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Abstract. Dubbed a safer C, Rust is a modern programming language
that combines memory safety and low-level control. This interesting com-
bination has made Rust very popular among developers and there is a
growing trend of migrating legacy codebases (very often in C) to Rust. In
this paper, we present a C to Rust translation approach centred around
static ownership analysis. We design a suite of analyses that infer own-
ership models of C pointers and automatically translate the pointers
into safe Rust equivalents. The resulting tool, Crown, scales to real-
world codebases (half a million lines of code in less than 10 seconds) and
achieves a high conversion rate.

1 Introduction

Rust [33] is a modern programming language which features an exciting combi-
nation of memory safety and low-level control. In particular, Rust takes inspi-
ration from ownership types to restrict the mutation of shared state. The Rust
compiler is able to statically verify the corresponding ownership constraints and
consequently guarantee memory and thread safety. This distinctive advantage
of provable safety makes Rust a very popular language, and the prospect of
migrating legacy codebases in C to Rust is very appealing.

In response to this demand, automated tools translating C code to Rust
emerge from both industry and academia [17,26,31]. Among them, the industrial
strength translator C2Rust [26] rewrites C code into the Rust syntax while pre-
serving the original semantics. The translation does not synthesise an ownership
model and thus is not able to do more than replicating the unsafe use of pointers
in C. Consequently, the Rust code must be labelled with the unsafe keyword
which allows certain actions that are not checked by the compiler. More recent
work focuses on reducing this unsafe labelling. In particular, the tool Laertes [17]
aims to rewrite the (unsafe) code produced by C2Rust by searching the solu-
tion space guided by the type error messages from the Rust compiler. This is
impressive, as for the first time proper Rust code beyond a line-by-line direct
conversion from the original C source may be synthesised. On the other hand,
the limit of the trial-and-error approach is also clear: the system does not sup-
port the reasoning of the generation process, nor create any new understanding
of the target code (other than the fact that it compiles successfully).
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In this paper, we take a more principled approach by developing a novel
ownership analysis of pointers that is efficient (scaling to large programs (half a
million LOC in less than 10 seconds)), sophisticated (handling nested pointers
and inductively-defined data structures), and precise (being field and flow sensi-
tive). Our ownership analysis makes a strengthening assumption about the Rust
ownership model, which obviates the need for an aliasing analysis. While this
assumption excludes a few safe Rust uses (see discussion in section 5), it ensures
that the ownership analysis is both scalable and precise, which is subsequently
reflected in the overall scalability and precision of the C to Rust translation.

The primary goal of this analysis is of course to facilitate the C to Rust
translation. Indeed, as we will see in the rest of the paper, an automated trans-
lation system is built to encode the ownership models in the generated Rust
code which is then proven safe by the Rust compiler. However, in contrast to
trying the Rust compiler as common in existing approaches [17,31], this analysis
approach actually extracts new knowledge about ownership from code, which
may lead to other future utilities including preventing memory leaks (currently
allowed in safe Rust), identifying inherently unsafe code fragments, and so on.
Our current contributions are:

– design a scalable and precise ownership analysis that is able to handle com-
plex inductively-defined data structures and nested pointers. (Section 5)

– develop a refactoring technique for Rust leveraging ownership analyses to
enhance code safety. While in this paper we focus on applying our technique
to the translation from C to Rust, it can be used to improve the safety of
any unsafe Rust code. (Section 6)

– implement a prototype tool (Crown, standing for C to Rust OWNership
guided translation) that translates C code into Rust with enhanced safety.
(Section 7)

– evaluate Crown with a benchmark suite including commonly used data
structure libraries and real-world projects (ranging from 150 to half a million
LOC) and compare the result with the state-of-the-art. (Section 8)

2 Background

We start by giving a brief introduction of Rust, in particular its ownership system
and the use of pointers, as they are central to memory safety.

2.1 Rust ownership model

Ownership in Rust denotes a set of rules that govern how the Rust compiler
manages memory [33]. The idea is to associate each value with a unique owner.
This feature is useful for memory management. For example, when the owner
goes out of scope, the memory allocated for the value can be automatically
recycled.
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1 let mut v = ...

2 let mut u = v; // ownership is transferred to u

In the above snippet, the assignment of v to u also transfers ownership, after
which it is illegal to access v until it is re-assigned a value again.

This permanent transfer of ownership gives strong guarantees but can be
cumbersome to manage in programming. In order to allow sharing of values
between different parts of the program, Rust uses the concept of borrowing,
which refers to creating a reference (marked by an ampersand). A reference
allows referring to some value without taking ownership of it. Borrowing gives
the temporary right to read and, potentially, uniquely mutate the referenced
value.

This concept of time creates another dimension of ownership management
known as lifetime. For mutable references (as marked by mut in the above exam-
ples), only one reference is allowed at a time. But for immutable references (the
ones without the mut marking), multiple of them can coexist as long as there
isn’t any mutable reference at the same time. As one can expect, this interaction
of mutable and immutable references, and their lifetimes is highly non-trivial. In
this paper, we focus on analysing mutable references.

2.2 Pointer types in Rust

Rust has a richer pointer system than C. The primitive C-style pointers (written
as *const T or *mut T) are known as raw pointers, which are ignored by the
Rust compiler for ownership and lifetime checks. Raw pointers are a major source
of unsafe Rust (more below). Idiomatic Rust instead advocates box pointers
(written as Box<T>) as owning pointers that uniquely own heap allocations,
as well as references (written as &mut T or & T as discussed in the previous
subsection) as non-owning pointers that are used to access values owned by
others. Rust also offers smart pointers for which the borrow rules are checked
at runtime (e.g. RefCell<T>). We aim for our translation to maintain CPU
time without additional runtime overhead, and therefore we do not refactor raw
pointers into RefCell<T>s.

C-style array pointers are represented in Rust as references to arrays and slice
references, with array bounds known at compile time and runtime, respectively.
The creation of meta-data such as array bounds is beyond the scope of ownership
analysis. In this work, we keep array pointers as raw pointers in the translated
code.

2.3 Unsafe Rust

As a pragmatic design, Rust allows programs to contain features that cannot
be verified by the compiler as memory safe. This includes dereferencing raw
pointers, calling low level functions, and so on. Such uses must be marked with
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the unsafe keyword and form fragments of unsafe Rust. It is worth noting that
unsafe does not turn off all compiler checks; safe pointers are still checked.

Unsafe Rust is often used to implement data structures with complex shar-
ing, overcome incompleteness issues of the Rust compiler, and support low-level
systems programming [2,18]. But it can also be used for other reasons. For exam-
ple, c2rust [26] directly translates C pointers into raw pointers. Without unsafe
Rust, the generated code would not compile.

3 Overview

In this section, we present an overview of Crown via two examples. The first
example provides a detailed description of the push method for a singly-linked
list, whereas the second shows a snippet from a real-world benchmark.

1 struct Node {

2 int data;

3 struct Node * next;

4 };

5
6 struct List {

7 Node * head;

8 };

9
10 void push(struct List* list, int

new_data) {

11 struct Node* new_node = (struct

Node*) malloc(sizeof(struct

Node));

12 new_node->data = new_data;

13 new_node->next = list->head;

14 list->head = new_node;

15 }

16

(a) C code

1 #[repr(C)]

2 #[derive(Copy, Clone)]

3 pub struct Node {

4 pub data: i32,

5 pub next: *mut Node,

6 }

7
8 #[repr(C)]

9 #[derive(Copy, Clone)]

10 pub struct List {

11 pub head: *mut Node,

12 }

13
14 pub unsafe extern "C" fn push(mut

list: *mut List, mut

new_data: i32) {

15 let mut new_node = malloc(::std

::mem::size_of::<Node>() as

libc::c_ulong) as *mut Node;

16 (*new_node).data = new_data;

17 (*new_node).next = (*list).head;

18 (*list).head = new_node;

19 }

20

(b) c2rust result

1 #[repr(C)]

2 pub struct Node {

3 pub data: i32,

4 pub next: Option<Box<Node>>,

5 }

6
7 #[repr(C)]

8 pub struct List {

9 pub head: Option<Box<Node>>,

10 }

11
12 pub unsafe extern "C" fn push(mut

list: Option<&mut List>, mut

new_data: i32) {

13 let mut new_node = Some(Box::new

(<Node as Default>::default

()));

14 (*new_node.as_deref_mut().unwrap

()).data = new_data;

15 (*new_node.as_deref_mut().unwrap

()).next = (*list.

as_deref_mut().unwrap()).

head.take();

16 (*list.as_deref_mut().unwrap()).

head = new_node;

17 }

18

(c) Crown result

Fig. 1: Pushing into a singly-linked list

3.1 Pushing into a singly-linked list

The C code of function push in figure 1a allocates a new node where it stores
the data received as argument. The new node subsequently becomes the head of
list. This code is translated by c2rust to the Rust code in figure 1b. Notably,
the c2rust translation is syntax-based and simply changes all the C pointers to
*mut raw pointers. Given that dereferencing raw pointers is considered an unsafe
operation in Rust (e.g. the dereferencing of new_node at line 16 in figure 1b), the
push method must be annotated with the unsafe keyword (alternatively, it could
be placed inside an unsafe block). Additionally, c2rust introduces two directives
for the two struct definitions, #[repr(C)] and #[derive(Copy, Clone)]. The
former keeps the data layout the same as in C for possible interoperation, and
the latter instructs that the corresponding type can only be duplicated through
copying.
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While c2rust uses raw pointers in the translation, the ownership scheme in
figure 1b obeys the Rust ownership model, meaning that the raw pointers could
be translated to safe ones. A pointer to a newly allocated node is assigned to
new_node at line 15. This allows us to infer that the ownership of the newly
allocated node belongs to new_node. Then, at line 18, the ownership is trans-
ferred from new_node to (*list).head. Additionally, if (*list).head owns any
memory object prior to line 17, then its ownership is transferred to (*new_node

).next at line 17. This ownership scheme corresponds to safe pointer use: (i)
each memory object is associated with a unique owner and (ii) it is dropped
when its owner goes out of scope. As an illustration for (i), when the ownership
of the newly allocated memory is transferred from new_node to (*list).head

at line 18, (*list).head becomes the unique owner, whereas new_node is made
invalid and it is no longer used. For (ii), given that argument list of push is
an output parameter (i.e. a parameter that can be accessed from outside the
function), we assume that it must be owning on exit from the method. Thus,
no memory object is dropped in the push method, but rather returned to the
caller.

Crown infers the ownership information of the code translated by c2rust,
and uses it to translate the code to safer Rust in figure 1c. As explained next,
Crown first retypes raw pointers into safe pointers based on the ownership
information, and then rewrites their uses.

Retyping pointers in Crown. If a pointer owns a memory object at any
point within its scope, Crown retypes it into a Box pointer. For instance, in
figure 1c, local variable new_node is retyped to be Option<Box<Node>> (safe
pointer types are wrapped into Option to account for null pointer values). Vari-
able new_node is non-owning upon function entry, becomes owning at line 13
and ownership is transferred out again at line 16.

For struct fields, Crown considers all the code in the scope of the struct
declaration. If a struct field owns a memory object at any point within the scope
of its struct declaration, then it is retyped to Box. In figure 1b, fields next and
head are accessed via access paths (*new_node).next and (*list).head, and
given ownership at lines 17 and 18, respectively. Consequently, they are retyped
to Box at lines 4 and 9 in figure 1c, respectively.

A special case is that of output parameters, e.g. list in our example. For
such parameters, although they may be owning, Crown retypes them to &mut

in order to enable borrowing. In push, the input argument list is retyped to
Option<&mut List> .

Rewriting pointer uses in Crown. After retyping pointers, Crown rewrites
their uses. The rewrite process takes into consideration both their new type
and the context in which they are being used. Due to the Rust semantics, the
rewrite rules are slightly intricate (see section 6). For instance, the dereference of
new_node at line 14 is rewritten to (*new_node).as_deref_mut().unwrap() as
it needs to be mutated and the optional part of the Box needs to be unwrapped.
Similarly, at line 15, (*list).head is rewritten to be ((*list.as_deref_mut()
).unwrap()).head.take() as the LHS of the assignment expects a Box pointer.
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After the rewrite performed by Crown, the unsafe block annotation is not
needed anymore. However, Crown does not attempt to remove such annota-
tions. Notably, safe pointers are always checked by the Rust compiler, even
inside unsafe blocks.

3.2 Freeing an argument list in bzip2

We next show the transformation of a real-world code snippet with a loop struc-
ture: a piece of code in bzip2 that frees argument lists. bzip2 defines a singly-

1 typedef

2 struct zzzz {

3 Char *name;

4 struct zzzz *link;

5 }

6 Cell;

7 [...]

8 Cell* aa = argList;

9 while (aa != NULL) {

10 Cell* aa2 = aa->link;

11 if (aa->name)

12 free(aa->name);

13 free(aa);

14 aa = aa2;

15 }

16 [...]

17

(a) C definition

1 #[derive(Copy, Clone)]

2 #[repr(C)]

3 pub struct zzzz {

4 pub name: *mut Char,

5 pub link: *mut zzzz,

6 }

7 pub type Cell = zzzz;

8 [...]

9 let mut aa: *mut Cell = argList;

10 while !aa.is_null() {

11 let mut aa2 = (*aa).link;

12 if !(*aa).name.is_null() {

13 free((*aa).name as *mut libc

::c_void);

14 }

15 free(aa as *mut libc::c_void);

16 aa = aa2;

17 }

18 [...]

19

(b) c2rust result

1 #[repr(C)]

2 pub struct zzzz {

3 pub name: *mut /* owning */ Char

,

4 pub link: Option<Box<zzzz>>,

5 }

6 pub type Cell = zzzz;

7 [...]

8 let mut aa: Option<Box<Cell>> =

argList;

9 while !aa.as_deref().is_none() {

10 let mut aa2 = (*aa.as_deref_mut

().unwrap()).link.take();

11 if !(*aa.as_deref().unwrap()).

name.is_null {

12 free((*aa.as_deref().unwrap

()).name as *mut libc::

c_void);

13 }

14 aa = aa2;

15 }

16 [...]

17

(c) Crown result

Fig. 2: Freeing an argument list

linked list like structure, Cell, that holds a list of argument names. In figure 2,
we extract from the source code a snippet that frees the argument lists. Here,
the local variable argList is an already constructed argument list, and Char is
a type alias to C-style characters. As a note, Cell in Figures 2b and 2c does not
refer to Rust’s std::cell::Cell.

Crown accurately infers an ownership scheme for this snippet. Firstly, own-
ership of argList is transferred to aa, which is to be freed in the subsequent
loop. Inside the loop, ownership of link accessed from aa is firstly transferred
to aa2, then ownership of name accessed from aa is released in a call to free.
After the conditional, ownership of aa is also released. Last of all, aa regains
ownership from aa2.

Handling of loops. For loops, Crown only analyses their body once as
that will already expose all the ownership information. For inductively defined
data structures such as Cell, while further unrolling of loop bodies explores the
data structures deeper, it does not expose any new struct fields: pointer vari-
ables and pointer struct fields do not change ownership between loop iterations.
Additionally, Crown emits constraints that equate the ownership of all local
pointers at the loop entry and exit. For example, the ownership statuses of aa
and aa2 at loop entry are made equal with those at loop exit, and inferred to
be owning and non-owning, respectively.
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Handling of null pointers. It is a common C idiom for pointers to be
checked against null after malloc or before free: if !p.is_null() { free(p);

}. This could be problematic since the then-branch and the else-branch would
have conflicting ownership statuses for p. We adopt a similar solution as [24]:
we insert an explicit null assignment in the null branch if !p.is_null() {

free(p); } else { p = ptr::null_mut(); }. As we treat null pointers as
both owning and non-owning, the ownership of p will be dictated by the non-null
branch, enabling Crown to infer the correct ownership scheme.

Translation. With the above ownership scheme, Crown performs the rewrites
as in Figure 2c . Note that we do not attempt to rewrite name since it is an array
pointer (see Section 7 for limitations).

4 Architecture

In this section, we give a brief overview of Crown’s architecture. Crown takes
as input a Rust program with unsafe blocks, and outputs a safer Rust program,
where a portion of the raw pointers have been retyped as safe ones (in accordance
to the Rust ownership model), and their uses modified accordingly. In this paper
we focus on applying our technique to programs automatically translated by
c2rust, which maintain a high degree of similarity to the original C ones, where
the C syntax is replaced by Rust syntax.

Crown applies several static analyses on the MIR of Rust to infer properties
of pointers:

– Ownership analysis: computes ownership information about the pointers
in the code, i.e. for each pointer it infers whether it is owning/non-owning
at particular program locations.

– Mutability analysis: infers which pointers are used to modify the object
they point to (inspired by [22,25]).

– Fatness analysis: distinguishes array pointers from non-array pointers (in-
spired by [32]).

The results of these analyses are summarised as type qualifiers [21]. A type
qualifier is an atomic property (i.e., ownership, mutability, and fatness) that
‘qualifies’ the standard pointer type. These qualifiers are then utilised for pointer
retyping. For example, an owning, non-array pointer is retyped to Box . After
pointers have been retyped, Crown rewrites their usages accordingly.

5 Ownership Analysis

The goal of our ownership analysis is to compute an ownership scheme for a
given program that obeys the Rust ownership model, if such a scheme exists. The
ownership scheme contains information about whether pointers in the program
are owning or non-owning at particular program locations. At a high-level, our
analysis works by generating a set of ownership constraints (section 5.2), which
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are then solved by a SAT solver (section 5.3). A satisfying assignment for the
ownership constraints is an ownership scheme that obeys the Rust semantics.

Our ownership analysis is flow and field sensitive, where the latter enables
inferring ownership information for pointer struct fields. To satisfy field sensi-
tivity, we track ownership information for access paths [10, 14, 29]. An access
path represents a memory location by the way it is accessed from an initial, base
variable, and comprises of the base variable and a sequence of field selection
operators. For the program Figure 1b, some example access paths are new_node

(consists only of the base variable), (*new_node).next, and (*list).head. Our
analysis associates an ownership variable with each access path, e.g. p has asso-
ciated ownership variable Op, and (*p).next has associated ownership variable
O(∗p).next. Each ownership variable can take the value 1 if the corresponding
access path is owning, or 0 if it is non-owning. By ownership of an access path
we mean the ownership of the field (or, more generally, pointer) accessed last
through the access path, e.g. the ownership of (*new_node).next refers to the
ownership of field next.

5.1 Ownership and aliasing

One of the main challenges of designing an ownership analysis is the interaction
between ownership and aliasing. To understand the problem, let us consider
the pointer assignment at line 3 in the code listing below. We assume that the
lines before the assignment allow inferring that q, (*q).next and r are owning,
whereas p and (*p).next are non-owning. Additionally, we assume that the lines
after the assignment require (*p).next to be owning (e.g. (*p).next is being
explicitly freed). From this, an ownership analysis could reasonably conclude that
ownership transfer happens at line 3 (such that (*p).next becomes owning), and
the inferred ownership scheme obeys the Rust semantics.

1 let p, r, q : *mut Node;

2 // p and (*p).next non-owning; q, (*q).next and r owning

3 (*p).next = r;

4 // (*p).next must have ownership

Let’s now also consider aliasing. A possible assumption is that, just before line
3, p and q alias, meaning that (*p).next and (*q).next also alias. Then, after
line 3, (*p).next and (*q).next will still alias (pointing to the same memory
object). However, according to the ownership scheme above, both (*p).next

and (*q).next are owning, which is not allowed in Rust, where a memory
object must have a unique owner. This discrepancy was not detected by the
ownership analysis mimicked above. The issue is that the ownership analysis
ignored aliasing. Indeed, ownership should not be transferred to (*p).next if
there exists an owning alias that, after the ownership transfer, continues to point
to the same memory object as (*p).next.

Precise aliasing information is very difficult to compute, especially in the
presence of inductively defined data structures. In the current paper, we alle-
viate the need to check aliasing by making a strengthening assumption about
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the Rust ownership model: we restrict the way in which pointers can acquire
ownership along an access path, thus limiting the interaction between ownership
and aliasing. In particular, we introduce a novel concept of ownership mono-
tonicity. This property states that, along an access path, the ownership values
of pointers can only decrease (see definition 1, where is prefix(a, b) returns true
if access path a is a prefix of b, and false otherwise – e.g. is prefix (p, (*p).next)
= true). Going back to the previous code listing, the ownership monotonicity
implies that, for access path (*p).next we have Op ≥ O(*p).next, and for ac-
cess path (*q).next we have Oq ≥ O(*q).next. This means that, if (*p).next
is allowed to take ownership, then p must already be owning. Consequently, all
aliases of p must be non-owning, which means that all aliases of (*p).next,
including (*q).next, are non-owning.

Definition 1 (Ownership monotonicity). Given two access paths a and b,
if is prefix(a, b), then Oa ≥ Ob.

Ownership monotonicity is stricter than the Rust semantics, causing our analysis
to reject two scenarios that would otherwise be accepted by the Rust compiler
(see discussion in Section 5.4). In this work, we made the design decision to
use ownership monotonicity over aliasing analysis as it allows us to retain more
control over the accuracy of the translation. Conversely, using an aliasing anal-
ysis would mean that the accuracy of the translation is directly dictated by
the accuracy of the aliasing analysis (i.e. false alarms from the aliasing anal-
ysis [23, 40] would result in Crown not translating pointers that are actually
safe). With ownership monotonicity, we know exactly what the rejected valid
ownership schemes are, and we can explicitly enable them (again, see discussion
in Section 5.4).

5.2 Generation of ownership constraints

During constraint generation, we assume a given k denoting the length of the
longest access path used in the code. This enables us to capture the ownership
of all the access paths exposed in the code. Later in this section, we will discuss
the handling of loops, which may expose longer access paths.

Next, we denote by P the set of all access paths in a program, base var(a) re-
turns the base variable of access path a, and |a| computes the length of the access
path a in terms of applied field selection operators from the base variable. In the
context of the previous code listing, base var((*p).next) = p, base var(p) = p,
|p| = 1 and |(*p).next| = 2. Then, we define ap(v, lb, ub) to return the set of
access paths with base variable v and length in between lower bound lb and
upper bound ub: ap(v, lb, ub) = {a ∈ P|base var(a) = v ∧ lb ≤ |a| ≤ ub}. For il-
lustration, we have ap(p, 1, 2) = {p, (*p).next}.

Ownership transfer. The program instructions where ownership transfer
can happen are (pointer) assignment and function call. Here we discuss assign-
ment and, due to space constraints, we leave the rules for interprocedural own-
ership analysis in the extended version [41]. Our rule for ownership transfer at
assignment site follows Rust’s Box semantics: when a Box pointer is moved,
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ASSIGN
v = base var(p), w = base var(q),

a ∈ ap(v, |p|, k), b ∈ ap(w, |q|, k), c ∈ ap(v, 1, |p|−1), d ∈ ap(w, 1, |q|−1)
|a| − |p| = |b| − |q|, |c| = |d|

is prefix(p, a), is prefix(q, b), is prefix(c, p), is prefix(d, q)
C′ = C ∪ {Oa = 0 ∧Oa′ + Ob′ = Ob ∧Oc′ = Oc ∧Od′ = Od}

C ` p = q;⇒ C′

Fig. 3: Ownership constraint generation for assignment

the object it points to is moved as well. For instance, in the following Rust
pseudocode snippet:

1 let p,q: Box<Box<i32>>;

2 p = q; // ownership transfer occurs

3 // the use of q and *q is disallowed

when ownership is transferred from q to p, *q also loses ownership. Except for
reassignment, the use of a Box pointer after it lost its ownership is disallowed,
hence the use of q or *q is forbidden at line 3.

Consequently, we enforce the following ownership transfer rule: if ownership
transfer happens for a pointer variable (e.g. p and q in the example), then it
must happen for all pointers reachable from that pointer (e.g. *p and *q). The
ownership of pointer variables from which the pointer under discussion is reach-
able remains the same (e.g. if ownership transfer happens for some assignment
*p = *q in the code, then q and p retain their respective previous ownership
values).

Possible ownership transfer at pointer assignment: The ownership transfer
rule at pointer assignment site is captured by rule ASSIGN in Figure 3. The
judgement C ` p = q; ⇒ C ′ denotes the fact that the assignment is analysed
under the set of constraints C, and generates C ′. We use prime notation to
denote variables after the assignment. Given pointer assignment p = q, a and
b represent all the access paths respectively starting from p and q, whereas c
and d denote the access paths from the base variables of p and q that reach
p and q, respectively. Then, equality Oa′ + Ob′ = Ob captures the possibility
of ownership transfer for all access paths originating at p and q: (i) If transfer
happens then the ownership of b transfers to a′ (Oa′ = Ob and Ob′ = 0). (ii)
Otherwise, the ownership values are left unchanged (Oa′ = Oa and Ob′ = Ob).
The last two equalities, Oc′ = Oc ∧ Od′ = Od, denote the fact that, for both
(i) and (ii), pointers on access paths c and d retain their previous ownership.
Note that “+” is interpreted as the usual arithmetic operation over N, where we
impose an implicit constraint 0 ≤ O ≤ 1 for every ownership variable O.

C memory leaks: In the ASSIGN rule, we add constraint Oa = 0 to C ′ in order
to force a to be non-owning before the assignment. Conversely, having a owning
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before being reassigned via the assignment under analysis signals a memory leak
in the original C program. Given that in Rust memory is automatically returned,
allowing the translation to happen would change the semantics of the original
program by fixing the memory leak. Instead, our design choice is to disallow
the ownership analysis from generating such a solution. As we will explain in
Section 8, we intend for our translation to preserve memory usage (including
possible memory leaks).

Simultaneous ownership transfer along an access path: One may observe that
the constraints generated by ASSIGN do not fully capture the stated ownership
transfer rule. In particular, they do not ensure that, whenever ownership transfer
occurs from p to q, it also transfers for all pointers on all access paths a and
b. Instead, this is implicitly guaranteed by the ownership monotonicity rule, as
stated in theorem 1.

Theorem 1 (Ownership transfer). If ownership is transferred from p to q,
then, by the ASSIGN rule and ownership monotonicity, ownership also transfers
between corresponding pointers on all access paths a and b: Oa′ = Ob and Ob′ =
0. (proof in the extended version [41])

Ownership and aliasing: We saw in section 5.1 that aliasing may cause sit-
uations in which, after ownership transfer, the same memory object has more
than one owner. Theorem 2 states that this is not possible under ownership
monotonicity.

Theorem 2 (Soundness of pointer assignment under ownership mono-
tonicity). Under ownership monotonicity, if all allocated memory objects have
a unique owner before a pointer assignment, then they will also have a unique
owner after the assignment. (proof in the extended version [41])

Intuitively, theorem 2 enables a pointer to acquire ownership without hav-
ing to consider aliases: after ownership transfer, this pointer will be the unique
owner. The idea resembles that of strong updatess [30].

Additional access paths: As a remark, it is possible for p and q to be accessible
from other base variables in the program. In such cases, given that those access
paths are not explicitly mentioned at the location of the ownership transfer, we
do not generate new ownership variables for them. Consequently, their current
ownership variables are left unchanged by default.

Ownership transfer example. To illustrate the ASSIGN rule, we use the
singly-linked list example below, where we assume that p, q are both of type *mut
Node. Therefore, we will have to consider the following four access path p, q,

(*p).next, (*q).next. In SSA-style, at each line in the example, we generate
new ownership variables (by incrementing their subscript) for the access paths
mentioned at that line. For the first assignment, ownership transfer can happen
between p and q, and (*p).next and (*q).next, respectively. For the second
assignment, ownership can be transferred between (*p).next and (*q).next,
while p and q must retain their previous ownership.
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1 p = q; // Op1
= 0 ∧Op2

+ Oq2 = Oq1 ∧
2 // O(∗p1).next = 0 ∧O(∗p2).next + O(∗q2).next = O(∗q1).next
3 (*p).next = (*q).next;

4 // Op3 = Op2 ∧Oq3 = Oq2 ∧
5 // O(∗p2).next = 0 ∧O(∗p3).next + O(∗q3).next = O(∗q2).next

Besides generating ownership constraints for assignments, we must model
the ownership information for commonly used C standard function like malloc,
calloc, realloc, free, strcmp, memset, etc.. Due to space constraints, more
details about these, as well as the rules for ownership monotonicity and inter-
procedural ownership analysis are provided in the extended version [41].

Handling conditionals and loops. As mentioned in section 3.2, we only
analyse the body of loops once as it is sufficient to expose all the required own-
ership variables. For inductively defined data structures, while further unrolling
of loop bodies increases the length of access paths, it does not expose any new
struct fields (struct fields do not change ownership between loop iterations).

To handle join points of control paths, we apply a variant of the SSA con-
struction algorithm [6], where different paths are merged via φ nodes. The value
of each ownership variable must be the same on all joined paths, or otherwise
the analysis fails.

5.3 Solving ownership constraints

The ownership constraint system consists of a set of 3-variable linear constraints
of the form Ov = Ow + Ou, and 1-variable equality constraints Ov = 0 and
Ov = 1.

Definition 2 (Ownership constraint system). An ownership constraint sys-
tem (P,∆,Σ,Σ¬) consists of a set of ownership variables P that can have either
value 0 or 1, a set of 3-variable equality constraints ∆ ⊆ P × P × P , and two
sets of 1-variable equality constraints, Σ,Σ¬ ⊆ P . The equalities in Σ are of the
form x = 1, whereas the equalities in Σ¬ are of the form x = 0.

Theorem 3 (Complexity of the ownership constraint solving). Decid-
ing the satisfiability of the ownership constraint system in Definition 2 is NP-
complete. (proof in the extended version [41])

We solve the ownership constraints by calling a SAT solver. The ownership
constraints may have no solution. This happens when there is no ownership
scheme that obeys the Rust ownership model and the ownership monotonicity
property (which is stricter than the Rust model for some cases), or the original
C program has a memory leak. In the case where the ownership constraints have
more than one solution, we consider the first assignment returned by the SAT
solver.

Due to the complex Rust semantics, we do not formally prove that a satisfying
assignment obeys the Rust ownership model. Instead, this check is performed
after the translation by running the Rust compiler.
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5.4 Discussion on ownership monotonicity

As mentioned earlier in section 5, ownership monotonicity is stricter than the
Rust semantics, causing our analysis to potentially reject some ownership schemes
that would otherwise be accepted by the Rust compiler. We identified two such
scenarios:

(i) Reference output parameter: This denotes a reference passed as a func-
tion parameter, which acts as an output as it can be accessed from outside the
function (e.g. list in figure 1a). For such parameters, the base variable is non-
owning (as it is a reference) and mutable, whereas the pointers reachable from
it may be owning (see example in figure 1c, where (*node).head gets assigned
a pointer to a newly allocated node). We detect such situations and explicitly
enable them. In particular, we explicitly convert owning pointers p to &mut(*p)

at the translation stage.
(ii) Local borrows: The code below involving a mutable local borrow is not

considered valid by Crown as it disobeys the ownership monotonicity: after the
assignment, local_borrow is non-owning, whereas *local_borrow is owning.

1 let local_borrow = &mut n;

2 *local_borrow = Box::new(1);

While we could explicitly handle the translation to local borrows, in order to
do so soundly, we would have to reason about lifetime information (e.g. Crown
would have to check that there is no overlap between the lifetimes of different
mutable references to the same object). In this work, we chose not to do this and
instead leave it as future work (as also mentioned under limitations in section 7).
It was observed in [13] that scenario (i) is much more prevalent than scenario (ii).
Additionally, we observed in our benchmarks that output parameter accounts
for 93% of mutable references (hence the inclusion of a special case enabling the
translation of scenario (i) in Crown).

6 C to Rust Translation

Crown uses the results of the ownership, mutability and fatness analyses to
perform the actual translation, which consists of retyping pointers (section 6.1)
and rewriting pointer uses (section 6.2).

6.1 Retyping pointers

As mentioned in section 2.2, we do not attempt to translate array pointers to
safe pointers. In the rest of the section, we focus on mutable, non-array pointers.

The translation requires a global view of pointers’ ownership, whereas infor-
mation inferred by the ownership analysis refers to individual program locations.
For the purpose of translation, given that we refactor owning pointers into box
pointers, a pointer is considered (globally) owning if it owns a memory object at
any program location within its scope. Otherwise, it is (globally) non-owning.
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When retyping pointer fields of structs, we must consider the scope of the struct
declaration, which generally transcends the whole program. Within this scope,
each field is usually accessed from several base variables, which must all be taken
into consideration. For instance, given the List declaration in figure 1b and two
variables l1 and l2 of type *mut List. Then, in order to determine the own-
ership status of field next, we have to consider all the access paths to next

originating from both base variables l1 and l2.
The next table shows the retyping rules for mutable, non-array pointers,

where we wrap safe pointer types into Option to account for null pointer values:

Non-array pointers
Owning Option<Box<T>>

Non-owning *mut T or Option<&mut T>

The non-owning pointers that are kept as raw pointers *mut T correspond
to mutable local borrows. As explained in Sections 5.4 and 7, Crown doesn’t
currently handle the translation to mutable local borrows due to the fact that
we do not have a lifetime analysis. Notably, this restriction does not apply to
output parameters (which covers the majority of mutable references), where we
translate to mutable references. The lack of a lifetime analysis means that we also
can’t handle immutable local borrows, hence our translation’s focus on mutable
pointers.

6.2 Rewriting pointer uses

The rewrite of a pointer expression depends on its new type and the context
in which it is used. For example, when rewriting q in p = q, the context will
depend on the new type of p. Based on this new type, we can have four contexts:
BoxCtxt which requires Box pointers, MutCtxt which requires &mut references,
ConstCtxt which requires & references, and RawCtxt which requires raw pointers.
For example, if p above is a Box pointer, then we rewrite q in a BoxCtxt.

Then, the rewrite takes place according to the following table, where columns
correspond to the new type of the pointer to be rewritten, and rows represent
possible contexts 3.

Option<Box<T>> Option<&mut T> *mut T
BoxCtxt p.take() ⊥ Some(Box::from_raw(p))

MutCtxt p.as_deref_mut() p.as_deref_mut() p.as_mut()

ConstCtxt p.as_deref() p.as_deref() p.as_ref()

RawCtxt to_raw(&mut p) to_raw(&mut p) p

Our translation uses functions from the Rust standard library, as follows:

1. When Option<Box<T>> is passed to a BoxCtxt, we expect a move, and con-
sequently we use take to replace the value inside the option with None;

2. We use as_deref and as_deref_mut in order to not consume the original
option, and we create new options with references to the original ones;

3 The cell marked as ⊥ is not applicable due to our treatment of output parameter.
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3. as_mut and as_ref converts raw pointers to references;

4. Box::from_raw converts raw pointers into Box pointers.

We also define the helper function to_raw that transform safe pointers into
raw pointers:

fn to_raw<T>(b: &mut Option<Box<T>>) -> *mut T {

b.as_deref_mut().map(|b| b as *mut T).unwrap_or(null_mut())

}

Here, we explain to_raw for a Box argument (the explanation for &mut is the
same because of the polymorphic nature of as_deref_mut):

1. To convert Option<Box<T>>, we first mutably borrow the entire option as
denoted by the mutable borrow argument of the helper function. This is
needed because Option is not copyable, and it would be otherwise consumed;

2. as_deref_mut converts &mut Option<Box<T>> to Option<&mut T>;

3. map converts the optional part of the reference into an option of raw pointers;

4. Finally, unwrap_or returns the Some value of the option, or a null pointer
std::ptr::null_mut() if the value is None.

Dereferences: When a pointer p is dereferenced as part of a larger expression
(e.g. (*p).next), we need an additional unwrap().

Box pointers check: Rust disallows the use of Box pointers after they lost
their ownership. As this rule cannot be captured by the ownership analysis,
such situations are detected at translation stage, and the culpable Box pointers
are reverted back to raw pointers.

For brevity, we omitted the slightly different treatment of struct fields that
are not of pointer type.

7 Challenges of Handling Real-World Code

We designed Crown to be able to analyse and translate real-world code, which
poses significant challenges. In this section, we discuss some of the engineering
challenges of Crown and its current limitations.

7.1 Preprocessing

During the transpilation of C libraries, c2rust treats each file as a separate com-
pilation unit, which gets translated into a separate Rust module. Consequently,
struct definitions are duplicated, and available function definitions are put in
extern blocks [17]. We apply a preprocessing step similar to the resolve-imports
tool of Laertes [17] that links those definitions across files.
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7.2 Limitations of the ownership analysis

There are a few C constructs and idioms that are not fully supported by our im-
plementation, for which Crown generates partial ownership constraints. Crown’s
translation will attempt to rewrite a variable as long as there exists a constraint
involving it. As a result, the translation is in theory neither sound nor complete:
it may generate code that does not compile (though we have not observed this
in practice for the benchmarks where Crown produces a result – see Section 8)
and it may leave some pointers as raw pointers resulting in a less than optimal
translation. We list below the cases when such a scenario may happen.

Certain unsafe C constructs. For type casts, we only generate ownership trans-
fer constraints for head pointers; for unions we assume that they contain no
pointer fields and consequently, we generate no constraints; similarly, we gener-
ate no constraints for variadic arguments. We noticed that unions and variadic
arguments may cause our tool to crash (e.g. three of the benchmarks in [17],
as mentioned in Section 8). Those crashes happen when analysing access paths
that contain dereferences of union fields (where we assumed no pointer fields),
and when analysing calls to functions with variadic arguments where a pointer
is passed as argument.

Function pointers. Crown does not generate any constraints for them.

Non-standard memory management in C libraries. Certain C libraries wrap
malloc and free, often with static function pointers (pointers to allocator/deal-
locator are stored in static variables), or function pointers in structs. Crown
does not generate any constraints in such scenarios. In C, it is also possible to
use malloc to allocate a large piece of memory, and then split it into several
sub-regions assigned to different pointers. In our ownership analysis, only one
pointer can gain ownership of the memory allocated by a call to malloc. Another
C idiom that we don’t fully support occurs when certain pointers can point to
either heap allocated objects, or statically allocated stack arrays. Crown gener-
ates ownership constraints only for the heap and, consequently, those variables
will be left under-constrained.

7.3 Other limitations of Crown

Array pointers. For array pointers, although Crown infers the correct ownership
information, it does not generate the meta data required to synthesise Rust code.

Mutable local borrows. As explained in the last paragraph of Section 6.1, Crown
does not translate mutable non-owning pointers to local mutable references as
this requires dedicated analysis of lifetimes. Note that Crown does however
generate mutable references for output parameters.

Access paths that break ownership monotonicity. As discussed in section 5.4,
ownership monotonicity may be stricter in certain cases than Rust’s semantics.
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8 Experimental Evaluation

We implement Crown on top of the Rust compiler, version nightly-2023-01-26.
We use c2rust with version 0.16.0. For the SAT solver, we rely on a Rust-binding
of z3 [20] with version 0.11.2. We run all our experiments on a MacBook Pro with
an Apple M1 chip, with 8 cores (4 performance and 4 efficiency). The computer
has 16GB RAM and runs macOS Monterey 12.5.1.

Benchmark selection. To evaluate the utility of Crown, we collected
a benchmark suite of 20 programs (Table 1). These include benchmarks from
Laertes [17]’s accompanying artifact [16] (marked by * in Table 1)4, and addi-
tionally 8 real-world projects (binn, brotli, buffer, heman, json.h, libtree,
lodepng, rgba) together with 4 commonly used data structure libraries (avl,
bst, ht, quadtree).

Functional and non-functional guarantees. With respect to functional
properties, we want the original program and the refactored program to be ob-
servationally equivalent, i.e. for each input they produce the same output. We
empirically validated this using all the available test suites (i.e. for libtree,
rgba, quadtree, urlparser, genann, buffer in Table 1). All the test suites
continue to pass after the translation. For nonfunctional properties, we intend
to preserve memory usage and CPU time, i.e. we don’t want our translation to
introduce runtime overhead. We also validated this using the test suites.

Table 1: Benchmarks information
Benchmark Files Structs Functions LOC Benchmark Files Structs Functions LOC
avl 1 2 11 229 libcsv* 1 6 23 976
binn 1 5 165 4426 libtree 1 18 32 2610
brotli 30 237 867 537723 libzahl* 49 65 108 4655
bst 1 1 6 154 lil* 2 9 136 5670
buffer 2 3 42 1207 lodepng 1 19 236 14153
bzip2* 9 39 126 14829 quadtree 5 14 31 1216
genann* 6 10 27 2410 rgba 2 3 19 1855
heman 24 52 302 13762 robotfindskitten* 1 8 18 1508
ht 1 3 10 264 tulipindicators* 111 18 229 22363
json.h 1 13 53 3860 urlparser* 1 1 21 1379

8.1 Research questions

We aim at answering the following research questions.

4 We excluded json-c, optipng, tinycc where Crown crashes because of the uses
of unions and variadic arguments as discussed in Section 7. Additional programs
(qsort, grabc, xzoom, snudown, tmux, libxml2) are mentioned in the paper [17] but
are either missing or incomplete in the artifact [16].
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RQ1. How many raw pointers/pointer uses can Crown translate to safe
pointers/pointer uses?

RQ2. How does Crown’s result compare with the state-of-the-art [17]?

RQ3. What is the runtime performance of Crown?

RQ 1: Unsafe pointer reduction. In order to judge Crown’s efficacy,
we measure the reduction rate of raw pointer declarations and uses. This is a
direct indicative of the improvement in safety, as safe pointers are always checked
by the Rust compiler (even inside unsafe regions). As previously mentioned, we
focus on mutable non-array pointers. The results are presented in Table 2, where
#ptrs counts the number of raw pointer declarations in a given benchmark,
#uses counts the number of times raw pointers are being used, and the Laertes
and Crown headers denote the reduction rates of the number of raw pointers
and raw pointer uses achieved by the two tools, respectively. For instance, for
benchmark avl, the rate of 100% means that all raw pointer declarations and
their uses are translated into safe ones. Note that the “-” symbols on the row
corresponding to robotfindskitten are due to the fact that the benchmark
contains 0 raw pointer uses.

The median reduction rates achieved by Crown for raw pointers and raw
pointer uses are 37.3% and 62.1%, respectively. Crown achieves a 100% re-
duction rate for many non-trivial data structures (avl, bst, buffer, ht), as
well as for rgba. For brotli, a lossless data compression algorithm developed
by Google, which is our largest benchmark, Crown achieves reduction rates of
21.4% and 20.9%, respectively. The relatively low reduction rates for brotli and
a few other benchmarks (tulipindicators, lodepng, bzip2, genann, libzahl)
is due to their use of non-standard memory management strategies (discussed
in detail in Section 7).

Notably, all the translated benchmarks compile under the aforementioned
Rust compiler version. As a check of semantics preservation, for the benchmarks
that provide test suites (libtree, rgba, quadtree, urlparser, genann, buffer),
our translated benchmarks pass all the provided tests.

RQ 2: Comparing with state-of-the-art. The comparison of Crown
with Laertes [17] is also shown in Table 2, with bold font highlighting better
results. The data on Laertes is either directly extracted from the artifact [16] or
has been confirmed by the authors through private correspondence. We can see
that Crown outperforms the state-of-the-art (often by a significant degree) in
most cases, with lodepng being the only exception, where we suspect that the
reason also lies with non-standard memory management strategies mentioned
before. Laertes is less affected by this as it does not rely on ownership analysis.

RQ 3: Runtime performance. Although our analysis relies on solving a
constraint satisfaction problem that is proven to be NP-complete, in practice
the runtime performance of Crown is consistently high. The execution time
of the analysis and the rewrite for the whole benchmark suite is within 60 sec-
onds (where the execution time for our largest benchmark, brotli, is under 10
seconds).
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Table 2: Reduction of (mutable, non-array) raw pointer declarations and uses
Benchmark #ptrs Laertes Crown #uses Laertes Crown

avl 8 0.0% 100.0% 41 0.0% 100.0%
binn 103 46.6% 65.0% 247 62.3% 71.3%
brotli 846 0.0% 21.4% 3686 0.0% 20.9%
bst 5 0.0% 100.0% 22 0.0% 100.0%

buffer 38 0.0% 100.0% 56 0.0% 100.0%
bzip2* 126 14.3% 26.2% 2946 2.2% 3.7%

genann* 28 0.0% 7.1% 160 0.0% 15.0%
heman 360 30.3% 35.0% 926 50.2% 60.2%

ht 6 33.3% 100.0% 28 42.9% 100.0%
json.h 128 2.3% 23.4% 647 1.2% 62.1%
libcsv* 20 65.0% 70.0% 141 97.9% 97.9%
libtree 48 29.2% 39.6% 227 33.0% 62.1%

libzahl* 87 2.2% 16.1% 279 4.1% 16.8%
lil* 202 9.2% 18.8% 1018 51.4% 69.4%

lodepng 227 46.3% 44.9% 1232 40.4% 37.7%
quadtree 33 0.0% 42.4% 117 0.0% 48.7%

rgba 6 83.3% 83.3% 12 100.0% 100.0%
robotfindskitten* 1 0.0% 0.0% 0 - -
tulipindicators* 134 0.0% 0.7% 625 0.0% 0.0%

urlparser* 9 0.0% 11.1% 40 0.0% 45.0%

9 Related Works

Ownership discussion. Ownership has been used in OO programming to
enable controlled aliasing by restricting object graphs underlying the runtime
heap [11,12] with efforts made in the automatic inference of ownership informa-
tion [1, 4, 39], and applications of ownership to memory management [5, 42].
Similarly, the concept of ownership has also been applied to analyse C/C++

programs. Heine et al. [24] inferred pointer ownership information for detect-
ing memory leaks. Ravitch et al. [37] apply static analysis to infer ownership
for automatic library binding generation. Giving the different application do-
mains, each of these works makes different assumptions. Heine et al. [24] assumes
that indirectly-accessed pointers (i.e. any pointer accessed through a path, like
(*p).next) cannot acquire ownership, whereas Ravitch et al. [37] assumes that
all struct fields are owning unless explicitly annotated. We took from [24] its
handling of flow sensitivity, but enhanced it with the analysis of nested point-
ers and inductively defined data structures, which we found to be essential for
translating real-world code. The analysis in [24] assigns a default ”non-owning”
status to all indirectly accessed pointers. This rules out many interesting data
structures such as linked lists, trees, hash tables, etc, and commonly used idioms
such as passing by reference. Conversely, in our work, we rely on a strengthening
assumption about the Rust ownership model, which allows handling the afore-
mentioned scenarios and data structures. Lastly, the idea of ownership is also
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broadly applied in concurrent separation logic [7–9,19,38]. However, these works
are not aimed as automatic ownership inference systems.

Rust verification. The separation logic based reasoning framework Iris [28]
was used to formalise the Rust type system [27], and verify Rust programs [34].
While these works cover unsafe Rust fragments, they are not fully automatic.
When restricting reasoning to only safe Rust, RustHorn [35] gives a first-order
logic formulation of the behavior of Rust code, which is ameanable to fully auto-
matic verification, while Prusti [3] leverages Rust compiler information to gener-
ate separation logic verification conditions that are discharged by Viper [36]. In
the current work, we provide an automatic ownership analysis for unsafe Rust
programs.

Type qualifiers. Type qualifiers are a lightweight, practical mechanism for
specifying and checking properties not captured by traditional type systems. A
general flow-insensitive type qualifier framework has been proposed [21], with
subsequent applications analysing Java reference mutability [22,25] and C array
bounds [32]. We adapted these works to Rust for our mutability and fatness
analyses, respectively.

C to Rust Translation. We have already discussed c2rust [26], which is
an industrial strength tool that converts C to Rust syntax. c2rust does not
attempt to fix unsafe features such as raw pointers and the programs it gen-
erates are always annotated as unsafe. Nevertheless it forms the bases of other
translation efforts. CRustS [31] applies AST-based code transformations to re-
move superfluous unsafe labelling generated by c2rust. But it does not fix the
unsafe features either. Laertes [17] is the first tool that is actually able to au-
tomatically reduce the presence of unsafe code. It uses the Rust compiler as a
blackbox oracle and search for code changes that remove raw pointers, which is
different from Crown’s approach (see Section 8 for an experimental compari-
son). The subsequent work [15] develops an evaluation methodology for studying
the limitations of existing techniques that translate unsafe raw pointers to safe
Rust references. The work adopts a new concept of ‘pseudo safety’, under which
semantics preservation of the original programs is no longer guaranteed. As ex-
plained in Section 8, in our work, we aim to maintain semantic equivalence.

10 Conclusion

We devised an ownership analysis for Rust programs translated by c2rust that
is scalable (handling half a million LOC in less than 10 seconds) and precise (han-
dling inductive data structures) thanks to a strengthening of the Rust ownership
model, which we call ownership monotonicity. Based on this new analysis, we
prototyped a refactoring tool for translating C programs into Rust programs.
Our experimental evaluation shows that the proposed approach handles real-
world benchmarks and outperforms the state-of-the-art.
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