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Abstract. Invertible programming languages specify transformations to
be run in two directions, such as compression/decompression or encryp-
tion/decryption. Two key concepts in invertible programming languages
are partial invertibility and local invertibility. Partial invertibility lets
invertible code be parameterized by the results of non-invertible code,
whereas local invertibility requires all code to be invertible. The former
allows for more flexible programming, while the latter has connections
to domains such as low-energy computing and quantum computing. We
find that existing approaches lack a satisfying treatment of partial in-
vertibility, leaving the connection to local invertibility unclear.
In this paper, we identify four core constructs for partially invertible pro-
gramming, and show how to give them a locally invertible interpretation.
We show the expressiveness of the constructs by designing the functional
invertible language Kalpis, and show how to give them a locally invert-
ible semantics using the novel arrow combinator language rrArr—the
key idea is viewing partial invertibility as an invertible effect. By for-
malizing the two systems and giving Kalpis semantics by translation
to rrArr, we reconcile partial and local invertibility, solving an open
problem in the field. All formal developments are mechanized in Agda.

Keywords: Reversible computation · Arrows · Partial invertibility ·
Domain-specific languages.

1 Introduction

An invertible computation can be run in two ways: forward in the conventional
way, or backward to recover an input given the output. Such processes appear
frequently and prominently in a variety of contexts, enabling the shape of in-
formation to be adapted to different purposes, while preserving the essential
content. For instance, (lossless) compression shrinks the size of a piece of infor-
mation to facilitate efficient storage, encryption transforms it to be inaccessible
to third parties, and serialization reshapes it to enable storage or transmission.
The property of invertibility is crucial, as it guarantees that the data can always
be refit to its original purpose.
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For example, consider the function autokey below, which computes a variant
of the Autokey cipher (see e.g., [50]). The cipher takes a primer character k , and
interprets it as an integer (e.g., ’A’ 7→ 0, ’B’ 7→ 1, . . . , ’Z’ 7→ 25) determining a
shift to apply to the first element of the input. Each consecutive character in the
input is similarly shifted by the amount given by its predecessor. For instance,
autokey ’F’ "HELLO" = "CXHAD", as ’F’ represents a (cyclic left) shift of 5
characters, mapping ’H’ to ’C’, and ’H’ a shift of 7 characters, mapping ’E’
to ’X’, and so on.

autokey :: Char→ [Char]→ [Char]
autokey k [ ] = [ ]
autokey k (h : t) =
shift (chrToInt k) h : autokey h t

autokey ′ :: Char→ [Char]→ [Char]
autokey ′ k [ ] = [ ]
autokey ′ k (h′ : t′) =
let h = shift (−(chrToInt k)) h′

in h : autokey ′ h t′

The corresponding decryption function autokey ′ is given to the right, and shifts
backward to restore the original input. We assume shift : Int → Char → Char
performing the cyclic shift is previously defined. This is a simple example, but
it serves as a toy model of more advanced encryption schemes and has a few
interesting features which we highlight momentarily.

In traditional unidirectional languages, each direction of an invertible algo-
rithm has to be specified separately in this way, and there is no easy way of
ensuring that the two programs really constitute each other’s inverses. Further-
more, there is a maintenance concern—when one direction is updated, the other
has to be updated accordingly. An alternative, more scalable approach is to let a
single program denote both directions at the same time—intuitively, the inverse
is derived by “reading the original code right-to-left”. Invertible programming
languages implement this approach, letting each program be executed in either
of two directions, which are guaranteed to form a pair of inverse functions. Some
examples of invertible languages include Janus [35,53], R [17], Inv [43], Π [10,26],
RFun [54], Theseus [27], CoreFun [25] and Sparcl [39, 40].

These languages traditionally require each individual step of computation to
be invertible, which can be ensured, e.g., by providing a set of invertible com-
binators as basic building blocks, or by imposing various syntactic restrictions.
This form of local invertibility has several benefits, in addition to being a simple
foundation for building programming languages. For example, it was observed
early on that discarding information fundamentally results in heat dissipation,
meaning that a machine executing only invertible instructions could in principle
operate at lower energy levels than a conventional computer [32]. Moreover, lo-
cally invertible languages serve as a foundation when considering other domains
with similar requirements, such as quantum computing, where computations are
composed of individually invertible quantum gates along with irreversible mea-
surements [22,48]. Despite these benefits, the local flavor of invertibility severely
limits the flexibility of the programmer. In particular, our example function
autokey is not actually invertible up front! The case autokey k [ ] = [ ] discards
the value of k , which means we cannot simply read the definition right-to-left. Of
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course, the primer k is not intended to be treated as part of the invertible input
to autokey , but rather as a parameter determining the bijection between input
and output strings. However, this cannot be naturally expressed in a language
adhering strictly to the (locally) invertible paradigm, where the parameter would
need to be preserved in the result.

The property of becoming invertible when some parameters are fixed is known
as partial invertibility [39, 40, 44, 47], and many previous languages offer some
form of support for partially invertible definitions. However, the level of support
varies from more limited (e.g., [25,27,35]) to more complete (e.g., [39,40]), and
the previous work largely lacks a systematic treatment. The case of autokey is
especially tricky, since its invertible input h flows to the unidirectional parameter
k in the recursive call. To our knowledge, only Sparcl [39,40] handles cases like
this in a systematic way, but it does so through an advanced language foundation
quite different from that of traditional invertible languages, and its connection
to the locally invertible paradigm is not well-understood. Thus, it is an open
question whether it is possible to support fully expressive partial invertibility
while maintaining a compositional locally invertible interpretation.

It is theoretically known that any (partially) invertible computation can be
simulated in a locally invertible system [8]; however, this simulation gives poor
control over the invertible behavior and is inefficient in both time and space.
There has been research on inversion of arbitrary programs (e.g., [41, 44, 49]),
and on logic languages with no fixed direction of execution, like Prolog and
Curry, which use (lazy) generate-and-test to find inputs corresponding to a given
output [4]. Yet, these approaches lack the guarantee of invertibility, which is the
main motivation of an invertible language.

1.1 Contributions and Organization
In this paper, we identify a core set of constructs for partially invertible pro-
gramming, and explain them in terms of a locally invertible semantics. These
constructs are sufficient to allow expressive partially-invertible and higher-order
computation, thus solving an open problem in the invertible programming lit-
erature. The constructs include (1) partially invertible branching, (2) pinning
invertible inputs, (3) partially invertible composition, and (4) abstraction and
application of invertible computations.

We demonstrate the above findings by designing and formalizing two sys-
tems based on these constructs, Kalpis4 and rrArr. Kalpis is a typed func-
tional programming language accommodating expressive partially-invertible and
higher-order computation, and rrArr is an arrow combinator language intended
to capture the essence of partially invertible programs. Kalpis is given seman-
tics via rrArr, which captures partial invertibility as an effect on top of ‘pure’
invertible computations, intuitively adjoining a parameter to an invertible func-
tion, analogously to the reader monad in unidirectional computation. By in-
terpreting terms of Kalpis as parameterized bijections, we are able to give a
4 The name stands for “Kalpis—an Arrow-based Locally and Partially Invertible

System”.
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translation into rrArr combinators, giving a compositional embedding into a
locally invertible setting. Thus, we present a simple and rigorous take on partial
invertibility which bridges the gap between previous work in the field.

The core constructs for partial invertibility that we present are not new per
se, and the features of Kalpis largely coincide with those of Sparcl [39, 40].
However, the goal of this paper is not to present Kalpis as such, but rather to
describe partial invertibility from first principles and give a simpler semantics
which is compatible with local invertibility. There are key technical differences
between the two languages, and the fact that they are still similar should be
taken as a sign that we have achieved our goal without a significant loss of
expressiveness.

In summary, our main contributions are:

– We identify a core set of partially invertible programming constructs (Sec-
tion 2), which we demonstrate to be sufficient to achieve a level of expres-
siveness similar to the state-of-the-art.

– We showcase the constructs through the design of the invertible functional
language Kalpis, including a formal type system and operational semantics
(Section 3).

– We present rrArr, an extension of the irreversibility effect [26] and the
reversible reader [23] (Section 4) as a core calculus for partially invertible
computation with a locally invertible interpretation.

– We give a compositional translation from Kalpis into rrArr (Section 5).
– We prove type safety and invertibility properties (Section 3), and prove the

correctness of the arrow translation (Sections 4 and 5).
– Our developments come with a formalization in Agda including proofs of all

theorems,5 and a prototype implementation of Kalpis.6

Section 6 discusses the results in relation to previous work, and Section 7 con-
cludes.

2 Constructs for Partially Invertible Programming

In this section, we introduce a set of core constructs for partially invertible
programming and explain their intuitive idea using programming examples in our
partially invertible language Kalpis, which we introduce formally in Section 3.
The constructs include (1) partially invertible branching, (2) pinning invertible
inputs, (3) partially invertible composition, and (4) abstraction and application
of invertible computations. We explain them each in turn, and show how they
can be understood as operations on parameterized bijections, which we exploit
in later sections to embed them into a locally invertible setting.

These constructs act as a form of glue, allowing invertible and unidirectional
computations to be run in tandem. Thus, we also assume some traditional invert-
5 https://git.sr.ht/~aathn/kalpis-agda
6 https://git.sr.ht/~aathn/kalpis

https://git.sr.ht/~aathn/kalpis-agda
https://git.sr.ht/~aathn/kalpis
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ible constructs taken from the existing literature, like invertible pattern match-
ing, which we briefly explain where necessary.

2.1 Partially Invertible Branching

As a first example, we define partially invertible addition. In particular, the
function x 7→ x + n has inverse x 7→ x − n for any n ∈ N. Kalpis supports
recursive type definitions, and we can define the naturals as follows.

data Nat = Z | S Nat

Now, addition is implemented naturally by the following function add , taking
an n to produce the corresponding bijection.

sig add : Nat→ Nat↔ Nat
def• add n x =
case n of
Z → x
S n → S (add n � x)

The language uses a functional syntax, and features elements typical to invertible
programming: a bijection type A ↔ B, bijection definition def•, and bijection
application f � x. The functional types associate to the right, so the type of

add : Nat→ Nat↔ Nat

indicates a partially invertible function taking a Nat to produce a bijection
Nat↔ Nat. The case form showcases our first core construct, partially invertible
branching. If n is zero, x is returned unchanged, and otherwise S is applied to
the result of a recursive computation. The resulting function appends n copies
of S to x in the forward direction, or peels them off in the backward direction.

What is interesting is that case results in a loss of information: without
prior knowledge of n, it is impossible to determine which branch to choose when
executing backwards. This corresponds to the fact that one cannot uniquely
determine n and x given y = n + x. However, when n is fixed beforehand, we
can refer to its value regardless of executing forwards or backwards, which is
what motivates the case construct. For example, we get the following results
when applying add to some example inputs, where the primitive operator (·)† :
(A↔ B)→ (B ↔ A) lets us compute the inverse.

-- 1 + 2 = 3
> add (S (S Z)) � S Z
S (S (S Z))

-- 3− 2 = 1
> (add (S (S Z)))† � S (S (S Z))
S Z

As the type Nat↔ Nat requires, the argument x in the definition of add must
be treated linearly, i.e., must be used exactly once in any successful evaluation
(see e.g., [51]) in order to ensure invertibility. For instance, changing the first



6 A. Ågren Thuné et al.

case above to Z→ Z gives an error, as x is unused in the case body. Indeed, if x is
never used, there is no way to recover its value in the backward direction. While
allowing more than one use does not directly prevent invertibility, it requires
implicit copying of values, which may induce unintended runtime failures in the
backward execution. Similarly, we cannot branch on x using case for the reasons
mentioned above; instead, an invertible case• form is available, explained later.

Note that add is not a total function: e.g., the application (add (S Z))†�Z will
try to peel an S when there is none, resulting in a runtime error.7 The guarantee
given by Kalpis is that whenever evaluating a bijection f on argument v gives
v′ in the forward direction, then evaluating f on v′ gives v in the backward
direction, and vice versa (this is made formal in Section 3).

Mathematically, add represents a parameterized bijection, a family of (partial)
one-to-one mappings fn : N → N (such that fn(x) = x + n). This view will
underpin our explanation of partially invertible computations in later sections,
and each of the core constructs in this section can also be understood from this
viewpoint. Seen from this perspective, the case construct allows definitions of
the form

fn(x) =

{
gn(x) if n = 0
hn(x) otherwise ,

where g and h are also parameterized bijections.

2.2 Pinning Invertible Inputs

As a second example, we consider a program fib computing pairs of Fibonacci
numbers (defined by the equations F0 = F1 = 1 and Fn+1 = Fn + Fn−1 for
n > 0), a classic in the invertible programming literature (e.g., [18, 53]). We
can compute fib n by case distinction on n; if n = 0, we return (F0, F1), and
otherwise we recursively obtain fib (n−1) = (Fn−1, Fn), with which we compute
the next pair (Fn, Fn + Fn−1).

However, if we try to implement this algorithm invertibly using the function
add above, we encounter an issue: we cannot make the call add Fn�Fn−1, as add
does not treat its first argument invertibly. Since Fn comes from the invertible
input n, we need an operation that is properly invertible in both inputs. To this
end, we can define an invertible addition add ′ such that add ′�(x, y) = (x, x+y).
By preserving a copy of x in the output, the same x can be used to recover y
by subtraction in the inverse direction. Indeed, add ′ � (Fn, Fn−1) gives just the
result we need. In Kalpis, add ′ can be derived from add automatically using
our second core construct, pin.

sig add ′ : (Nat,Nat)↔ (Nat,Nat)
def• add ′ (x, y) = pin add � (x, y)

Here, the operator pin : (c → a ↔ b) → (c, a) ↔ (c, b) lifts a partially
invertible function to operate on invertible data; we refer to this as pinning
7 The loss of totality is unavoidable in order to achieve r-Turing completeness [5], i.e.,

the ability to define all computable bijections.



Reconciling Partial and Local Invertibility 7

the invertible input x , allowing it to be used in a unidirectional position. This
construct (inherited from Sparcl [39, 40]) is crucial in practical programming,
as it lets unidirectional computations depend on invertible data in a controlled
manner. With add ′ defined, fib can be written as follows.

sig fib : Nat↔ (Nat,Nat)
def• fib n =

case• n of
Z → (S Z, S Z) with is11
S n → let• (y, x) = fib � n in

add ′ � (x, y)
with not ◦ is11

sig is11 : Nat→ Bool
def is11 n =
case n of
(S Z, S Z) → True
_ → False

This example is defined by invertible pattern matching (case•), a construct in-
herited from previous languages like Janus [35,53] and Ψ -Lisp [7]. When branch-
ing on the input to a bijection (as opposed to a fixed parameter), postconditions
marked by the keyword with ensure that the execution can determine which
branch to take in the backward direction. Each postcondition is a boolean func-
tion that must return True for any result of its branch and False for any result
of the branches below it (this is checked at runtime following the symmetric
first-match policy [54]). The backward evaluation tests each condition in turn,
selecting the first branch whose condition is true. Here, is11 is used to distinguish
the base case where the output is (S Z, S Z).

The inverse behavior of fib computes n given a pair (Fn, Fn+1). Specifically,
by computing Fn+1 − Fn, we obtain Fn−1, and repeating the process until we
reach the start of the sequence lets us deduce the index of the initial pair. Kalpis
runs fib as below.

-- (F3, F4) = (3, 5)
> fib � S (S (S Z))
(S (S (S Z)), S (S (S (S (S Z)))))

-- (Fn, Fn+1) = (3, 5) ⇒ n = 3

> fib† � (S (S (S Z)), S (S (S (S (S Z)))))
S (S (S Z))

Again, fib is non-total: running it backwards on a pair not constituting two
consecutive Fibonacci numbers will cause the computation to fail.

Viewed as an operation on parameterized bijections, pin lets part of an in-
vertible input be shifted to the parameter position if a copy is returned in the
end. Formally, we have pin(f)n(x, y) = (x, f(n,x)(y)); in our example, f(n,x) cor-
responds to addition by x , ignoring a trivial n representing variables captured
in the pin form.
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2.3 Partially Invertible Composition

We now return to the example of the introduction, autokey . It can be defined in
Kalpis as follows:

sig autokey : Char→ [Char]↔ [Char]
def• autokey k xs =

case• xs of
[ ] → [ ]
(h : t) → let• (h, r) = pin autokey � (h, t) in

(shift (chrToInt k) � h) : r

The structure is very similar to the unidirectional version in Section 1, but uses
the invertible branching and pinning constructs explained previously. We assume
primitives chrToInt : Char → Int and shift : Int → Char ↔ Char for computing
and performing the cyclical shifts, respectively. We omit the with-conditions of
the invertible match by convention, as the syntactically distinct branch bodies
can act as patterns to guide backward branching.

This example features our third core construct, partially invertible compo-
sition. This simply refers to the fact that we can modify the parameter of a
bijection unidirectionally, as in shift (chrToInt k) � h. In this case, the (irre-
versible) function chrToInt is applied to k inside the (invertible) call to shift .
In other words, the parameter part of an invertible computation is allowed to
depend freely on unidirectional computations, greatly enhancing the flexibility
when programming. The reason we call it composition is because from the per-
spective of parameterized bijections, this corresponds to the composition of a
parameterized bijection f with an (arbitrary) function g on the parameter part,
i.e., (f ◦ g)n(x) = fg(n)(x). In our example, we have f corresponding to shift
and g corresponding to chrToInt .

The example also further highlights the utility of pin. As noted in the intro-
duction, autokey is tricky to express since each character in the invertible output
depends unidirectionally on the preceding character in the corresponding input.
Similar patterns also appear in more advanced examples; for instance, consider
an adaptive compression method where each character in the input must be
treated invertibly, and yet also be used as part of the (unidirectional) compres-
sion table. pin enables this sort of dependency in a safe way, letting us use h in
the recursive call to autokey and returning a copy to use in the output.

Again, Kalpis lets us execute autokey in either direction, and guarantees
that the two are inverses.

> autokey ’F’ � "HELLO"
"CXHAD"

> (autokey ’F’)† � "CXHAD"
"HELLO"

2.4 Abstraction and Application of Invertible Computations

Our final core construct of partially invertible programming is the ability to ab-
stract and apply invertible computations. Although the examples we have seen so
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far have defined (partially) invertible computations using the def• keyword in a
style close to traditional invertible languages, Kalpis actually features bijections
as first-class values and supports proper higher-order programming. Bijections
can be constructed with an invertible λ-form λ•x.e analogous to that typical for
ordinary functions, and the form def• f x1 x2 . . . xn = e is simply syntac-
tic sugar for f = λx1.λx2 . . . λ

•xn. e. To our knowledge, only Sparcl [39, 40]
shares this feature, with most invertible languages being limited to first-order
computation.

For example, we are able to define multiple variants of the typical map func-
tion for lists in Kalpis.

sig map : (a→ b)→ [a]→ [b]
def map f l =
case xs of
[ ] → [ ]
h : t → f h : map f t

sig mapBij : (a↔ b)→ [a]↔ [b]
def• mapBij f l =

case• xs of
[ ] → [ ]
h : t → (f � h) : (mapBij f � t)

Here, map is defined as usual, and maps a function over each element of a list,
while mapBij makes use of the language’s invertible constructs, taking a bijection
argument to produce a bijection on lists. For example, using mapBij , the Caesar
cipher (which shifts each character in the input a fixed number of steps) can be
defined with a one-liner, as below to the left.

sig caesar : Char→ [Char]↔ [Char]
def caesar k = mapBij (shift k)

sig vig : [Char]→ [Char]↔ [Char]
def vig ks = apBij (map shift ks)

The function on the right, vig (from Vigenère), takes a list of keys, shifting
each character in the input using the corresponding key—the definition relies on
apBij : [a ↔ b] → [a] ↔ [b] to apply a list of bijections pointwise to a list of
inputs (assuming the two have equal lengths). The latter example demonstrates
that bijections can even occur inside data structures such as lists.

Some restrictions must be observed when dealing with higher-order computa-
tion in Kalpis. The language distinguishes between unidirectional and invertible
terms, and carefully controls the interaction between the two. The restrictions
mean that the invertible fragment of the language is essentially first-order; a
formal account is given in Section 3.

Viewed from the perspective of parameterized bijections, abstraction corre-
sponds to forming the function n 7→ fn, witnessing that each choice of parameter
n induces a bijection fn which can be treated as a standalone value. On the other
hand, application of a bijection α corresponds to forming the parameterized bi-
jection appα(x) = α(x), where the parameter determining the bijection is α
itself.

This concludes Section 2; for more programming examples in Kalpis, we
refer to the prototype implementation,8 which contains a number of nontriv-
ial programs, including implementations of Huffman coding and sliding-window
compression.
8 https://git.sr.ht/~aathn/kalpis

https://git.sr.ht/~aathn/kalpis
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3 The Kalpis Core System
In this section, we formally define the Kalpis core system and state the essential
metatheoretic properties. A salient feature of the system is the clear separation
between unidirectional and invertible terms: we have two main syntactic cate-
gories, two typing relations, and three evaluation relations (one for unidirectional
terms, and one in each direction for invertible terms). The unidirectional terms
are a conservative extension of a standard simply-typed call-by-value λ-calculus,
and the invertible terms add support for (partially) invertible computation.

After introducing the syntax and reviewing some examples, Sections 3.4
and 3.5 give a formal semantics which suggests an interpretation of Kalpis terms
as parameterized bijections. This view is made precise in Sections 4 and 5, which
define a translation from Kalpis into the arrow language rrArr, enabling a
locally invertible interpretation.

3.1 Syntax
The syntax of Kalpis core is given below, where u denotes unidirectional terms,
r denotes invertible terms, and p denotes patterns. The vector notation t denotes
an ordered sequence of elements ti, whose length we will refer to by |t|.

u ::= x | λx.u | u1 u2 | λ•x.r | u1 � u2 | C u | case u0 of {p→ u}
r ::= x | u � r | u† � r | pin u � r
| C r | case u of {p→ r} | case• r0 of {p→ r with u}

p ::= C x

The syntax of unidirectional terms include the standard cases for variables, ab-
straction and application, along with data constructors and pattern matching.
In addition, there is the invertible abstraction λ•x.r and application u1 � u2 ex-
plained in the previous section. Note that while the body r is an invertible term,
the abstraction itself is unidirectional.

The syntax of invertible terms resembles a first-order functional language,
but with a couple of key additions. We have bijection application u � r, where
the bijection is unidirectional whereas the argument is invertible. We also have
fully applied versions of the (·)† and pin operators explained in the previous
section (this is without loss of generality, as e.g., the higher-order version of
pin can be recovered as λf.λ•x. pin f � x ). Partially invertible branching is
represented by the case form, whose scrutinee u is unidirectional. The case•

form deconstructs an invertible term, and has a with-condition for invertible
branching, following Janus [35, 53] and Ψ -Lisp [7]. The core constructs of the
previous section are all featured explicitly in the syntax, except for partially
invertible composition, which is implicitly performed whenever a unidirectional
term u occurs in an invertible context.

3.2 Types
Next, we define the types of Kalpis core.

A,B ::= T B | A→ B | A↔ B | X
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The types include constructors T B, functions A → B, bijections A ↔ B and
type variables X. The types are conventional with the exception of invertible
computations A ↔ B; this simplicity is a design feature of Kalpis. With each
type constructor T we associate an arity k and a set of constructors C with
signatures C : A1 → A2 → · · · → An → T B, where |B| = k. We will assume
the type constructors include at least the unit 1, products ⊗, and sums ⊕ with
constructors

() : 1 (−,−) : A→ B → A⊗B InL : A→ A⊕B InR : B → A⊕B

for any A,B. We use Bool as a shorthand for 1⊕1, and True, False as shorthands
for InL (), InR (), respectively.

Types can be (mutually) recursive via constructors; for example, the type
Nat has constructors Z : Nat and S : Nat→ Nat. In general, for any fixed A, the
recursive type µX.A can be represented with a nullary type constructor RecA,
with constructor

Roll : A[RecA/X]→ RecA.

For instance, Rec1⊕X has constructor Roll : 1 ⊕ Rec1⊕X → Rec1⊕X , making it
isomorphic to Nat. Technically, we consider a variable X implicitly bound in the
annotation to Rec, and assume all other types are closed.

3.3 Correspondence to the Surface Language

The correspondence between the core syntax and the examples of Section 2
should be clear. For instance, the examples of addition and Fibonacci number
calculation can be written as follows:

add ,fix (λadd ′.λn.λ•m.
case n of
Z → m
S n′ → S (add ′ n′ �m)))

fib ,fixBij (λfib′.λ•n.
case• n of
Z → (S Z, S Z) with is11
S n′ → case• fib′ � n′ of

(x, y) → pin add � (y, x))
with λ_. True

with not ◦ is11 )

Here, add is a unidirectional term defined using a fixpoint operator fix , and the
structure is similar to the version presented in Section 2.1. The function fib is
similarly defined, but uses the fixpoint operator fixBij instead of fix , which works
for bijections instead of functions. We omit the definition of is11 : Nat⊗Nat→
Bool in the interest of space. The term fixBij (and analogously fix ) is defined as
below, making use of the language’s recursive types.

fixBij , λf. (λg. g (Roll g)) (λx.λ•a. f ((case x of Roll y → y) x) � a)

The type system we define in the next section will assign these terms the following
types as expected.

add : Nat→ Nat↔ Nat fix : ((A→ B)→ A→ B)→ A→ B
fib : Nat↔ Nat⊗ Nat fixBij : ((A↔ B)→ A↔ B)→ A↔ B
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3.4 Type System

Figure 1 shows the typing rules for unidirectional (Γ ` u : A) and invertible
(Γ ;Θ ` r : A) terms. The latter relation uses two contexts Γ and Θ; intuitively, Γ
contains variables for unidirectional data, which may be discarded or duplicated
freely, whereas Θ contains variables for data that must be treated in an invertible
way. This use of a dual context system [13] is inspired by previous work such
as CoreFun [25] and Sparcl [39, 40]. Formally, we define the typing contexts as
Γ,Θ ::= ε | Γ, x : A, and assume names x are unique within a context. We let
Γ1, Γ2 denote the concatenation of two contexts.

The rules for Γ ` u : A are mostly straightforward. T-Abs• pushes the
parameter x of λ•x.r into Θ instead of Γ to ensure that the variable is used in
an invertible way in r, and T-Run gives a rule for bijection application analogous
to T-App. In the Case rules, we implicitly require that patterns are disjoint and
exhaustive.

In the rules for Γ ;Θ ` r : A, the variables in the Θ environments must be
used exactly once to ensure invertibility. Hence, we need to separate Θ into, e.g.,
Θ = Θ1 ] Θ2 for typing subterms, where ] is used analogously to a linear type
system (see, e.g., [9]). The rules follow the intuition that r denotes a bijection
between Θ and A parameterized by Γ . This highlights the difference between the
pattern matching rules, T-UCase and T-RCase: the bound variables Γi in the
former are parameters for the bijection that ri defines, while in the latter, the
variables Θi are part of the inputs of ri, so that case• performs a composition
of two invertible computations.

As stated in Section 2.4, there are some restrictions on how unidirectional
and invertible terms can interact. Note that the unidirectional subterms oc-
curring in the invertible typing rules are only typed using Γ , and not Θ. For
instance, since the left-hand side in rule T-RApp is unidirectional, it cannot
depend directly on invertible variables, ruling out terms like λ•x.(x�True). This
is a natural restriction, as we cannot generally deduce which function was used
to produce some given result. Conversely, there is no rule for directly accessing
Γ from the invertible typing relation; instead, unidirectional data can only af-
fect the computation through rules like T-UCase and T-RApp. Both λ-forms
are unidirectional, meaning they can neither capture invertible variables nor be
returned from an invertible computation. In this sense, the invertible fragment
of the language is first-order.

We note that there are no particular restrictions on unidirectional terms,
and the approach presented could be used to augment any standard functional
language with invertible computations λ•x.r and u1 � u2. The prototype imple-
mentation further adds let-polymorphism as an orthogonal extension.

3.5 Operational Semantics

We first define the set of values as below.

v ::= C v | 〈λx.u, γ〉 | 〈λ•x.r, γ〉
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Typing Rules for Unidirectional Terms Γ ` u : A and Patterns Γ ` p : A

x : A ∈ Γ

Γ ` x : A
T-UVar

Γ, x : A ` u : B

Γ ` λx.u : A→ B
T-Abs

Γ ` u1 : A→ B Γ ` u2 : A

Γ ` u1 u2 : B
T-App

Γ ;x : A ` r : B

Γ ` λ•x.r : A↔ B
T-Abs•

Γ ` u1 : A↔ B Γ ` u2 : A

Γ ` u1 � u2 : B
T-Run

|u| = |A| C : A→ T B {Γ ` ui : Ai}i
Γ ` C u : T B

T-Con

Γ ` u0 : A {Γi ` pi : A Γ, Γi ` ui : B}i
Γ ` case u0 of {p→ u} : B

T-Case
|x| = |A| C : A→ T B

x : A ` C x : T B
T-Pat

Typing Rules for Invertible Terms Γ ;Θ ` r : A

Γ ;x : A ` x : A
T-RVar

Γ ` u : A↔ B Γ ;Θ ` r : A

Γ ;Θ ` u � r : B
T-RApp

Γ ` u : A↔ B Γ ;Θ ` r : B

Γ ;Θ ` u† � r : A
T-Inv

Γ ` u : C → A↔ B Γ ;Θ ` r : C ⊗A

Γ ;Θ ` pin u � r : C ⊗B
T-Pin

|Θ| = |r| = |A| C : A→ T B {Γ ;Θi ` ri : Ai}i
Γ ;]Θ ` C r : T B

T-RCon

Γ ` u : A {Γi ` pi : A Γ, Γi;Θ ` ui : B}i
Γ ;Θ ` case u of {p→ r} : B

T-UCase

Γ ;Θ ` r0 : A
{
Θi ` pi : A Γ ;Θ′ ]Θi ` ri : B Γ ` ui : B → Bool

}
i

Γ ;Θ ]Θ′ ` case• r0 of {p→ r with u} : B
T-RCase

Fig. 1. The type system of Kalpis core: A → B means A1 → · · · → A|A| → B.

Here, γ is a value environment, i.e., a mapping from variables to their values.
Formally, we define γ, θ ::= ∅ | γ, x 7→ v, with γ and θ corresponding to Γ and
Θ. We use the disjoint union θ1] θ2 to concatenate two environments θ1 and θ2,
which is defined only when dom(θ1) and dom(θ2) are disjoint. The values include
constructors and two closure forms 〈λx.u, γ〉 and 〈λ•x.r, γ〉, corresponding to
unidirectional and invertible computations. We type the values in analogy with
the terms, with the rules for closures as follows:

γ : Γ Γ, x : A ` u : B

〈λx.u, γ〉 : A→ B

γ : Γ Γ ;x : A ` r : B

〈λ•x.r, γ〉 : A↔ B

Here, we write γ : Γ to mean that dom(γ) = dom(Γ ) and γ(x) : Γ (x) for all
x ∈ dom(Γ ). For p a pattern, we write pγ to denote the value obtained by
applying the substitution γ to p’s variables. In addition, we use the shorthand

î = j ,
{
True if i = j
False otherwise .

We now present in Figure 2 the operational semantics of Kalpis core, which
consists of three evaluation relations: unidirectional, forward, and backward. The
unidirectional evaluation relation γ ` u ⇓ v reads that under γ term u evaluates
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to value v, as usual. In contrast, the forward and backward evaluation relations
define a bijection. The former relation γ; θ ` r ⇒ v reads that under γ the
forward evaluation of r maps θ to v, and the latter relation γ; v ` r ⇐ θ reads
that under γ the backward evaluation of r maps v to θ. As one can see, γ serves as
parameter for this bijection that defines a one-to-one correspondence between θ
and v. Due to the space limitations, we omitted the rules for backward evaluation,
as they are completely symmetric to forward evaluation. That is, for each rule of
the forward evaluation, the corresponding backward rule is obtained by swapping
each occurrence γ; θ ` r ⇒ v with γ; v ` r ⇐ θ, and vice versa. Crucially, the
evaluation relations are mutually dependent, and when a unidirectional term
is embedded in an invertible computation, the unidirectional evaluation will be
invoked to evaluate the term in the same way regardless of whether executing
forwards or backwards.

We encourage the reader to study the rules for partially invertible case
and invertible case• especially. The former branches based on a unidirectional
term, which is evaluated first regardless of the direction of execution. The lat-
ter branches based on an invertible term, which is evaluated first in the forward
direction but last in the backward direction. In the backward direction, the with-
conditions u are instead evaluated first; the condition î = j for j ≤ i encodes the
branch selection and the runtime check of postconditions mentioned previously.

There is a subtlety in the backward evaluation rule for constructors C r,
where the same C occurs both in the term C r and the input C v, meaning that
evaluation fails if the value does not match the constructor C. This corresponds
to, e.g., the term (λ•x. S x)† � Z failing as it tries to subtract one from zero.

3.6 Metatheory
In this section, we briefly state the essential properties of the core system. The
propositions in this section have been formalized mechanically, by implementing
and reasoning about a definitional interpreter [46] in Agda. The implementation
follows the presentation of the paper closely, but uses intrinsically-typed terms
and nameless variables, and relies on the sized delay monad [1, 11].
Theorem 1 (Subject reduction).

– If Γ ` u : A, γ : Γ and γ ` u ⇓ v, then v : A.
– If Γ ;Θ ` r : A, γ : Γ , θ : Θ and γ; θ ` r ⇒ v, then v : A.
– If Γ ;Θ ` r : A, γ : Γ , v : A and γ; v ` r ⇐ θ, then θ : Θ.

Proof. Directly from the existence and type of the definitional interpreter in
Agda.
Theorem 2 (Invertibility). If Γ ;Θ ` r : A, γ : Γ , θ : Θ and v : A, then

γ; θ ` r ⇒ v if and only if γ; v ` r ⇐ θ.

Proof. By simultaneous induction on the term r and the step count of evalua-
tion; simple induction on the term r is not enough as the language has general
recursion. The proof is otherwise straightforward, since the evaluation relations
are completely symmetric.
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Unidirectional Evaluation γ ` u ⇓ v

γ(x) = v

γ ` x ⇓ v γ ` λx.u ⇓ 〈λx.u, γ〉 γ ` λ•x.r ⇓ 〈λ•x.r, γ〉

γ ` u1 ⇓ 〈λx.u, γ′〉 γ ` u2 ⇓ v2 γ′, x 7→ v2 ` u ⇓ v

γ ` u1 u2 ⇓ v

{γ ` ui ⇓ vi}i
γ ` C u ⇓ C v

γ ` u1 ⇓ 〈λ•x.r, γ′〉 γ ` u2 ⇓ v2 γ′;x 7→ v2 ` r ⇒ v

γ ` u1 � u2 ⇓ v

γ ` u0 ⇓ piγi γ, γi ` ui ⇓ v′

γ ` case u0 of {p→ u} ⇓ v′

Forward (and Backward) Evaluation γ; θ ` r ⇒ v
(

γ; v ` r ⇐ θ
)

γ ` u ⇓ 〈λ•x.r′, γ′〉 γ; θ ` r ⇒ v γ′;x 7→ v ` r′ ⇒ v′

γ; θ ` u � r ⇒ v′ γ; (x 7→ v) ` x⇒ v

γ ` u ⇓ 〈λ•x.r′, γ′〉 γ; θ ` r ⇒ v γ′; v ` r′ ⇐ (x 7→ v′)

γ; θ ` u† � r ⇒ v′
{γ; θi ` ri ⇒ vi}i
γ;]θ ` C r ⇒ C v

γ ` u ⇓ 〈λx.u′, γ′〉 γ; θ ` r ⇒ (v1, v2)

γ′, x 7→ v1 ` u′ ⇓ 〈λ•y.r′, γ′′〉 γ′′; y 7→ v2 ` r′ ⇒ v3

γ; θ ` pin u � r ⇒ (v1, v3)

γ ` u ⇓ piγi γ, γi; θ ` ri ⇒ v′

γ; θ ` case u of {p→ r} ⇒ v′

γ; θ ` r0 ⇒ piθi γ; θ′, θi ` ri ⇒ v′
{
γ ` uj ⇓ 〈λx.u′

j , γj〉 γj , x 7→ v′ ` u′
j ⇓ ̂i = j

}
j≤i

γ; θ ] θ′ ` case• r0 of {p→ r with u} ⇒ v′

Fig. 2. The operational semantics of Kalpis core. Rules for the backward evaluation
are omitted in the interest of space, but can be derived as explained in the text.

Remark on Progress. We have chosen to give the semantics in a big-step style
in this paper. This choice was made both because the invertibility property is
more natural to state about a big-step semantics, which relates input to output
directly, and to make the step to a denotational semantics smaller—as men-
tioned, the evaluation relations suggest an interpretation of invertible terms as
parameterized bijections.

Thus, the progress property typically proven for a small-step semantics,
meaning that evaluation never gets “stuck” given a valid input (see, e.g., [45]),
is not direct to state in our case. However, we get a similar guarantee from the
implementation in Agda, whose type checker asserts that no uncontrolled run-
time errors are possible. Indeed, the only errors that can occur during evaluation
are those caused by imprecise with-conditions or mismatched constructors.

4 Arrows for Partial and Local Invertibility

While the core system of Kalpis presented in the previous section is simple
and illuminating, it only offers an operational understanding of the language.
Furthermore, it depends on a unidirectional evaluation, which does not fit in a
locally invertible setting. We want to get at the essence of partially invertible
programming, and show that partial and local invertibility can be reconciled,
which is the focus of this section.
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Syntax
A,B ::= 1 | A⊕B | A⊗B | µX.A

τ ::= A� B | A B | C ·A! B

µ ::= arru c | µ1 ≫u µ2 | firstu µ | leftu µ | clone | run α

α ::= arr r c | α1 ≫r α2 | firstr α | leftr α | α† | case! α1 α2 | pin α | µ�! α

Typing Rules for Arrows µ : A B and α : C ·A! B

c : A� B

arru c : A B

µ1 : A B µ2 : B  C

µ1 ≫u µ2 : A C

µ : A B

firstu µ : A⊗ C  B ⊗ C

µ : A B

leftu µ : A⊕ C  B ⊕ C clone : A A⊗A

α : C ·A! B

run α : C ⊗A B

c : A� B

arr r c : C ·A! B

α1 : D ·A! B α2 : D ·B! C

α1 ≫r α2 : D ·A! C

α : D ·A! B

firstr α : D · (A⊗ C)! B ⊗ C

α : D ·A! B

leftr α : D · (A⊕ C)! B ⊕ C

α : C ·A! B

α† : C ·B! A

α1 : C ·A B α2 : D ·A B

case! α1 α2 : (C ⊕D) ·A! B

µ : C  D α : D ·A! B

µ�! α : C ·A! B

α : (C ⊗D) ·A! B

pin α : C · (D ⊗A)! D ⊗B

Fig. 3. The syntax and types of rrArr: A and B denote base types, τ denotes com-
binator types, c denotes bijections, µ denotes unidirectional arrow combinators and α
denotes invertible arrow combinators.

In what follows, we define rrArr, a low-level language based on arrow com-
binators, intended to capture the essence of partially invertible computation.
The operations of rrArr directly correspond to the core constructs of Sec-
tion 2, and have an immediate interpretation in terms of abstract functions and
parameterized bijections. What is more, we show that they have an alterna-
tive, compositional and locally invertible interpretation using an idea similar to
the reader monad in unidirectional computation (based on the irreversibility ef-
fect [26] and the reversible reader [23]). This property is not obvious for Kalpis,
not to mention earlier work such as Sparcl [39, 40].

We begin by explaining the syntax and semantics of a first-order fragment of
rrArr, before proceeding to give its locally invertible intrepretation. We then
extend this fragment to match the full expressiveness of Kalpis in Section 4.5
with operations for higher-order computation. In Section 5, we top it all off by
giving a formal translation from Kalpis core to rrArr.

4.1 Syntax and Type System of rrArr

Figure 3 shows the syntax and type system of rrArr (where base bijections c
of type A� B are kept abstract). The language involves unidirectional (µ) and
invertible (α) terms, similarly to Kalpis. Both kinds of terms form arrows over
bijections, through the combinators arr , ≫, and first .

The former arrow, denoted by µ : A B, intuitively represents an ordinary
function; arru c extracts the forward semantics of a bijection c, µ1 ≫u µ2
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composes two functions µ1 and µ2, and firstu µ simply applies µ to the first
component of the input. The unidirectional arrows also feature leftu, the sum
counterpart of first , and allow copying data through clone.

The latter arrow, denoted by α : C · A! B, represents bijections between
A and B parameterized by C; arr r c constructs a parameterized bijection that
behaves as the bijection c ignoring any parameter, α1≫r α2 composes the two
bijections obtained by passing the parameter to both α1 and α2, and first r α
applies the bijection determined by α to the first component of the input. These
arrows also support left r, and form an inverse arrow [23] through a dagger op-
erator α†, that undoes α and its effect.

What is special in rrArr is the communication between the two arrows
through case!, pin, �!, and run, where the former three directly correspond to
the core constructs of Section 2. The term case! α1 α2 performs partially in-
vertible branching, running α1 or α2 depending on the value of its parameter.
The term pin α corresponds to the pinning construct; in rrArr, this operation
moves part of the input (D) into the parameter (C ⊗D) of α. The term µ�! α
represents partially invertible composition of the function µ with the parame-
terized bijection α. Finally, the operator run allows converting a parameterized
bijection C ·A! B to a function C ⊗A B by extracting its forward seman-
tics. This can be seen as a special case of applying invertible computations (in a
unidirectional context); the treatment of abstraction and application supporting
higher-order computation is left for Section 4.5, as it requires a slight extension.

It is worth noting that invertible arrows are inherently allowed to ignore their
parameter (through arr r), a fact that can be used to derive the crucial erasure
operation in unidirectional arrows. In particular, supposing id : A � A, we get
the term run (arr r id) : C ⊗ 1 1, which ignores any input C to return 1.

4.2 Semantics of rrArr

We now formalize the intuitive interpretation through the semantics presented
in Figure 4. We define a base set of values containing unit, pairs, and tagged
values, which we type in the conventional way. Recursively typed values roll w
are only manipulated by the base invertible combinators c.

w ::= () | (w1, w2) | inl w | inr w | roll w

The semantics of rrArr again takes the form of three relations: one for uni-
directional arrows and two for invertible arrows. The first (µ w1 7→ w2) reads that
µ maps w1 to w2, confirming the intuition that unidirectional arrows represent
functions. The second (α w;w1 7→ w2) and third (α w;w1 ← [ w2) read that given
parameter w, α maps w1 to w2 under the forward (resp. backward) evaluation,
confirming the intuition that our invertible arrows correspond to parameterized
bijections. The rules closely follow the informal descriptions presented in the
previous section. We assume a base invertible semantics for combinators c of the
form c w1 7→ w2, invoked by the rules concerning arr for each arrow.
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Unidirectional Evaluation µ w1 7→ w2

c w1 7→ w2

(arru c) w1 7→ w2

µ1 w1 7→ w2 µ2 w2 7→ w3

(µ1 ≫u µ2) w1 7→ w3

µ w1 7→ w2

(firstu µ) (w1, w3) 7→ (w2, w3)

µ w1 7→ w2

(leftu µ) inl w1 7→ inl w2 (leftu µ) inr w1 7→ inr w1 clone w1 7→ (w1, w1)

α w;w1 7→ w2

(run α) (w,w1) 7→ w2

Forward (and Backward) Evaluation α w;w1 7→ w2

(
α w;w1 ← [ w2

)
c w1 7→ w2

(arr r c) w;w1 7→ w2

α1 w;w1 7→ w2 α2 w;w2 7→ w3

(α1 ≫r α2) w;w1 7→ w3

α w;w1 7→ w2

(firstr α) w; (w1, w3) 7→ (w2, w3)

α w;w1 7→ w2

(leftr α) w; inl w1 7→ inl w2 (leftr α) w; inr w1 7→ inr w1

α w;w2 ← [ w1

α† w;w1 7→ w2

α1 w;w1 7→ w2

(case! α1 α2) inl w;w1 7→ w2

α2 w;w1 7→ w2

(case! α1 α2) inr w;w1 7→ w2

µ w 7→ w′ α w′;w1 7→ w2

(µ�! α) w;w1 7→ w2

α (w,w1);w2 7→ w3

(pin α) w; (w1, w2) 7→ (w1, w3)

Fig. 4. The semantics of rrArr. As before, the backward evaluation rules are sym-
metrically obtained from the forward rules.

The semantics satisfies the desired properties of subject reduction and in-
vertibility, although we refer to our mechanized formalization for the details.9

4.3 Locally Invertible Interpretation

Recall that our goal is to define a locally invertible interpretation, whereas the
straightforward semantics of Section 4.2 depended on a unidirectional evaluation.
In this section, we give an alternative interpretation of rrArr, utilizing the
reversible reader (RReader) [23] to interpret the invertible arrow combinators.

JC ·A! BK = RReader C A B

Here, RReader C A B consists of the bijections of type C ⊗ A � C ⊗ B that
keep the C part unchanged. This arrow was originally introduced with the in-
tention of modelling a bijection with some “static” input C [23]. Regarding  ,
we use the irreversibility effect [26] that leverages the fact that every unidirec-
tional computation can be simulated by a locally invertible computation yielding
“garbage” [8], as: JA BK = ∃G.A� G⊗B

Combining these two effects is a novel point of rrArr; in particular, we
contribute the core constructs of case!, �!, pin and run, which enable commu-
nication between the two. Locally invertible interpretations of the primitives in
9 https://git.sr.ht/~aathn/kalpis-agda

https://git.sr.ht/~aathn/kalpis-agda
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unitel× : 1⊗A � A

swap× : A⊗B � B ⊗A

assocl× : A⊗ (B ⊗ C) � (A⊗B)⊗ C

swap+ : A⊕B � B ⊕A

assoc+ : A⊕ (B ⊕ C) � (A⊕B)⊕ C

distr : (A⊕B)⊗ C � A⊗ C ⊕B ⊗ C

inl : A � A⊕B

roll : A[µX.A/X] � µX.A

id : A� A

c : A� B

c† : B � A

c1 : A� B c2 : B � C

c1 # c2 : A� C

c1 : A� C c2 : B � D

c1 ⊗ c2 : A⊗B � C ⊗D

c1 : A� C c2 : B � D

c1 ⊕ c2 : A⊕B � C ⊕D

Fig. 5. The invertible primitives of Πo [26]. Note that we replace the looping construct
trace with the derived inl for simplicity (Section 4.5 recovers the expressiveness of this
combinator).

each system have been given in the existing results. Here, we extend the results
with the operations novel to rrArr, to show that the two systems together give
a locally invertible model of partially invertible computations.

As our target invertible language, we use Πo [26], whose combinators c consti-
tute a minimal set of (non-total) invertible operations. The combinators support
sequential composition (c1 # c2), parallel composition (c1 ⊗ c2 and c1 ⊕ c2), and
importantly, a local inversion operator (c†) such that (c1 # c2)† = c†2 # c†1. Figure 5
shows a summary of the primitives; their behavior should be obvious from the
types (see the Agda formalization for details).

We now proceed to give another interpretation of the core constructs of
rrArr.

Partially invertible branching. Given α1 and α2 with Jα1K : C⊗A� C⊗B
and Jα2K : D ⊗A� D ⊗B, we must construct

Jcase! α1 α2K : (C ⊕D)⊗A� (C ⊕D)⊗B.

Using distr , we can convert (C⊕D)⊗A to C⊗A⊕D⊗A, after which Jα1K and Jα2K
can be run in parallel. Factoring out the B, we get the required transformation.

Jcase! α1 α2K = distr # Jα1K⊕ Jα2K # distr †
Pinning. Given α with JαK : (C ⊗D)⊗A� (C ⊗D)⊗B, we must produce

Jpin αK : C ⊗ (D ⊗A)� C ⊗ (D ⊗B).

As the reversible reader arrow JαK already returns the context C unchanged, we
only need to shuffle the inputs and outputs appropriately.

Jpin αK = assocl× # JαK # assocl†×
Partially invertible composition. Given µ and α with JµK : C � G⊗D andJαK : D ⊗A� D ⊗B, we must construct

Jµ�! αK : C ⊗A� C ⊗B.
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The basic idea is to run JµK to produce a D-typed value to run JαK on, however,
this brings with it unwanted garbage. Fortunately, since JαK is a reversible reader
arrow, it is guaranteed to preserve the D-component, meaning that after running
it we have the same D and G-values available to us as before. These can be
turned back into the original C value by running JµK backwards, giving the
transformation required.

Jµ�! αK =JµK⊗ id # assocl†× # id ⊗ JαK # assocl× # JµK† ⊗ id JαK
A

C JµK JµK†
B

D D

G

C

Note that this is precisely the construction underlying the reversible updates [5]
of imperative reversible languages, and that JαK preserving the context is crucial
for the construction to succeed.
Running invertible computations. Given α with JαK : C ⊗A� C ⊗B, we
must produce Jrun αK : C ⊗A� G⊗B,

for some G. Clearly it suffices to take JαK with G = C, and we are done.

4.4 Correctness

We now state the desired correctness properties of our locally invertible inter-
pretation, which show that it is equivalent to the direct semantics of Figure 4
and that JαK is indeed a reversible reader arrow (i.e., it preserves the context
C).

Theorem 3 (rrArr 99K Πo Soundness).
– µ w1 7→ w2 implies JµK w1 7→ (g, w2) for some g.
– α w;w1 7→ w2 implies JαK (w,w1) 7→ (w,w2). ut

Theorem 4 (rrArr 99K Πo Completeness).
– JµK w1 7→ (g, w2) implies µ w1 7→ w2.
– JαK (w,w1) 7→ (w′, w2) implies w = w′ and α w;w1 7→ w2. ut

The theorems do not refer to the backward evaluation directly, utilizing the
invertibility of both rrArr and Πo.

4.5 Higher-order Computation

The previous sections laid out the fundamental ideas for representing partial
invertibility in a locally invertible setting. However, with rrArr being first-
order, it is not sufficient to be able to interpret Kalpis in a simple way. In
this section, we extend the language with four new combinators enabling proper
higher-order computation, shown in Figure 6. The combinators curry and app
are the standard currying and evaluation maps, creating and applying functions
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A,B ::= · · · | A→ B | A↔ B

µ ::= · · · | curry µ | app | curry• α α ::= · · · | app• w ::= · · · | 〈µ,w〉 | 〈α,w〉

µ : C ⊗A B

curry µ : C  (A→ B)

α : C ·A! B

curry• α : C  (A↔ B)

app : (A→ B)⊗A B

app• : (A↔ B) ·A! B

(curry µ) w 7→ 〈µ,w〉

(curry• α) w 7→ 〈α,w〉

µ (w,w1) 7→ w2

app (〈µ,w〉, w1) 7→ w2

α w;w1 7→ w2

app• 〈α,w〉;w1 7→ w2

Fig. 6. Combinators for higher-order computation in rrArr.

A → B. Their invertible counterparts curry• and app• provide the final core
construct from Section 2: abstraction and application of invertible computations.
They operate over parameterized bijections, abstracting the parameter to get a
bijection value A ↔ B. The values are extended accordingly with two new
closure forms 〈µ,w〉 : A → B and 〈α,w〉 : A ↔ B, where µ : C ⊗ A  B,
α : C · A ! B, and w : C, representing staged unidirectional and invertible
computations, respectively.

Having higher-order computation in the invertible setting has been challeng-
ing [2,12,39,40]. Borrowing the idea from [39,40], we address the issue by lever-
aging the fact that the function and bijection values are only part of invertible
computations as parameters of parameterized bijections; hence, we only need a
limited form of higher-orderness. We extend Πo with two additional primitive
operations:

curry⇋ : (C ⊗A� C ⊗B)→ (C � C ⊗ (A↔ B))
app⇋ : ((A↔ B)⊗A)� ((A↔ B)⊗B)

The former takes a combinator with an auxiliary piece of “state” C, and abstracts
it into a bijection given a value of C. The latter applies a bijection, and saves it
to enable reversing the operation later. To represent the values of type A↔ B in
Πo, we introduce a third form of closure 〈f, w〉, where we have f : C⊗A� C⊗B
and w : C. Then, the semantics of app⇋ and curry⇋ are as follows:

clos = 〈f, w〉
(curry⇋ f) w 7→ (w, clos)

f (w, a) 7→ (w′, b)

app⇋ (〈f, w〉, a) 7→ (〈f, w′〉, b)

As before, the inverse semantics is symmetric; e.g., (curry⇋ f)† (w, clos) 7→
w if clos = 〈f, w〉. The (non-total) invertibility of curry⇋ is trivial, as its inverse
fails unless its input matches the corresponding output; it is essentially a unidi-
rectional function embedded in the invertible world. Since observational equality
of closure values is undecidable, the equality check must rely on some other, in-
tensional (e.g., syntactic) equality. Practically, this means that the combinator
can only be used to create a closure and then subsequently undo the very same
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closure. However, this does not pose an issue for the translation from rrArr,
where closures will only result from uses of curry and curry•, both of which are
unidirectional arrows ( ). These unidirectional arrows will only be executed
backwards as part of partially invertible compositions (�!), which ensures that
the input is the same as the corresponding output.

Now, we can interpret JappK = app⇋, Japp•K = app⇋, and

Jcurry µK = inl # curry⇋ (inl† ⊗ id # JµK # inr ⊗ id), Jcurry• αK = curry⇋ JαK.
The former construction curries JµK : C ⊗ A � G ⊗ B given w : C by creating
a one-shot closure 〈f, inl w〉 which turns into 〈f, inr g〉 for g : G when first
applied, and fails on a second application.

The theorems of Section 4.4 extend without difficulty to the higher-order
combinators, although the statement is somewhat more intricate due to the dif-
fering set of closure values between rrArr and Πo. We refer to the mechanized
formalization in Agda for details.

5 Interpreting Kalpis with Arrows

Theorem 1 (Section 3.6) suggests that a unidirectional term-in-context Γ ` u : A
can be seen as a function from Γ to A, and that an invertible term-in-context
Γ ;Θ ` r : A can be seen as a bijection between Θ and A parameterized by
Γ . Then, it is natural that they be related with the two arrows (−  −) and
(− · −! −) of rrArr, respectively. In this section, we give a formal account
of this relation by translating terms of Kalpis into rrArr, giving by extension
a compositional locally invertible interpretation of Kalpis.

We first define some operations on typing contexts. We define Γ× as

(x1 : A1, . . . , xn : An)
× = (((1⊗A1)⊗A2)⊗ · · · )⊗An.

It is straightforward to define an operator lookupx : Γ×  A provided that
Γ (x) = A. We also use a combinator splitΘ1,Θ2

: (Θ1]Θ2)
× � Θ×

1 ⊗Θ
×
2 for split-

ting the linear environments. Then, we give two type-directed transformations:
Γ ` u : A 99K µ that transforms u to µ of type Γ×  A, and Γ ;Θ ` r : A 99K α
that transforms r to α of type Γ× ·Θ×! A. For the purposes of the translation,
we consider a fixed set of type constructors T B ::= 1 | A ⊗ B | A ⊕ B | RecA,
identifying µX.A with RecA.

Without loss of generality, we drop unnecessary with-conditions, so that
a case•-expression with one branch needs no with-clause, and one with two
branches needs only one clause. Due to the space limitations, we present only the
most representative cases here, and point the interested reader to the mechanized
formalization in Agda.10

10 https://git.sr.ht/~aathn/kalpis-agda

https://git.sr.ht/~aathn/kalpis-agda
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Case T-UCase (A⊕B).

Γ ` u : A⊕B 99K µ
Γ, x : A;Θ ` r1 : C 99K α1 Γ, y : B;Θ ` r2 : C 99K α2

Γ ;Θ ` case u of InL x→ r1; InR y → r2 : C 99K
(clone≫u firstu µ≫u arru (swap× # distl))�! case! α1 α2

We can duplicate Γ× using clone and use one copy to construct A ⊕ B with
µ. Using distl : A ⊗ (B ⊕ C) � A ⊗ B ⊕ A ⊗ C, which is easily derived, we
distribute the second copy of Γ over the sum. Then, the required combinator can
be constructed through a combination of partially invertible composition (�!)
and branching (case!), where we have case! α1 α2 : (Γ×⊗A⊕Γ×⊗B) ·Θ! C.
Case T-RCase (A⊕B).

Γ ;Θ1 ` r1 : A⊕B 99K α1 Γ ;Θ2, x : A ` r2 : C 99K α2

Γ ;Θ2, y : B ` r3 : C 99K α3 Γ ` u : C → Bool 99K µ
Γ ;Θ1 ]Θ2 ` case• r1 of InL x→ r2; InR y → r3 with u : C 99K

arr r splitΘ1,Θ2
≫r first r α1≫r arr r (swap× # distl)≫r

case α2 α3 (mkCond µ)

The idea is similar to T-UCase, but we now operate in the invertible world, so
we split (Θ1 ]Θ2)

× instead of duplicating Γ , and compose using≫r instead of
�!. The combinator case α1 α2 α3 , left r α1≫r right r α2≫r α

†
3 with type

case : (D ·A! C)→ (D ·B! C)→ (D ·C! C ⊕C)→ D · (A⊕B)! C,

provides an invertible branching operator analogous to case!, with a postcondi-
tion for merging the branches. We convert µ : Γ×  (C → Bool) to an arrow
mkCond µ : Γ× · C ! C ⊕ C through the mkCond operator, which can be
defined using pin, case! and app in tandem.
Cases T-Abs•, T-RApp.

Γ ;x : A ⊢ r : B 99K α
Γ ⊢ λ•x.r : A ↔ B 99K

curry• (arr r unitel†× ≫r α)

Γ ⊢ u : A ↔ B 99K µ Γ ;Θ ⊢ r : A 99K α
Γ ;Θ ⊢ u ⋄ r : B 99K α≫r (µ≫! app•)

For T-Abs•, we get α : Γ× ·1⊗A! B, which we curry• after handling the unit.
For T-RApp, α transforms Θ× to A, letting µ be applied through a partially
invertible composition (�!) with app•.
Case T-Pin.

Γ ` u : C → A↔ B 99K µ Γ ;Θ ` r : C ⊗A 99K α
Γ ;Θ ` pin u � r : C ⊗B 99K α≫r pin ((firstu µ≫u app)�! app•)

We have α producing C ⊗ A, and with parameter Γ× ⊗ C, we can apply µ to
produce B. Thus, we must shift C from the output into the parameter, and pin
achieves just that.
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Correctness. Finally, we show the correctness of the translation with respect to
the semantics of Sections 3.5 and 4.2. Before we state correctness, we must first
define a translation of the values, since they differ between Kalpis and rrArr.

J()K = (), J(v1, v2)K = (Jv1K, Jv2K),JInL vK = inl JvK, JInR vK = inr JvK, JRoll vK = roll JvK,J〈λx.u, γ〉K = 〈JuK, JγK〉, J〈λ•x.r, γ〉K = 〈arr unitel†×≫r JrK, JγK〉
The base values are translated trivially, whereas the closures are translated ac-
cording to the type-directed translation given above (cf. Case T-Abs•). We also
define a translation of value environments γ in the obvious way.

Then, we can state the correctness of the translation as below.

Theorem 5 (Kalpis 99K rrArr Soundness).
– Γ ` u : A 99K µ and γ ` u ⇓ v implies µ JγK 7→ JvK
– Γ ;Θ ` r : A 99K α and γ; θ ` r ⇒ v implies α JγK; JθK 7→ JvK. ut

This theorem does not refer to the backward evaluation directly, utilizing the
invertibility of both Kalpis and rrArr. The completeness part, on the other
hand, does need a separate statement for the backward direction, since there is
no a priori guarantee that the output w is of the form JθK.
Theorem 6 (Kalpis 99K rrArr Completeness).

– Γ ` u : A 99K µ and µ JγK 7→ w implies γ ` u ⇓ v for v with JvK = w.
– Γ ;Θ ` r : A 99K α and α JγK; JθK 7→ w implies γ; θ ` r ⇒ v for v withJvK = w.
– Γ ;Θ ` r : A 99K α and α JγK; JvK ← [ w implies γ; v ` r ⇐ θ for θ withJθK = w. ut

We refer to the Agda code in the supplementary material for the proofs.

6 Related Work

Kalpis and rrArr are not the first to support partial invertibility. In the
imperative setting, languages such as Janus [35, 53], Frank’s R [17], and R-
While [19] support a limited form of partial invertibility via reversible update
operators [6]. An example of a reversible update statement is x+=e, whose effect
can be reverted by the corresponding inverse statement x -= e. Both statements
use the same e, which need not be invertible (e.g., x += yz is reverted by x -= yz,
and vice versa). In the functional setting, Theseus [27] allows a bijection to take
additional parameters, but only provided that they are available at compile time.
RFun version 2,11 an extension to the original RFun [54], and CoreFun [25] allow
more flexibility via so-called ancilla parameters, which are translated to auxiliary
inputs and outputs of the invertible computation. Their approach is similar to
Kalpis’s but more restrictive since they lack support for the pin operator and
11 https://github.com/kirkedal/rfun-interp

https://github.com/kirkedal/rfun-interp
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higher-order computation. Jeopardy [31] is a recent invertible language where
even irreversible functions can be inverted in certain contexts depending on
implicitly available information. However, this is still work in progress, and seems
to lean closer to program inversion methods than the lightweight type-based
approach we employ.

Sparcl [39,40] is the most flexible system that supports partial invertibility
to our knowledge, which is realized through a more advanced language founda-
tion. Instead of bijections A ↔ B, Sparcl features invertible data marked by
the type A•, which implicitly corresponds to some bijection S ↔ A. This idea
of invertible data is inherited from the HOBiT language [38], which represents
lens combinators [15, 16] as higher-order functions to achieve applicative-style
higher-order bidirectional programming [36, 37]. The type system of Sparcl
ensures that a closed linear function between invertible data !(A•( B•) is iso-
morphic to a (non-total) bijection between A and B, so that partial invertibility
can be represented as a function that takes both unidirectional and invertible
data C → A• ( B•. This representation affords more flexibility than Kalpis
does: invertible data is allowed to be captured in abstractions, and can even
appear in subcomponents of datatypes (e.g., Int⊗ (Int•) or Int⊕ (Int•) are both
valid types). However, this flexibility comes at the cost of complexity, requiring a
semantics that interleaves partial evaluation and invertible computation, making
a locally invertible interpretation difficult. We remark that the holed residuals
〈x.E〉 featured in Sparcl’s core system bear a strong resemblance to bijections
λ•x.r in Kalpis.

Our combinator language rrArr can be seen as an extension of MLΠ , an
arrow metalanguage on top of the invertible language Π treating information
creation and loss (non-totality and irreversibility) as an effect [26]. By combin-
ing their work with the reversible reader arrow [23], we are able to give erasing
(weakening) as a derived operation defined via the operator run (as demon-
strated in Section 4). Further research on the nontrivial interaction between the
arrows, such as an equational characterization and a denotational model, is left
for future work. While the previous work is able to treat non-totality as part
of an effect, we assume some non-total operations in the underlying invertible
system due to the inclusion of recursive and functional types.

The design of Kalpis is inspired by the arrow calculus of Lindley, Wadler,
and Yallop [33], which is a metalanguage for the conventional representation of
arrows [24], analogous to the monad metalanguage [42]. In a sense, Kalpis can
be seen as a counterpart to the arrow calculus for rrArr. For example, the treat-
ment of λ•x.r is actually inherited from the arrow calculus, where arrows cannot
be nested in general [34], unless the underlying arrow supports application to
form a monad [24]. To the best of our knowledge, a monad-based programming
system for invertible/reversible computation does not exist, though there are
some closely related results, including monads for nondeterministic computation
(such as [14]) and a monadic programming framework for bidirectional trans-
formations [20, 52]. However, these existing approaches lack the guarantee of
bijectivity—a motivation to use invertible languages.
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The importance of partial invertibility has been recognized in the neighboring
literature on program inversion—program transformations that derive a program
of f−1 for a given program of f . Partial inversion [44, 47] essentially applies a
binding-time analysis [21, 28] to an input program, where the static data can
be treated as unidirectional inputs. The technique is further extended to treat
results of inverses as unidirectional [3, 29, 30]. This treatment is similar to the
role of pin in Kalpis and Sparcl [39,40] in that it converts invertible data into
“static” parameters. Some approaches to program inversion are more liberal:
semi inversion [41] essentially converts a program into a logic program, where
there is no clear boundary between unidirectional and invertible data, and the
PINS system [49], in addition to an original program, can take a control structure
of an inverse program to effectively synthesize inverses that may not mirror the
control structures of the original. The main limitation of program inversion is
that as a program transformation it may fail, often for reasons that are not
obvious to programmers.

7 Conclusion

We have presented a set of four core constructs for partially invertible program-
ming, demonstrated their expressiveness through examples, and shown that they
can be given a locally invertible interpretation, thus solving an open problem in
the field. The four constructs are (1) partially invertible branching, (2) pinning
invertible inputs, (3) partially invertible composition, and (4) abstraction and
application of invertible computations. We designed the partially invertible lan-
guage Kalpis on top of these constructs and formalized its syntax, type system
and operational semantics. We then presented rrArr, a low-level arrow lan-
guage with primitives directly corresponding to the constructs, and gave it a lo-
cally invertible interpretation based on two effects—the irreversibility effect [26]
and the reversible reader [23]. Finally, we presented a type-directed translation
from Kalpis to rrArr, showing how to support expressive partial invertibility
on top of a locally invertible foundation. Proofs of all theorems stated in the
paper are formalized by the accompanying Agda code.12
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