify the interaction that each
generated example exhibits—except that there are two ex-
amples in that section that exhibit the ‘register/register
postcondition’ interaction. They are:

V = spawn() -> '<0.27164.1>',
register(b, V) -> true,
register(a, V) -> {'EXIT', badarg}

and
V1 = spawn() -> '<0.28614.1>',
V2 = spawn() -> '<0.28615.1>',
register(c, V1) -> true,
register(c, V2) -> {'EXIT', badarg}

These two examples illustrate an important refinement to
our method.

So far, the method we described abstracts away completely
from the arguments to each call—if we find a test case in
which a call to register affects the result of a later call, we
just say it exhibits the ‘register/register postcondition’
interaction, ignoring the arguments completely. This is quite
deliberate, since we aim to find an example for each such
interaction, and we would not wish to generate separate
examples that just differ in, say, the choice of name for a
process. Yet, just because we don’t want an example gener-
ated for each possible argument value, doesn’t mean that
arguments are entirely irrelevant. We have observed that,
while the choice of argument value is often not important,
repetition of values often is. Thus, instead of discarding argu-
ment values completely when identifying interactions, we
discard them but record the repetition of values. We do so by
including wild card arguments for those that don’t matter,
and named metavariables for those that are repeated. Thus
we say that the first example above exhibits the

‘register(_,?A)/register(_,?A) postcondition’
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interaction, where ?A is a metavariable that must take the
same value in both calls for the interaction to be exhibited—
in other words, we must register the same pid twice. The
second example exhibits the

‘register(?A,_)/register(?A,_) postcondition’
interaction instead, registering the same name twice, and
so we are able to distinguish these two interactions and
generate a separate example for each one.

5 Precondition interactions
Aswe explained in Section 3, QuickCheckmodels can specify
a precondition for each operation under test. This introduces
another kind of potential interaction: an earlier call in a test
case might affect the precondition of a later call, rather than
its result. These interactions are also interesting—they show
that the earlier call enables the later one—and so we add
‘precondition’ interactions to the set of interactions that test
cases can exhibit, and gather examples to illustrate these
interactions too.
In our running example, we have hitherto used a specifi-

cation without preconditions. Both register and unregister

raise exceptions sometimes, but we have used a model that
catches those exceptions, and postconditions that check that
exceptions are thrown when they ought to be. Test cases
generated from this model include negative tests that delib-
erately provoke exceptions, and indeed, three of the seven
examples presented at the beginning of the paper are of this
sort.

Alternatively, we could specify preconditions for register
and unregister that exclude cases in which an exception
would be raised. This alternative model would generate only
positive tests of the registry. The suite of examples generated
from this alternative model contains examples that illustrate
precondition interactions, such as this one:
%% register(?A,_)/unregister(?A) precondition
V = spawn() -> '<0.29350.1>',
register(b, V) -> true,
unregister(b) -> true

Interestingly, essentially the same example appears in the
very first section of this paper, but there it was illustrating
the

‘register(?A,_)/unregister(?A) postcondition’
interaction! The same example was generated from our orig-
inal model, because the negative example
V = spawn() -> '<0.29350.1>',
unregister(b) -> true

violates the postcondition of unregister (because it must
raise an exception in this case, rather than return true), while
it is generated from our alternativemodel because the precon-
dition of unregister is not satisfied in this negative example.
The underlying reason why the example is interesting is
the same, but our two models represent unregister’s failure

behaviour differently, and so the same example is generated
to illustrate different interactions in each case.
In fact, the set of examples generated for the registry is

essentially the same whichever model we use, except that
examples that illustrate how to provoke exceptions cannot be
generated from the second model, because the preconditions
in the model exclude those tests. As a result, we end up
with six examples rather than ten, of which three illustrate
precondition interactions, and three illustrate postcondition
ones.

Finally, the reader may at this stage be wondering why pre-
conditions are useful at all—wouldn’t it always be better to
check for failure in postconditions instead, and include nega-
tive tests in one’s testing? In this simple case that is probably
so, but this is only because register and unregister have
well-defined behaviour even when their preconditions are
not satisfied. In general, violating preconditions in tests may
cause some operations to behave quite unpredictably, mak-
ing it dangerous or pointless to continue a test afterwards.
So the ability to restrict generated tests by specifying pre-
conditions is essential—and thus it’s important to take them
into account in example generation too.

6 Extensions
Initial experiments with our generator showed promise, but
also revealed weaknesses. This led us to make three further
extensions to the generator, before conducting our main
evaluation.

6.1 Argument interactions
Hitherto, we detect an interaction between operation A and
operation B by asking whether removing operation A would
change the result of operation B. That is, the only modifica-
tion we consider to operation A is removing it completely.
But smaller changes to operation A—such as changing some
of its arguments—might also have an impact on the result
of B. To find examples of this sort we implemented a heuris-
tic that tries to construct a negative example by replacing
the arguments of an operation in a test case with other ran-
domly chosen arguments, and then asking whether the pre-
or post-condition of a later operation now fails.
An example that can be found using this heuristic is the

following, taken from the ‘bank server’ API used for our
main evaluation:

open() -> ok
create_user(u1,p1) -> {u1,p1}
create_user(u2,p1) -> {u2,p1}

Here open() starts the bank server, and create_user creates
a user with a given username and password. The example
shows that multiple users can be created, but it would not be
generated by our original heuristics because removing the
first call of create_user does not change the behaviour of
the second. However, changing the username on the second
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line to u2 causes the call on the third line to fail, because it
attempts to create a user with an existing username.

Argument interactions can also affect the precondition of a
later command. This example, using an API for a fixed capac-
ity queue (represented in C by a pointer to a struct Queue),
is generated to illustrate this kind of interaction:
V = q:new(2) -> {ptr,Queue,876123480}
q:put(V,0) -> ok
q:put(V,0) -> ok

The example illustrates that we can put two items into a
queue with capacity two, and it is generated by our new
heuristic because changing the first call to q:new(1) (which
creates a queue with a capacity of one item) causes the pre-
condition of the second put operation to fail.
We did find that this heuristic can generate some of the

same examples as our original heuristic, because it is often
possible to choose arguments for the first operation that
make it irrelevant, and this has much the same effect as
removing the operation altogether. To avoid a proliferation
of similar examples, we include examples generated by this
heuristic if they do not also exhibit the same interaction
according to our original heuristic.

6.2 ‘Undo’ interactions
One of the APIs we used in our preliminary evaluation was
the Erlang dets API1, which stores a table consisting of a set
of key-value pairs in a file. A simple example using the API
is this:
%% insert/lookup postcondition
open_file(table,[{type,bag}]) -> table
insert(table,{2,0}) -> true
lookup(table,2) -> [{2,0}]

which shows a pair ({2,0}) being added to the table, and then
retrieved by looking up its key. To our surprise, we found
that given only our generated examples, our experimental
subjects were uncertain whether the contents of the file
would persist when the file was closed and re-opened.

To resolve this uncertainty, we need an example such as
this one:
open_file(table,[{type,bag}]) -> table
insert(table,{2,0}) -> true
close(table) -> ok
open_file(table,[{type,bag}]) -> table
lookup(table,2) -> [{2,0}]

But this example cannot be generated using the heuristics
presented so far! While it does exhibit the ‘insert/lookup
postcondition’ interaction, it is not a minimal example
of that interaction; QuickCheck will shrink it to the first
example above. Therefore it will never be included in an
example suite.

1http://erlang.org/doc/man/dets.html

Indeed, the interesting thing about this pair of examples is
not that anything behaves differently in the two cases—it is
that everything behaves the same, whether the close/open_file
sequence is included, or not. Or, to put it another way, we can
undo the effect of close(table) on the subsequent lookup
(closing the table causes it to fail), by adding an open_file

call after the close.
We call this kind of interaction an ‘undo interaction’ be-

tween close and lookup, and generate minimal examples
of all undo interactions we can find also. To qualify as an
undo interaction, just removing the call to the first operation
(close) must cause the second (lookup) to fail, but there must
be a sequence of calls starting with close whose removal re-
pairs the damage, allowing the second call to succeed again.
Such a sequence first changes the state, and then restores it,
at least well enough for the second call to behave as it did
before. This is a fundamentally different kind of interaction
from those we considered above, but no less interesting.

Notice that we classify this interaction as a ‘close/lookup
undo’ interaction, not a ‘close/open_file/lookup undo’
interaction. The reason is that we aim to find a minimal
example for each class of interaction—that is, a minimal
way of ‘undoing’ the effect of a close before a lookup. If we
included the operations that implement undo in the class of
the interaction, then shrinking would not be able to eliminate
irrelevant operations without changing the class. Since we
include one example in our generated suite for each class
of interaction that we observe, then that would have the
effect of including an example for every possible sequence of
operations that can undo a close, including sequences with
many redundant operations. This would be quite undesirable.

We did find some of the examples generated by this heuris-
tic to be a little uninteresting, such as this one:

open_file(table,[{type,bag}]) -> table
close(table) -> ok
open_file(table,[{type,bag}]) -> table
lookup(table,0) -> []

In a sense this illustrates a ‘close/lookup undo’ interaction—
because we need to reopen the table in order to call lookup.
But this call to lookup is rather uninteresting, because it fails
to find anything (since the key has not been inserted). To
prevent this example from displacing the one above in our
example suite, we allow the specification author to classify
some calls as ‘boring’—calls of lookup that find nothing, calls
that raise an exception, and so on. Boring calls are not used
as the second call in an undo-interaction, and so by classi-
fying this call of lookup as boring, we can ensure that our
example generator chooses the first rather than the second
‘close/lookup undo’ interaction example.

This heuristic contributed examples such as the following
one to the suite of ‘bank server’ examples we used for our
evaluation:
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open() -> ok
create_user(u1, p1) -> {u1, p1}
login(u1, p1) -> ok
create_account(a2, u1) -> {a2, u1}
close() -> ok
open() -> ok
login(u1, p1) -> ok
deposit(u1, p1, a2, 1) -> 1

This example illustrates a ‘close/deposit undo’ interaction.
The first four steps open the bank, create and login a user,
and create an account—at which point, it would be possible
to deposit money in the account. Instead, we close the bank,
and to recover to the point where we can make a deposit,
we have to both reopen the bank, and log the user back in.

6.3 Negative examples
We initially presented examples to users along with an ex-
planation of why the example was considered interesting.
For example,
Good example:
1. V = spawn() -> '<0.29507.1>',
2. register(d, V) -> true,
3. whereis(d) -> '<0.29507.1>'
Deleting command 2 changes the behaviour of command 3
1. V = spawn() -> '<0.29507.1>',
3. whereis(d) -> should not return '<0.29507.1>'

We soon found that these explanations were not particularly
helpful to users, who, after all, should not need to under-
stand our heuristics to find the examples useful. In particular,
the concept of ‘should not return’ was hard to explain. We
therefore simply added the negative examples to the suite,
and reran them to show what those calls actually do return
instead. In this case, we might add the example
V = spawn() -> '<0.65.0>',
whereis(d) -> undefined

to our suite, showing that if no process is registered, then
whereis returns undefined. In most cases, we found the neg-
ative examples are themselves of some interest.

7 Evaluation
We conducted an experiment to support our claim that our
method generates a suite of good, representative examples
for understanding the behaviour of a specified API. We have
chosen to interpret ‘understanding’ as the ability to predict
behaviour: we measure how well subjects can predict the
return values in sequences of API calls, given examples gen-
erated by our heuristics.

We compare the suite of good examples to a suite of refer-
ence examples. Instead of comparing to random examples,
we use a suite of generated examples that achieves a 100%
coverage of both the specification and implementation. We
believe this is a fair comparison since code coverage is a
widely used method to measure the quality of a test suite.

We constructed the reference suite by accumulating gener-
ated random examples until we obtained full code coverage.
This resulted in a suite of 22 reference examples. Note that
the generated reference examples are minimized test cases
(i.e., they are ‘shrunk’). Even though we use randomness in
its generation, this minimal reference test suite with 100%
coverage is generated in essentially the same form (modulo
renamings) in every run.
The set of good examples generated by our heuristics

had a size of 55, and was obtained by combining the results
of several iterations. Although we use randomness in the
generation of our example suites, the final example suites
generated differ only inconsequentially from generation run
to generation run. Arbitrary names may be different, but
there are few other differences. This is because we minimize
each new test as it is found, to the simplest similar test that
covers a new feature. Moreover, we run so many random
tests that we are almost certain that any features that do not
appear in the suite of examples are not reachable.

The experiment tests the following hypotheses:

H01: There is no difference in the number of correct an-
swers for subjects given reference examples and good exam-
ples.

H02: The number of correct answers does not depend on
the given tasks.

H03: There is no interaction between the given tasks and
the given examples with respect to the number of correct
answers.

To test the above hypotheses we have defined an experi-
ment in which subjects perform a number of tasks. A task
consists of a sequence of API calls, which is similar to a gen-
erated example, of which the subject needs to predict the
evaluation. Each individual API call needs to be predicted.
We have used the ‘bank server’ API in our experiment, which
supports the following API calls:

• open/0
• close/0
• create_user/2
• create_account/2
• logged_in/2
• login/2
• logout/1
• deposit/4
• withdraw/4

In Section 6 we showed a number of generated example
interactions using the above API. The model (state machine
specification) for the ‘bank server’ API consists of 250 lines of
Erlang code and is developed by the authors, the same goes
for the other models in this paper. Note that these models
are not primarily created for generating examples, but for
testing the implementation of an API.
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The subjects in our experiment received a sheet of paper
with seven tasks and some guidelines. The subjects didn’t
have access to the model. The subjects were, for example,
asked tomark the evaluationwith a questionmark in case the
subject could not predict an evaluation, rather than taking a
wild guess. Furthermore, the subjects were given a completed
example task:
1. create_user(u1, p1) -> call not allowed
2. open() -> ok
3. create_user(u1, p1) -> {u1, p1}
4. cmd you are unsure about() -> ?
5. withdraw(u1, p1, a1, 42) -> false

Selection of tasks The tasks were constructed such that
they are non-trivial and require a good understanding of the
‘banking server’, but are still solvable in about 15 minutes.
We ended up with seven tasks with a varying number of API
calls ranging from 4 to 21. Each correct prediction of the
evaluation of an API call is rewarded with one point. The
maximum score for a task is equal to the number of API calls.
The next sequence of API calls is an example of the tasks
presented to the subjects:
1. open() -> ____
2. create_account(a1, u2) -> ____
3. create_user(u3, p2) -> ____
4. login(u3, p2) -> ____
5. create_account(a1, u3) -> ____
6. create_user(u2, p1) -> ____
7. deposit(u3, p2, a1, 4) -> ____
8. withdraw(u3, p2, a1, 3) -> ____
9. withdraw(u3, p2, a1, 2) -> ____

We started out to generate the tasks randomly to avoid any
human bias, but discovered that the generators needed much
tuning to generate non-trivial and proper tasks. This tuning
is not straightforward and would introduce a human bias
again. Instead, we created the tasks by hand using randomly
generated examples as a starting point. We made sure that
the following interesting scenarios were included:
• Failing preconditions
• Persisting state after close-open
• Users being logged out after closing the bank
• Several successful deposit and withdraw operations
with a changing balance
• Using several users and accounts in the same task

Experiment execution The subjects for the experiment
were students enrolled in a course on parallel functional pro-
gramming at Chalmers University. We chose this particular
course because it makes extensive use of the programming
language Erlang. In total there were 22 subjects taking part
in the experiment. The subjects were randomly divided into
two groups: a subject group and reference group. The sub-
ject group received a sheet of paper with the generated suite
of good examples based on our heuristics, whereas the ref-
erence group were handed a sheet of paper with the suite

Table 1. Raw measurements and descriptive statistics

Tasks

Su
bj
ec
t

G
ro
up

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

4

Ta
sk

5

Ta
sk

6

Ta
sk

7

1 1 100.00 50.00 100.00 100.00 90.00 64.29 61.90
2 1 100.00 75.00 66.67 88.89 70.00 64.29 80.95
3 1 80.00 25.00 66.67 66.67 80.00 42.86 4.76
4 1 80.00 50.00 100.00 44.44 80.00 57.14 0.00
5 1 100.00 75.00 66.67 100.00 10.00 0.00 0.00
6 1 80.00 50.00 66.67 77.78 80.00 57.14 28.57
7 1 100.00 50.00 100.00 77.78 100.00 14.29 0.00
8 1 60.00 75.00 100.00 44.44 0.00 0.00 0.00
9 1 100.00 50.00 83.33 100.00 80.00 92.86 76.19
10 1 60.00 50.00 83.33 100.00 60.00 28.57 23.81
11 1 100.00 100.00 100.00 100.00 80.00 71.43 80.95
12 2 80.00 100.00 100.00 88.89 100.00 57.14 85.71
13 2 80.00 100.00 100.00 88.89 100.00 57.14 85.71
14 2 80.00 100.00 100.00 100.00 100.00 100.00 95.24
15 2 100.00 100.00 83.33 77.78 70.00 71.43 85.71
16 2 100.00 50.00 100.00 100.00 80.00 78.57 33.33
17 2 80.00 100.00 100.00 100.00 100.00 85.71 33.33
18 2 100.00 100.00 100.00 100.00 80.00 100.00 0.00
19 2 80.00 100.00 100.00 100.00 100.00 85.71 0.00
20 2 80.00 100.00 66.67 77.78 80.00 64.29 0.00
21 2 100.00 75.00 100.00 77.78 80.00 28.57 28.57
22 2 100.00 75.00 100.00 100.00 90.00 85.71 42.86

Tasks

metric G
ro
up

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

4

Ta
sk

5

Ta
sk

6

Ta
sk

7

minimum 1 60.00 25.00 66.67 44.44 0.00 0.00 0.00
2 80.00 50.00 66.67 77.78 70.00 28.57 0.00

maximum 1 100.00 100.00 100.00 100.00 100.00 92.86 80.95
1 100.00 100.00 100.00 100.00 100.00 100.00 95.24

arithmetic
mean

1 87.27 59.09 84.85 81.82 66.36 44.81 32.47
2 89.09 90.91 95.45 91.92 89.09 74.02 44.59

median 1 100.00 50.00 83.33 88.89 80.00 57.14 23.81
2 80.00 100.00 100.00 100.00 90.00 78.57 33.33

standard-
deviation

1 15.43 19.28 15.00 20.80 30.53 29.07 33.78
2 9.96 16.07 10.28 9.58 10.83 20.27 35.82

of examples with 100% code coverage. Both groups were
given the same tasks. The experiment was carried out anony-
mously and no personal information about the subjects was
recorded. The subjects were given 15 minutes to perform
the given tasks, which was enough for nearly all subjects to
complete all tasks.

7.1 Raw Measurements and Descriptive Statistics
Table 1 contains the raw measurements for the experiment
and the descriptive statistics in terms of percentages of cor-
rects answers given by subjects for the corresponding task.
Percentages are used in order to increase the comparability
between the different tasks, because the number of possible
faults differ between different tasks (because the tasks differ
in the number of API calls). The data indicates that the group
with the good examples performs in general better than the
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Reference
Good

Figure 1. Boxplot for measurements

reference group: for all tasks (except task 1) arithmetic mean
and median is larger for group 2 (the good examples group)
compared to group 1 (reference examples). For task 1, the
median for group 2 is smaller than for group 1, but the arith-
metic mean is still larger for group 2. If we focus onminimum
and maximum, we get the same expression: for group 2 the
minimum is at least as large as the minimum for group 1
(for 5 tasks it is larger) and for group 2 the maximum is at
least as large as the maximum for group 1 (for five tasks, the
maximum for both groups is 100%, in the other two cases
group 2 has a larger maximum). Additionally, the standard
deviations for group 2 are in all cases except task 7 smaller
than for group 1.
The boxplot in Figure 1 seems to suggest the same: the

boxplots for group 2 are at least as high as the boxplots for
group 1 and for task 2, 3, and 5 the differences seem to be
quite large. On the other hand, there does not seem to be
a clear rule that could explain the differences. For example,
for task 7, which has the lowest median for group 1, the
difference to group 2 does not seem to be that strong as for
example the difference in task 5 (where the median for group
1 is much larger than the median for task 7).

7.2 Analysis
We analyse the data using a repeated measures ANOVA
with the within-subject variable task (with seven treatments)
and the between-subject variable group. The analysis was
performed with the statistics package SPSS v24.

The repeatedmeasures ANOVA (where based onMauchly’s
test the assumption of sphericity was not violated, because
χ̃ 2(20)=26.51, p=.16) reveals that the within-subject factor
task had a significant influence on the response variable cor-
rectness (F(6,120)=18.67, p<.001). The effect size of the factor
task is η2p =.48, which is according to Cohen [6] a large effect.
The between-subject factor group was significant as well

(F(1,20)=9.89, p=.005) and the effect was large as well η2p =.33.
Finally, there was no significant interaction between both
factors task*group (F(6,120)=2.01, p=.141, η2p =.08).
The difference in means between group 1 (M=65.24) and

group 2 (M=82.15) over all tasks was -16.92±11.22 (95% CI),
i.e. group 2 had on average a 16% higher score in the answers.

However, the measured effect of the factor task says that
tasks themselves differ (independent of the group). But since
the main goal of the experiment was not to reveal differences
in tasks, but differences in groups (for different tasks), we
just run a separate t-test for each task. This test does not
reveal any differences for the tasks 1, 3, 4, and 7 (ptask1=.76,
ptask3=.08, ptask4=.185, ptask7=.44).

For task 2 group 2was on average 31%±16.55 better (p=.001),
for task 5 group 2 performed on average 22.72%±21.37 better,
and for task 6 group 2 was on average 29.22%±23.38 better
– it seems as if the variable group had the strongest effect
on task 2 while the influence for task 5 and 6 was compara-
ble. Note, that there was no difference between both groups
for task 1 although the boxplot seemed to suggest a rather
negative impact of group 2 on the results.

7.3 Threats to Validity
Following the reporting guidelines by Wohlin et al. [22],
experiments should report potential threats to validity. How-
ever, while Wohlin et al. propose a classification for these
threats, we mention here only those ones that we consider
very specific to the experiment (and ignore others that de-
pend for example on the sample size and resulting problems
such as the statistical power of the chosen experimental
design).

Chosen environment: Although we did not measure a
difference in the tasks, we still believe that the impact of
the good examples depends on the given API, the given
programming language, etc. For example, it is known that
just the choice of identifiers influence the understandability
of code (see for example [10, 15]). Furthermore, it is known
that language constructs such as type systems influence
the understandability of code as well (see for example [7,
8] among many others). Although we believe these factors
influence the usage of examples as well, we have no evidence
for it yet.

Complexity of API code: We think the complexity of
API code has an influence on its usability as well. Because
of that, we have chosen tasks with different complexities
(especially task 1, 2, and 3 are from our point of view different
in their complexities in comparison to tasks 6 or 7). However,
while the experiment revealed differences between the tasks
(factor task was significant) which says that the differences
of the tasks had an influence on the response variable, the
experiment did not reveal any interaction effect. This means,
the experiment was not able to showwhether good examples
have different effects on code with different complexities.
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Measurements (I): We decided to use correctness of all
tasks as the dependent variable while we kept the time re-
quired by the subjects constant. As a consequence, subjects
were permitted to decide on their own, how much time they
invest for each task. We cannot exclude that the rather posi-
tive results for the first few tasks (except task 2 where the
reference group’s were quite incorrect) and the rather neg-
ative results for the latter tasks were just the results of the
given time constraints in combination with the ability to
decide on their own where the time should be invested. It is
possible that the rather negative results of the latter tasks
were just caused by time pressure.

Measurements (II): Another alternative could have been
to measure time until correct answers were given, an ap-
proach that was practiced a lot for different language con-
structs (see for example [7, 8, 13, 21] amongmany others).We
think that such a different kind of measurement could be pos-
sible for the present approach as well, but probably requires
a totally different kind of experimental setup. The mentioned
works that use time measurements use within the experi-
ment programming tasks with feedback where feedback “the
proposed solution is wrong” does not directly give advice
how to correct the proposed solution. This probably means
that much more complex APIs would be required (with more
possible responses). So far, we do not know whether a differ-
ent kind of measurement would lead to different results.

7.4 Interpretation and Discussion
We found a significant and large effect of the factor group:
having good examples increases on average the number of
correct answers by -16.92±11.22. The effect size for this factor
was large(η2p =.33), but the effect of the factor tasks whichwas
significant as well, was even larger (η2p =.48). I.e. hypotheses
H01 and H02 can be rejected which supports our intuition
that good examples do help using APIs.

For the whole experiment, we did not find an interaction
effect between the group and the tasks, i.e., we accept hy-
pothesis H03. However, making an individual analysis of
each single task showed that four of the seven tasks did not
reveal a measurable impact of the factor group while for the
other three tasks, this effect existed. Furthermore, it looks
like the effect for task 2 was slightly stronger than for task 5
and 6 (measured in terms of difference in means). However,
again, there was no measurable interaction effect between
both variables and we should not interpret too much into it.
Actually, we still do believe that good examples will have a
different impact on easy or hard to use APIs (in comparison
to reference examples), but so far, we are not able to show it.
Although the positive and large effect of good examples

was shown, we think that future studies should concentrate
on possible time benefits caused by good examples. That is,
although we have now evidence that good examples increase
the correctness of given answers, and although we believe

that this should in principle mean that good examples give
a time benefit for the usability of APIs, we have so far no
evidence for that.

8 Comparison to related work
There is a large body of work on picking out good examples
for an API from an existing corpus of code which uses the
API. The most popular approach [4, 12, 16, 18, 19] is to pick
one API call from a program in the corpus, then choose a
fragment of the program which contains that API call and
enough context to be a useful example. The difficulty is ex-
panding the single API call into a program fragment which
is neither too small (no context) nor too large (irrelevant in-
formation); most approaches use program slicing [12, 18, 19]
or static analysis [4], but one approach [16] simply takes the
whole method containing the API call as the example. An-
other problem is removing similar or equivalent examples;
this is often solved by computing clusters [4, 12] or detecting
clones [19]. The generated examples are high quality, pro-
vided that a sufficiently large and varied code corpus can be
found.
The difference between this work and ours is: we work

from a specification, not an existing code corpus, and we use
black-box testing to compute examples, not static analysis or
program slicing. By avoiding program analysis, our approach
is simple and widely usable—all we need is to be able to
run the API functions and the state machine specification.
Because we work from a specification, we can generate a
use of a method without seeing it in a code corpus—this
means we can easily generate unusual examples and negative
examples, which are unlikely to be found in a corpus but
give useful intuition about the API.

Mittal and Paris [17] generate examples of valid Lisp syn-
tax given a grammar for Lisp. Like us, they generate both
positive and negative examples; the authors stress the impor-
tance of negative examples in understanding what expres-
sions are valid. The tool takes great care to generate good
examples: it simplifies the examples, mutates the examples
to see which parts are essential and which are optional, and
even presents the examples in a careful order to build a narra-
tive. The idea of simplifying examples to minimal interesting
ones and analysing them by mutating them is similar to our
approach.
Finally, there have been attempts to translate specifica-

tions and models to natural language. Lavoie et al. [14] trans-
late data models into prose describing the constraints on the
data, together with example data fulfilling the constraints.
The generated prose and examples are excellent, and resem-
ble what a human would write. Swartout [20] and Burke and
Johannisson [3] translate function pre- and postconditions
into natural language in a readable way; Swartout’s work
also produces a description of the data model.
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These tools generally try to describe the model, rather
than provide concrete examples. This seems to work well for
describing structural information such as class hierarchies,
data models and so on. However, it is less convincing when
applied to specifications: formal specifications translated to
readable English still hide many subtleties. Examples are
needed to explain those subtleties.

9 Conclusion
Formal specifications are, by their very nature, terse and
technical; examples may aid understanding, but only when
they are good. In this paper, we have presented a system that
refines random test cases into good examples. The system
relies purely on black box testing, and does not need to be
supplied with a code corpus.
In our approach, the interaction between API calls in a

test case guides the choice of relevant statements and their
relative ordering in examples. As a result, the example suites
we generate are representative and minimal but at the same
time comprehensive. We have implemented the system using
Quviq QuickCheck in Erlang. The approach, however, is not
specific to Erlang; it only assumes that sequences of API calls
can be run and their results checked. Our current implemen-
tation happens to be built using Erlang QuickCheck (but the
system under test can be written in any language which has
an Erlang bridge, e.g., C, Java).
Our experimental evaluation tests students’ understand-

ing of an API when given differing sets of examples. The
results show that our examples significantly help with pro-
gram understanding.
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