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Abstract. Dynamic object-oriented languages, such as Python, Ruby,
and Javascript are widely used nowadays. A distinguishing feature of
dynamic object-oriented languages is that objects, the fundamental run-
time data representation, are highly dynamic, meaning that a single con-
structor may create objects with different types and objects can evolve
freely after their construction. While such dynamism facilitates fast pro-
totyping, it brings many challenges to program understanding. Many
type systems have been developed to aid programming understanding,
and they adopt various types and techniques to represent and track dy-
namic objects. However, although many types and techniques have been
proposed, it is unclear which one suits real dynamic object usages best.
Motivated by this situation, we perform an empirical study on 50 mature
Python programs with a focus on object dynamism and object type mod-
els. We found that (1) object dynamism is highly prevalent in Python
programs, (2) class-based types are not precise to handle dynamic be-
haviors, as they introduce type errors for 52% of the evaluated poly-
morphic attributes, (3) typestate-based types, although mostly used in
static languages, matches the behaviors of dynamic objects faithfully,
and (4) some well-designed but still lightweight techniques for object-
based types, such as argument type separation and recency abstraction
can precisely characterize dynamic object behaviors. Those techniques
are suitable for building precise but still concise object-based types.

Keywords: Type System · Empirical Study · Python.

1 Introduction

Dynamic object-oriented languages, such as Python, Ruby, and Javascript are
commonly used across many domains. They use dynamic typing to increase
reusability and flexibility, facilitating fast prototyping (development) not pro-
vided by most static languages. In particular, unlike in static object-oriented
languages where objects have mostly fixed attributes and their types [25], ob-
jects in dynamic languages are highly dynamic. Both the attributes and types
of an object may be changed freely over its life cycle.
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To illustrate, consider the Python program in Figure 1, which is adapted
from Rich, a terminal beautification tool [34]. This program defines two instance
objects (shorted as objects) of Panel: panel1 and panel2. However, the types of
the two objects are not stipulated by class definition and can be set and changed
freely. We refer to this phenomenon as object dynamism.

1 class Panel:

2 def __init__(self, title, width):

3 self.title = title

4 self.width = width

5 if self.width is not None:

6 self.height = self.width

7 def _title(self):

8 if isinstance(self.title, str):

9 return Text.from_markup(self.title)

10 else:

11 return self.title.copy()

12 def setheight(self, height):

13 self.height = height

14 def measure(self):

15 return self.width * self.height

16

17 panel1 = Panel(Text(), 42)

18 panel2 = Panel("Example Table", None)

19 panel2.width = 5 # modification

20 panel2.setheight(42) # extension

Fig. 1: An example Python program

Behaviors Causing Ob-
ject Dynamism. Ob-
ject dynamism originates
from two sources: con-
structor polymorphism and
object evolution [42,54].
With constructor poly-
morphism, objects of
different types can be
made from the same con-
structor. Lines 17-18 show
such an example. Specif-
ically, although panel1

and panel2 are created
from the same init ,
panel1 has the type τ1 =
{title : Text, width :
int, height : int}, while
panel2 has the type τ2 =
{title : str, width :
NoneType}4. In particular,
two attributes (title and width) are shared but with different types, and one
attribute (height) appears only in τ1. After the construction phase, objects can
dynamically evolve, making the types continue to change, denoted as object
evolution. Lines 19-20 present such an example, which changes the width at-
tribute of panel2 from NoneType to int and adds the attribute height.

An Empirical Study on Dynamic Objects for Type Systems. As dy-
namic languages are being used to build more and more important and large
software systems, many type systems [10,23,30,33] have been developed to aid
program comprehension and early programming error detection. Those type sys-
tems come up with special object types for representing dynamic objects. The
most widely adopted design choice is to augment the class-based types, which
assign a single type to all objects created from the same class, with features
such as union types [9], and the ability to reason about type tests [28,48] and
local type assignments [3]. Due to their performance superiority and annotat-
ing convenience, class-based types have been extensively used in industrial and
academic type systems [10,19,22,30,40,53]. However, it is not clear whether they
provide dynamic objects with type representations that are precise enough.

4 We refer the constructed types of panel1/panel2 by τ1/τ2 in the rest of this paper.
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On the other hand, many object-based type systems [8,17,45,55] have also
been proposed, which assign a unique type to each object, according to its ab-
stract address and evolution processes. Since those techniques provide dynamic
objects with more precise representations, it is clear that they produce fewer type
errors compared with class-based types. However, the actual improvement has
not been investigated on a large scale. Meanwhile, the contributions of individual
aspects of object-based types to the improvements are not understood.

To help understand the prevalence and characteristics of dynamic object
behaviors, as well as the effectiveness of existing object types, we present an
empirical study based on a dynamic analysis of 50 mature Python programs
with over 3.76 million LOC. There have been several studies [4,24,42,54] that
also consider the dynamic object behaviors. However, their analysis is not focused
on types, and thus their implications on type systems are limited.

Some of our significant findings include: (1) Both constructor polymorphism
and object evolution are very prevalent. The average proportions of classes ex-
posing them are both higher than 20%, and they often occur at the same time.
(2) Class-based types can be a practical choice, especially when paired with the
ability to reason about type tests and local assignments. Although false type
errors are reported for 52% of the polymorphic attributes when experimenting
with them, those type errors are largely due to attribute absence, which is no-
toriously hard to detect statically [32]. (3) Typestate-based types, as already
utilized extensively to represent object evolution in static languages [6,29,46],
can be promising to be adopted to dynamic languages, considering the large
proportion of attribute-absences-related errors, which turn out to be introduced
mainly by object evolution. (4) Object-based types are found to be effective in
representing dynamic objects. In particular, the ability to perform strong up-
dates [8,23] is critical to increase the precision.

In summary, this paper makes the following contributions.

1. A large corpus composed of 50 mature Python projects with over 3.76 mil-
lion LOC and a well-designed dynamic analysis infrastructure capable of
analyzing precise and detailed object behaviors.

2. An empirical study of object dynamism in Python with findings and advice
for evaluating current type systems and inspiring future type systems.

The artifact of this paper, containing the analysis infrastructure and the ex-
periment scripts, can be accessed via https://github.com/ksun212/Python-objects.

2 Background

In this section, we introduce dynamic object behaviors in detail and review
related studies on dynamic behaviors.

2.1 Dynamic Object Behaviors in Python

Constructor Polymorphism. We name the behavior that objects of differ-
ent types are made from a single constructor as constructor polymorphism. In

https://github.com/ksun212/Python-objects
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Python, a constructor is a normal member method that initializes attributes. In
our example, different objects are constructed in a functional way, i.e., object
types are solely decided by argument types. However, as an imperative language,
the program’s state can also influence the behaviors of constructors. For example,
an attribute may be set when a global variable holds a specific value.

Object Evolution. We name the behavior that an object changes its type after
being constructed as object evolution. Based on the action, object evolution can
be classified into (1) extension (i.e., adding new attributes), (2) modification
(i.e., modifying types of attributes), and (3) deletion (i.e., deleting attributes).

2.2 Existing Studies on Dynamic Behaviors

Although object dynamic behaviors are significant for building type systems and
other static analyses for dynamic languages, only a few studies have been done
to study their actual prevalence. In particular, Richards et al. [42] and Wei et
al. [54] conducted empirical studies on the dynamic behaviors in JavaScript pro-
grams. However, the former did not distinguish between changes of attribute
types (changes that lead to object evolution) and attribute values (changes do
not lead to object evolution), and the latter measured constructor polymor-
phism via the number of runtime instances instead of object types that matter
more to type system design. Only two pieces of work [4,24] investigated the
dynamic behavior of Python objects. However, they mainly focus on object evo-
lution, without investigating constructor polymorphism. Meanwhile, neither of
the above studies analyzes the effectiveness of existing object types.

Several studies investigated other features of dynamic languages, such as eval
expressions [41], callsite polymorphism [5,27], and dynamic variables [14]. These
studies are not from type systems’ perspective, the focus of this work.

3 Types for Dynamic Objects

In this section, we present a type syntax for class-based types and discuss local
type refinements. Then, we review important aspects for object-based types.

3.1 Class-based Types

τ ::= cls|τ ∨ τ |abs
CT ::= cls : {attr : τ}, CT | ∅
Γ ::= x : cls, Γ | ∅
x ∈ Program V ariables

attr ∈ Attribute Names

cls ∈ Class Names

Fig. 2: Syntax for class-based types.
‘

Type Syntax. To consolidate the
notion of class-based types in this
paper, we propose a type syn-
tax, which mostly coincides with
the definition of class-based types
in existing class-based type sys-
tems [10,19,22,30,40,53]. The only dif-
ference is that we model attribute ab-
sence using a constant type abs, while
other systems provide type qualifiers [31] or simply omit it [19,30,53].
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Under this syntax, the type environment (Γ ) maps from variables to class names.
The class table (CT ) maps from class names to object types, which is a record
labeled by attribute names with values ranging over attribute types (τ). τ can
be another class name (such as builtin classes int, str, and user-defined classes
Panel, Text), a special constant type abs to signify that the attribute is absent
or a union of two attribute types. For the example in Fig.1, a type system using
this syntax gives type environment {panel1 : Panel, panel2 : Panel}, and class
table {Panel : {title : Text ∨ str, width : int ∨ NoneType, height : int ∨ abs}}.
Polymorphic Attributes Cause Type Errors. Although class-based types
provide a natural way to express object dynamism, they often introduce type
errors. To see this, consider type-checking the method measure, which results in a
type error, since width can be NoneType while height can be abs, both invalidating
the addition operation. Those type errors are caused by polymorphic attributes,
i.e., the attributes holding union types, when not all components of the union
type can be used in any access-site of the attribute.

Local Type Refinements. To eliminate suspicious type errors, local type re-
finements [3,28,48] are often used to refine the union types. The core observation
is that developers tend to use type tests and local assignments to refine the type
of polymorphic attributes, which can be utilized to refine the union types to a
smaller range thus eliminating type errors. For example, consider type-checking
the method title, in the first branch, the type of title is refined to be str by
the type test isinstance(self.title,str). For an example of local assignments,
consider inserting if self.width is None: self.width=42 into the beginning of
the method measure, which refines the type of width to be only int.

3.2 Object-based Types

Class-based type systems assign all objects belonging to the same class with the
same type. We have discussed that this design choice introduces spurious type
errors. Although local type refinements can be used to eliminate type errors,
they rely on type tests or local assignments, which are unavailable in many
cases. To eliminate the type errors, another idea is to assign more precise types to
dynamic objects, by exposing more fine-grained object addresses and performing
strong updates for object evolution as much as possible [1,8,17,44,45,52,55]. In
the following of this paper, we name this kind of typing discipline as object-based
types, whose effectiveness will be discussed in our study.

Store Abstraction. Each dynamic object receives a unique address from the
heap (store). While types of objects may be identified by their addresses, few
type systems support this, since addresses are allocated at runtime while the type
systems we are investigating perform static checking. Instead, type systems often
use abstractions of store to denote object types. In class-based type systems, each
object uses the class name as its address. All objects of the same class share the
same address. To keep sound, the types of all those objects, along their life
cycles, must be merged. This is the reason that many attributes in class-based
type systems are polymorphic, causing spurious type errors.
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Using class names as addresses often leads to imprecision. A prominent ap-
proach is extending the class name with the construction location. Construc-
tion location can be annotated [16,45] or inferred [19,23,36]. In our example,
we can separate the types of panel1 and panel2 using this approach, yield-
ing Γ = {panel1 : Panel@17, panel2 : Panel@18} and CT = {Panel@17 :
{title : Text, width : int, height : int}, Panel@18 : {title : str, width :
int ∨ NoneType, height : int ∨ abs}}. Note that Panel@18 must cover all the
types of panel2 in its life cycle. Suppose the method measure is called on panel1,
this type system would correctly accept it but still reject the call on panel2.

Sometimes, using the construction locations is not precise enough, since many
construction-sites can be called many times (e.g., occurring inside a function
that is repeatedly called.). To handle this, location polymorphism [16] and k-
callsite [36] have been proposed. We evaluate the help of k-callsites in our study.

Flow Sensitivity. As we discussed earlier, to keep sound, the types in the life
cycle of an object must be merged. The reason is that the store abstraction (i.e.,
CT ) must over-approximate the store at any time of the program execution.
One common approach to relax this constraint is flow-sensitive store abstrac-
tion [2,16,36,43], which allows each program location to be associated with a
different store abstraction. In our example, this yields CT = {..., Panel@18 :
{title : str, width : NoneType, height : abs}}, CT ′ = {.., Panel@18 : {title :
str, width : int ∨ NoneType, height : abs}}, and CT ′′ = {.., Panel@18 : {title :
str, width : int ∨ NoneType, height : int ∨ abs}}, where CT/CT ′/CT ′′ denote
the store abstraction associated with Line 18/19/20. Suppose that an access of
width is inserted before Line 19, which requires it to have the type NoneType,
then flow sensitivity allows this access to be accepted since the system knows
that width can only be NoneType before Line 19. In a flow-insensitive system, this
access would be incorrectly rejected. However, the method measure still cannot
be called on panel2, even after Line 20. This is because, due to the potential
existence of aliases, one attribute must be typed with all the types that are pre-
viously assigned to the attribute, a methodology often called “weak updates” [8].

Strong Updates. A type system that is able to replace the old type for an
attribute with a new type when an object evolves is said to be able to perform
“strong updates”. Strong updates have to be performed on the top of flow-
sensitive store abstraction. With strong updates, the type system knows CT ′′ =
{..., Panel@18 : {title : Text, width : int, height : int}}, and subsequently,
allows measure be called on panel2 after Line 20.

Due to the alias problem, strong updates can not be performed arbitrar-
ily [8]. It is widely known that strong updates can be applied to linear ad-
dresses [2,16,43], i.e., the addresses that refer to only one object. In our example,
we have seen that the class name extended with construction locations linearly
refer to the two objects. In general, more precise techniques like location poly-
morphism [16] and k-callsite [36] make more addresses linear. However, those
techniques have been witnessed to significantly increase running overhead [36]
or incur excessive annotation burden [16]. Another widely adopted solution is
recency abstraction [8,23]. Recency abstraction splits one address into two, one
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Category Subjects LOC
Scientific
Computing (SCI)

networkx, pinyin, sklearn, nltk, altair, kornia, stanza, featuretools,
dvc, torch, pandas, seaborn, statsmodels, pyod, spacy, snorkel

2.29M

Programming (PRG) pydantic, typer, bandit, isort, arrow, jedi, black, yapf, mypy 0.46M
Web (WEB) requests, flask, impacket, routersploit, itsdangerous, pelican, sphinx 0.24M
Terminal (TER) rich, thefuck, cookiecutter, click, prompt toolkit 0.14M
Formating (FMT) jinja, pypdf, markdown, weasyprint 0.12M
Utility (UTL) pywhat, icecream, pendulum, pre commit, faker 0.34M
Others (OTH) newspaper, wordcloud, pyro, pyecharts 0.14M

All (ALL) 50 projects 3.76M

Table 1: Statistics and Categories of Experiment Subjects

for the most recently constructed object and one for all previously constructed
objects. Supposing just use the class name as addresses, recency abstraction
gives Γ = {panel1 : Panels, panel2 : Panelr}. For the most recently constructed
object, since it is the only object referred to by the address, strong updates
can be performed, while all previously constructed objects can only be updated
weakly5. The assumption of recency abstraction is object evolution usually hap-
pens to the most recent object, instead of the previously constructed objects.
Our example obeys this assumption since only panel2 evolves.

4 Experimental Design

This study investigates the following questions around object dynamism in Python.
RQ1. Are dynamic object behaviors prevalent in the wild?
RQ2. How effective are class-based types and object-based types?

4.1 Subjects

In this experiment, we use 50 Python projects from Github. In particular, we
select the top 50 popular Python projects on Github whose testing framework
is pytest, after removing the ones that need to be run on multiprocessing mode
(which causes potential races of the log file) or have special requirements (e.g.,
network or peripheral devices). By requiring pytest to be the testing framework,
we can run all the subjects under a unified interface, simplifying the experiment
setup. Due to space limitations, when presenting and analyzing the results, we
divide these 50 subjects into 7 categories and present the results for each cate-
gory. Table 1 presents these categories, the subjects they contain, and their total
LOC. We present the details of these 50 subjects on the artifact.

To learn the dynamic behaviors of these Python projects, we run the test
suite of each subject. In order to facilitate the analysis, we prune the test suites
until they can be executed within 12 hours and produce a trace file of less than
20G. The details of the used tests are also presented on the artifact.

4.2 Tracing and Analysis Infrastructure

Overview of the Infrastructure. Our infrastructure consists of a tracing
module and an analysis module. The tracing module is based on CPython 3.96.

5 In our example, only panel1 is not recent. However, in general, there can be many.
6 https://github.com/python/cpython/tree/3.9

https://github.com/python/cpython/tree/3.9
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The tracing module traces the execution of a subject and records the events
related to Python objects, such as the start/end of object construction, and
assigning/deleting object attributes. The events are recorded with the necessary
information to conduct our analysis, such as where the event happens (program
location), and which object is related to the event. The analysis module analyzes
the events to construct and evaluate class-based types and object-based types.

Constructing Types. We construct class-based types and object-based types
from the traces. To construct class-based types for a class c, if one of its objects
is observed to be assigned with an attribute a and type c′ in the trace, we add a
to the attribute set of c, and add c′ to the types of c.a. If one attribute a is owned
by one object of the class, but is not owned by another, we add abs to the types
of c.a. We also add abs if the attribute is added/deleted in the evolution phase,
since the attribute is absent before/after the extension/deletion. For class-based
types, all objects of the same class share the same type. The construction of
object-based types is similar, the only difference is that all objects of the same
object address (instead of class) share the same type. For object-based types,
we simulate flow-sensitive store abstraction by constructing different stores for
different locations. On top of flow-sensitive store abstraction, We simulate strong
updates by performing strong updates whenever the condition is met (i.e., the
object address is linear or obeys recency abstraction).

Note that when constructing types, we construct for all classes observed in
the traces. However, when evaluating the types, we focus on the objects whose
classes are defined directly in the program, ignoring the objects defined in built-
in or third-party libraries, to better reflect the nature of the analyzed programs.

Evaluating Types. We evaluate the effectiveness of class-based types and
object-based types against the access-sites. To illustrate, consider the class-based
type of panel1, namely, {title : Text ∨ str, width : int ∨ NoneType, height :
int ∨ abs}. Supposing we observe that the attribute title of panel1 is accessed
at Line 11, we evaluate this access-site in two steps. The first step performs local
type refinements based on the type tests [28,48] and local assignments [3]. In our
example, the polymorphic attribute title holds two classes, i.e., str and Text.
However, for the access-site at Line 11, only Text is valid, while str is ruled out
at Line 8. The second step judges if the types after refinement (i.e., Text) can
be used in the access-site, i.e., satisfy the constraints of the access-site.

The complete constraints in one access-site can not be collected without
building a complicated analysis. In our study, we utilize a substantial subset of
the complete constraints, named local constraints. The major generation rules of
local constraints are presented in Fig. 3. In this figure, obj.a denotes the access
expression, T denotes the set of all types of the attribute a after refinement
({Text} for title in our example). Attr is the function to extract the attribute
set of one object type. In our example, since we have self.title.copy, we can
generate the constraint abs /∈ {Text} ∧ copy ∈ Attr(Text), which is true by
examining the type set ({Text}) and the type of Text.

Similarly, consider another access-site of title, at Line 9. We can refine the
type of title to str this time. However, since title is directly passed to another
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function, we cannot collect any local constraints, and thus we do not evaluate
this access-site. So far, we have examined all the access-sites of title. Since it
satisfies all examined access-sites, it is determined to be safe. For object types to
be precise, they should make as many polymorphic attributes safe, since unsafe
polymorphic attributes are very likely to be false alarms, due to the fact that the
access-sites are collected dynamically without witnessing runtime type errors.

obj.a =⇒ abs /∈ T

obj.a() =⇒ ∀τ ∈ T, call ∈ Attr(τ)

obj.a[e] =⇒ ∀τ ∈ T, getitem ∈ Attr(τ)

obj.a+ e =⇒ ∀τ ∈ T, add ∈ Attr(τ)

obj.a.f =⇒ ∀τ ∈ T, f ∈ Attr(τ)

len(obj.a) =⇒ ∀τ ∈ T, len ∈ Attr(τ)

Fig. 3: Local Constraint Generation Rules

5 Results and Analysis

In this section, we answer the two research questions in two subsections.

5.1 Prevalence of Dynamic Behaviors

In this section, we study the prevalence of dynamic behaviors, as well as several
important aspects of them, to help characterize the difficulty of analyzing them.

Constructor Polymorphism. Table 2 presents the statistics of classes that
expose constructor polymorphism, where the second column presents the total
number of classes in a specific category and in all subjects. The third and fourth
columns present statistics on these classes, which we refer to as ratio results
and subject-wise median results, respectively. To obtain ratio results (given by
column “Ratio”), we divide the total number of classes that expose constructor
polymorphism in one category by the total number of classes in that category. To
obtain the subject-wise median results (given by column “Median”), we calculate
the proportion of classes exposing constructor polymorphism for each subject in
one category and take the median. Ratio results emphasize the overall propor-
tion, while subject-wise median results emphasize the subject-wise differences.
Due to space limitations, we present the results for each category and a summary
of all subjects. The results of individual subjects are given on the artifact.

From this figure, the ratio and median proportion of classes that expose
constructor polymorphism are both over 20%, indicating that constructor poly-
morphism is prevalent. Besides, we can also notice the differences among cat-
egories, e.g., UTL, WEB and OTH have fewer classes that expose constructor
polymorphism. Many classes belonging to those categories have relatively simple
functionality and do not need constructor polymorphism.

Now we know that constructor polymorphism is prevalent. But how poly-
morphic are polymorphic constructors, and how difficult it is to analyze them?

How Polymorphic. Fig. 4 shows the degree of constructor polymorphism, that
is, the number of distinct object types made out of polymorphic constructors.
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Category Class Ratio Median

SCI 1773 0.24 0.28
PRG 360 0.32 0.20
WEB 643 0.12 0.14
TER 214 0.27 0.20
FMT 258 0.30 0.40
UTL 28 0.18 0.20
OTH 266 0.17 0.23

ALL 3542 0.23 0.20

Table 2: Prevalence of constructor polymor-
phism. Class shows the number of classes. Ratio
and Median show the proportion of classes.
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Fig. 4: Degree of constructor polymorphism.
The X-axis/Y-axis denotes the number of dis-
tinct object types/classes.
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TYPE ATTR BOTH
Fig. 5: Overall Relation
among Object Types.
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Fig. 6: Separability of Different Construction Con-
texts.

According to Fig. 4, most of the polymorphic constructors have a relative low
degree (less than 5), indicating that typically only a few object types are made.

Polymorphic constructor constructs objects of different types. But, how dif-
ferent are these types? To answer this question, we divide the polymorphic con-
structors into three kinds, according to whether they construct object types
with inconsistent attribute types (labeled TYPE in Fig. 5, e.g., {attr : int} and
{attr : str}), inconsistent attribute sets (ATTR, e.g., {attr : int} and {attr :
int, attr2 : int}), or both (BOTH, e.g., {attr : int} and {attr : str, attr2 : int}).
Fig. 5 shows the proportion of those three kinds, which shows that most (87%)
polymorphic constructors construct object types with consistent attribute sets
but inconsistent attribute types. This suggests that polymorphic attribute types,
instead of attribute sets, are contributed by constructor polymorphism. Thus,
if the main cause of false type errors is attribute sets (we will see that it is),
constructor polymorphism should be generally innocent.

Separability. Constructors in Python are just normal functions. To precisely
analyze functions, context sensitivity is the prominent technique used in static
analysis and type systems [21,26,37,52]. Context sensitivity relies on function call
contexts to separate the return types of different function calls. The most widely
used function call contexts are k-callsites [21,26,37] and argument types [1,52],
namely k-length call stacks and types of arguments of call-sites. Fig. 6 shows
the proportion of polymorphic constructors that can be separated by argument
types or k-callsite contexts. For a polymorphic constructor, if given an argu-
ment type/k-callsite of the constructor, only one object type is observed to be
constructed under the argument type/k-callsite, we mark the constructor as sep-
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Category Object RO MO Class RC MC

SCI 3 × 106 0.31 0.21 1773 0.36 0.28
PRG 1 × 106 0.11 0.02 360 0.11 0.15
WEB 2 × 105 0.28 0.40 643 0.31 0.43
TER 5 × 104 0.08 0.07 214 0.18 0.23
FMT 1 × 106 0.46 0.49 258 0.47 0.61
UTL 1 × 105 0.02 0.02 28 0.25 0.20
OTH 3 × 105 0.17 0.21 266 0.42 0.38

ALL 6 × 106 0.27 0.12 3542 0.33 0.28

Table 3: Prevalence of object evolution.
RO/MO presents the ratio/median for ob-
jects, while RC/MC presents that for classes.
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Fig. 7: Actions of Object Evolution

arable by argument types/k-callsites. Otherwise, it is inseparable. According to
Fig. 6, argument types effectively separate more than 80% of polymorphic
constructors, implying the high dependency of constructed object types on the
argument types. However, k-callsites are not as effective as argument types, al-
though the separability increases with a longer callsite.

Object Evolution. Table 3 shows the prevalence of object evolution. Its second,
third, and fourth columns present the total number of objects, the ratio, and
the median proportion of objects that expose object evolution. The last three
columns of this table present the total number of classes, the ratio, and the
median proportion of classes that expose object evolution. Note that if any
object of one class exposes object evolution, we regard the class as exposing
object evolution. From the table, a large number of objects/classes (27%/33%)
expose object evolution, indicating the prevalence of object evolution. Besides,
SCI, FMT, and WEB have more objects/classes exposing object evolution and
we suspect the reason to be the specific functionalities of these categories. For
example, objects of class DecisionTree of the subject sklearn in the SCI category
are extended with new attributes after they are trained.

Now we know that object evolution happens frequently. But how do the
objects evolve, and how difficult it is to analyze the evolution?

How. Fig. 7 presents the statistics of evolution action. It shows the ratio
and median proportion of objects and classes that expose extension, modifica-
tion, and deletion, among all the evolving objects and classes. From this table,
extension and modification are dominant. Meanwhile, deletion seldom occurs:
although the ratio of deletion is around 10%, the median proportion is zero.

Furthermore, we analyze the pattern of evolution and find that most of the
evolution processes are monotonic. Monotonicity is a property that has been
used extensively in previous studies on object evolution [7,11,47]. Different from
the types described in Section 3, types based on monotonicity allow object evo-
lution to be soundly analyzed without the need for store abstraction [39]. In this
study, following previous studies, we define monotonic evolution as the evolution
in which attributes are only added but not deleted, and when the type of one
attribute is changed, it only changes from a type to its subtype (we only con-
sider nominal subtype). We calculate the ratio of evolving objects that evolve
monotonically and find the ratio very high (85%). We believe that although
monotonicity has not been widely spread around the techniques for dynamic
languages, it is promising to propose systems utilizing it.
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Function. The function where one evolution action happens significantly in-
fluences the difficulty of analyzing it. As shown in Fig. 8, we divide the functions
where evolution actions happen into three kinds: Local means the evolution ac-
tion happens in the same function as the construction-site. Method means the
evolution action happens in one of the member methods of the evolving objects.
Those two kinds generally allow modular reasoning to be performed [55,30,51]
and are easier to analyze; Others denotes other functions. From the figure, we can
see that most functions are member methods of the object. There are also some
(23%) functions belonging to Local. Those findings indicate modular techniques
for analyzing object evolution should be able to cover most cases.

Condition. Fig. 9 shows the conditions under which object evolution hap-
pens. More precisely, this figure shows the distribution of evolution locations
(evolution-sites), based on the intraprocedural preconditions. The intraproce-
dural precondition of one evolution-site is the condition that must be satisfied
to reach the evolution-site from the function entry. While in actual systems,
interprocedural preconditions (i.e., the condition to reach the function callsite)
must also be considered, collecting them requires a complicated infrastructure.
Thus, we use intraprocedural preconditions to speculate the difficulty of analyz-
ing the conditions. We split the intraprocedural preconditions into four major
kinds: (1) Uncond, where the precondition is simply True; (2) Iden, where the
precondition is not True, but all branches conduct evolution identically7; (3)
Excep, where the precondition is just to exclude the exceptional execution path
(e.g., if cond then raise exception else evolve); (4) Cond, where the precon-
dition does not belong to the previous three cases. From the figure, we can see
most (77%) of the evolution-sites fall into Uncound, Iden, or Excep. Meanwhile,
the proportion of Cond is still non-negligible (23%). This kind of evolution can be
precisely analyzed only by path-sensitive type systems. However, most existing
type systems for dynamic objects are not path-sensitive; instead, they merge the
different types of one object in different branches. Although there do exist path-
sensitive systems based on dependent and intersection types [16], or abstract
interpretation [36], those systems suffer from performance issues, and complex
type annotations [50]. To this end, we argue that more advanced techniques
should proposed, maybe by making better use of the potential correspondence
between conditional evolution and conditional accesses.

23%

60%

17%

Local Method Others

Fig. 8: Functions of Ob-
ject Evolution

Category Ratio Median
Static Hybrid Static Hybrid

SCI 0.54 0.14 0.59 0.11
PRG 0.60 0.03 0.67 0.02
WEB 0.61 0.05 0.50 0.05
TER 0.64 0.09 0.69 0.08
FMT 0.46 0.23 0.53 0.27
UTL 0.64 0.07 0.60 0.00
OTH 0.52 0.11 0.54 0.14
ALL 0.56 0.11 0.56 0.06

Table 4: Overall Dynamism

50%

11%

16%

23%

Uncond Iden Excep Cond

Fig. 9: Condition of Evolution

7 In such cases, there is no need to precisely distinguish the branches.
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Table 5: Results of the Evaluation of Class-based Types

Category Attributes Access-site Evaluation Absences

ALL POL EVA UNI TES LOC RN RA RB ABS CABS

SCI 18127 3802 1127 0.12 0.36 0.50 0.54 0.87 0.93 2623 239
PRG 2143 360 100 0.50 0.62 0.72 0.76 0.77 0.82 23 2
WEB 3842 957 217 0.13 0.26 0.41 0.59 0.74 0.95 572 58
TER 1126 187 36 0.36 0.78 0.83 0.92 0.86 0.94 12 0
FMT 1832 746 245 0.15 0.19 0.26 0.28 0.92 0.95 460 39
UTL 146 21 2 0.00 0.00 0.50 0.50 0.50 0.50 6 1
OTH 2145 231 31 0.42 0.55 0.55 0.65 0.87 0.97 114 6

ALL 29361 6304 1758 0.16 0.35 0.48 0.53 0.86 0.93 3810 345

Overall Dynamism. Table 4 shows the overall dynamism of evaluated projects.
The second and fourth columns show the ratio and median proportion of classes
that do not expose any dynamic behaviors (i.e., static classes). The third and
fifth columns show the metrics of classes that expose both kinds of dynamic
behaviors (i.e., hybrid classes). From the table, the proportions of static classes
in all classes and within a project are both 56%. Since static objects are ideal for
performing program optimization [15,49], we believe that their high proportion
encourages more optimization for them. Also, the infrastructure of this paper is
a good start for identifying static objects/classes.

On the other hand, the ratio of classes that expose both behaviors is non-
negligible (11%). This implies that two behaviors are sometimes utilized simulta-
neously because they may serve different purposes. Thus, we believe it is promis-
ing to develop unified techniques to handle both dynamic behaviors.

5.2 Effectiveness of the Types

In this section, we analyze the effectiveness of class-based types and object-based
types. We start with the analysis of class-based types.

Class-based Types. As discussed, polymorphic attributes are a good indicator
of the effectiveness of class-based types. Thus, we first analyze polymorphic
attributes, followed by an evaluation of the effectiveness of class-based types.
Polymorphic Attributes. Recall that an attribute is polymorphic if it holds a
union type. In other words, it is assigned with multiple classes or abs. The second
and third columns of Table 5 present the number of all attributes and polymor-
phic attributes. We observe that the proportion of polymorphic attributes is high
(6304/29361=21.4%), indicating their prevalence in dynamic languages.

To understand how types held by polymorphic attributes are related, we
classify polymorphic attributes into six kinds in Fig. 10. These six kinds in-
clude: (a) ABS, where each attribute (e.g., height) holds a single class or abs,
(b) OPT, where each attribute (e.g., width) holds a single class or NoneType,
after removing abs, (c) NOM, where each attribute holds multiple classes that,
after removing NoneType and abs, have nominal relation (i.e., the nominal join
is not Object), (d) NUM, where each attribute holds multiple classes that, after
removing NoneType and abs, are all numeric (i.e., builtin numeric classes, int and
float, and user-defined numeric classes, e.g., numpy.float32), (e) STRU, where
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Fig. 10: Classification
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Fig. 11: Object Addresses

each attribute holds multiple classes that, after removing NoneType and abs, have
structural relation (i.e., the structural join is not Object), and (f) OTHE : the
polymorphic attributes not belonging to previous kinds. When a polymorphic
attribute belongs to more than one kind, we classify it into the earlier appeared
kind because it is more specific. For example, the polymorphic attribute holding
int and float belongs to both NUM and STRU. We classify it into NUM since
all attributes belonging to NUM belong to STRU, but not vice versa.

From Fig. 10, we observe that a large proportion (53%+21%) of polymor-
phic attributes are ABS and OPT, meaning that most attributes are polymor-
phic because of abs or NoneType. Nevertheless, a significant proportion (26%)
of polymorphic attributes are actually assigned with multiple classes even after
removing abs and NoneType. Luckily, we find that most of those attributes do not
belong to OTHE , indicating that a supertype (in the sense of nominal, numeric,
or structural) is likely to be the intended type of each such attribute. Those at-
tributes are likely to be used without precisely distinguishing their actual types.
Evaluation. We will next evaluate the safety of accessing polymorphic attributes,
as specified in Section 4.2. In this study, we evaluate only the polymorphic at-
tributes for which at least one access-site exposes local constraints since con-
straints are necessary for the evaluation. Column EVA of Table 5 gives the ratio
of evaluated attributes, i.e., 27% (1758/6304). The reason that many polymor-
phic attributes are not evaluated is twofold. First, there are 27% (1711/6304)
attributes that we observe no access-site. The other attributes have access-sites
observed, but those access-sites expose constraints that can not be collected by
our local constraint generation rules. For example, the attributes may be passed
into another function, put into a global container, or directly returned.

Columns UNI through LOC of Table 5 show the ratio of evaluated attributes
that are determined to be safe. According to Section 4.2, an attribute is safe if
it satisfies the local constraints of all evaluated access-sites. Also, local type
refinements (i.e., type tests and local assignments) can be used to refine the
types of the evaluated attribute and make the accesses safe. To analyze the
effectiveness of local type refinements, we show the ratio of safe attributes with
and without local type refinements. First, Column UNI shows the ratio of safe
attributes without local type refinements. In this case, all access-sites of an
attribute have to be safe for all its classes. Overall, UNI attributes are about
16%. The UNI is much higher in some categories, such as PRG and OTH,
indicating that though polymorphic, attributes may be used uniformly without



What Types are Needed for Typing Dynamic Objects? 15

distinguishing their types. Second, the attribute may be type-tested against
how it will be used, as illustrated in Section 3.1. The ratio of attributes that are
safe due to such tests or the previous reason is shown in Column TES . Third,
accessing polymorphic attributes may be safe thanks to local assignments [3]
before the access, as illustrated also in Section 3.1. The ratio of attributes whose
accesses are safe due to local assignments or previous reasons is shown in Column
LOC . The TES and LOC results for all subjects are 35% and 48%, respectively,
and are much higher in some categories (e.g., PRG, TER), meaning that local
type refinements can significantly increase the effectiveness of class-based types.
Threats to Validity. There are three threats to the validity. First, since we only
evaluate 27% of all polymorphic attributes, it is possible that the findings can-
not be generalized to all polymorphic attributes. We do believe that the results
are generalizable, however, since the difficulty in collecting constraints is due
to the surrounding contexts which do not affect typing in general. To test this
assumption, we sampled 300 polymorphic attributes from the 73% unevaluated
attributes and conducted a manual analysis of them. We provided the necessary
annotations to calculate LOC and RB for those attributes. The results are very
close to the ones in Table 5, with LOC = 50%, and RB = 97%. Second, since
we do not consider interprocedural constraints, it is possible that the types are
actually unsafe to use in the access-site, but we report them to be safe. To this
end, we manually investigate 100 safe attributes from the attributes belonging to
LOC , and analyze if they are actually safe. Among the 100 attributes, we find no
unsafe attributes. Thus, we believe that local constraints are effective in deter-
mining the safety of polymorphic attributes. Third, our interpretation of type
tests is not complete. We only consider built-in type tests such as isinstance

and hasattr and their boolean combinations, and ignore user-defined type tests
and value tests. It is possible that the attributes considered unsafe by our ap-
proach are actually safe if we consider more complete type tests. To this end,
we additionally classify all attributes “mentioned” in the type tests as safe. In
this setting, LOC reaches 51%, only 3% higher than the original LOC results.
Thus, we believe that our interpretation of type tests covers most cases.
Attribute Absences. For the 52% of attributes whose accesses are deemed un-
safe, we manually investigate them and find the main reason is that attributes
may hold abs or NoneType but are used without type tests or local assignments.
Combined with our observation that a large proportion of attributes are ABS
or OPT, we conduct an additional experiment to evaluate the connection be-
tween those two types and type safety. Specifically, for each attribute deemed
as unsafe, we discard NoneType, abs, and both of them and rerun the experi-
ment. For example, when evaluating width/height against their access-sites in
measure, we remove NoneType and abs from their types and evaluate int only. We
show the results of removing NoneType, abs, and both in columns RN, RA, and
RB, respectively. According to the results, removing NoneType helps increase the
proportion (48% to 53%), while removing absences helps significantly (48% to
86%), implying that attribute absences are the main cause of the type errors.

Since attribute absences are the main cause of the type errors, we conduct a
specialized analysis of their sources, as shown in Columns ABS and CABS. ABS
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Table 6: Results of the Evaluation of Object-based Types

CAT Flow-insensi Flow-sensi Strong Updates (wo/w Recency)

CLS L0 L2 L4 CLS L0 L2 L4 CLS L0 L2 L4

SCI 0.50 0.55 0.55 0.56 0.51 0.55 0.56 0.56 0.52/0.65 0.58/0.72 0.61/0.94 0.62/0.94
PRG 0.72 0.78 0.85 0.85 0.74 0.79 0.86 0.86 0.74/0.78 0.79/0.84 0.87/0.91 0.87/0.91
WEB 0.41 0.44 0.46 0.46 0.41 0.45 0.46 0.46 0.48/0.83 0.55/0.91 0.57/0.93 0.57/0.93
TER 0.83 0.86 0.92 0.92 0.83 0.86 0.92 0.92 0.86/0.89 0.89/0.92 0.94/0.97 0.94/0.97
FMT 0.26 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.26/0.35 0.27/0.37 0.27/0.37 0.28/0.37
UTL 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
OTH 0.55 0.58 0.58 0.58 0.55 0.58 0.58 0.58 0.65/0.77 0.77/0.97 0.77/0.97 0.77/0.97

ALL 0.48 0.51 0.53 0.53 0.49 0.52 0.53 0.53 0.50/0.65 0.55/0.71 0.58/0.86 0.59/0.86

shows the number of polymorphic attributes holding abs, while CABS shows
the same number when we only consider just-constructed objects. It can be
observed from the results that construction contributes a little (345/3810=9%)
to attribute absences, which implies that evolution is the main source of absences.

Object-based Types. As discussed earlier, object addresses play an important
role in object-based types. In this section, we first investigate several object
addresses and then the effectiveness of object-based types.
Object Addresses. Recall that an address is nonlinear if it refers to multiple ob-
jects. Nonlinear addresses prevent strong updates. There are two solutions to this
problem: more precise addresses or recency abstraction. To measure the effec-
tiveness of more precise addresses, we compare four kinds of addresses, including
class names and class names extended with 0/2/4-callsite of construction-sites
(the 0-callsite case is simply construction location and so on for the rest). In
Fig. 11, Nonlinear results measure the proportion of evolving classes that have
at least two objects referred to by a single address. To measure the effectiveness
of recency abstraction, we compare object addresses with and without recency
abstraction. For an address with recency abstraction, strong updates cannot be
performed when it refers to inrecent, evolving objects. Inrecency measures the
proportion of evolving classes that have at least one address witnessing such
a problem. From the figure, we can observe that the class name can easily be
nonlinear, as 93% of the class names are nonlinear. More precise addresses help
insignificantly. However, recency abstraction helps significantly. Even with the
most imprecise object address (class name), only 34% of evolving classes belong
to Inrecency. With 2-callsite only 15% of the evolving classes belong to Inrecency.
In other words, with 2-callsite, most (85%) classes support strong updates.
Evaluation. We now extend the evaluation of class-based types to object-based
types. The results are shown in Table 6. Columns under “Flow-insensi” show
the proportion of safe polymorphic attributes when typed under flow-insensitive
store abstraction with the four kinds of object addresses. CLS shows the propor-
tion when class names are used as object addresses. This column is the same as
the LOC column of Table 5. L0, L2, and L4 show the proportions when 0/2/4
callsite of the construction-sites are used to extend the class names. Note that
to keep the comparison with class-based types straightforward, we enable local
refinements and use the same polymorphic attributes as in the evaluation of
class-based types. It is possible that one attribute (e.g., title) is not polymor-
phic anymore when typed under more precise addresses. Even so, we still include
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it. It can be observed that using more precise object addresses increases the pre-
cision. However, the improvement is not significant. Columns under “Flow-sensi”
show the same metrics but with flow-sensitive store abstraction. It can be shown
that flow-sensitivity alone cannot improve the precision much. Flow-sensitivity
alone (i.e., without strong updates) is effective only if one object can do some-
thing before taking some evolution actions, but not after. We can observe that
such conditions should be rare since flow-sensitivity alone is not effective. This
observation also aligns with our previous finding that object evolution is mostly
monotonic, which means that objects gain new abilities as the evolution goes
on, but never lose old abilities.

Columns under “Strong Updates” show the same metrics, but strong up-
dates are performed for linear addresses/addresses that obey recency abstrac-
tion. Overall, we can find that the ability to perform strong updates significantly
improves precision. This finding conforms to our previous finding that most er-
rors are caused by attribute absences, which are themselves caused by object
evolution. Strong updates make it possible to distinguish the object type be-
fore and after the evolution, and thus eliminate attribute absences and increase
precision. Meanwhile, it can be observed that only performing strong updates
for linear addresses is not sufficient, and using recency abstraction helps signifi-
cantly, especially when used together with L2 or more precise addresses.

Note that our evaluation of object-based types only reveals the upper bound
of the precision. The precision of object-based types is also influenced by other
factors such as the analysis of function calls/control flows (which determines
whether the effects of different function calls/control flows are precisely sepa-
rated). As the results in Section 5.1 suggest, the analysis of them is not a trivial
task. However, since we want to focus on the factors that are specific to object
types, while those factors influence the typing of the whole program, we do not
conduct a detailed analysis of them and assume them to be precisely analyzed8.
In other words, our aim is not to conduct a systematic evaluation of object-based
types, but to derive observations on some important and representative factors.

Discussion. Now, we summarize the observations gained from our analysis and
make suggestions on real-world type systems.
Class-based Types. As can be observed from our experiment, class-based types
can handle many polymorphic attributes. The effectiveness of class-based types
is contributed significantly by local type refinement techniques, especially the
ability to interpret type tests (a feature typically referred to as occurrence typ-
ing [13,28,48]). Moreover, since we find that our relatively simple “occurrence
typing” covers most cases, we believe that the technique for occurrence typing
needs not be very complicated to fulfill practical uses.

On the other hand, many polymorphic attributes cannot be handled by class-
based types yet, especially when they hold abs. To make this insight more con-
crete, we check the polymorphic attributes with Pyright [35], a widely-used class-
based type checker for Python, using class-based types similar to ours. More
specifically, we randomly sample 100 polymorphic attributes from the 52% of

8 As a dynamic analysis, we can naturally simulate the precision analysis of them.
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the polymorphic attributes thought as unsafe in our study. We provide neces-
sary type annotations for those polymorphic attributes and their related code
and check the code with Pyright. We found that type errors are reported for 95
of the attributes. The reason that errors are not reported for some attributes is
due to the unsound aspects of Pyright. For example, Pyright does not raise any
error for the attribute whose corresponding class overrides the getattr method.

Object-based Types. It is obvious from the results that object-based types are
much more precise than class-based types. However, we want to emphasize that
although our results are in favor of object-based types to a large extent, we do
not mean that class-based types are useless since most of the spurious type er-
rors related to class-based types are just caused by attribute absences, which are
normally not expected to be excluded statically9. What’s more, type checking/in-
ference of class-based types is faster, and annotating class-based types is much
easier than object-based types [38]. Thus, we suggest using these two kinds of
types accordingly. In the scenarios where errors such as type mismatches are em-
phasized, and attribute absences matter less, we recommend class-based types.
Meanwhile, in the scenarios where more rigorous verification is expected [12,18],
we believe that object-based types are more suitable. In particular, in dependent
type systems [16,50], object-based types with strong updates should be preferred,
since they can help dependent type systems prove stronger properties.

Typestate-based Types. At last, we discuss typestates [6,46]. By modeling evolu-
tion processes as finite state machines, typestates allow fine-grained representa-
tion of classes whose instances evolve. Typically, users must provide typestate
annotations to use such types. However, recent studies [12,20] have proposed an
inference algorithm for typestate annotations, when only attribute absences are
concerned and evolution happens only inside member methods. Since we have
found that attribute absences are the main cause of type errors and evolution
does happen mainly inside member methods, we believe that it is promising
to utilize typestate-based types. Future work in this direction should carefully
differentiate among three states of an attribute, that is, absent, uninitialized
(holding None), and initialized. What’s more, adopting typestate-based types
also requires some kind of strong update mechanism and can benefit from the
monotonicity, which some findings in our study should help.

6 Conclusion and Future Work

In this paper, we conduct a systematic evaluation of object dynamism and object
types. Our results reveal the prevalence of dynamic object behaviors. We also
evaluate the widely used types for handling object dynamism and draw impor-
tant implications for them. Although our study is set on Python, we expect the
main findings to be transferable to other dynamic languages, since they share
the same core semantics. For future work, we plan to build a type system for
dynamic object-oriented languages based on the insights gained in this study.

9 Even some static languages such as Java do not exclude them.
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